弹性力学基本概念和考点
弹性力学知识点总结

弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
弹性力学知识点总结

一、弹性体的力学性质1.1 弹性体的基本定义弹性体是指在受力作用下可以发生形变,但在去除外力后能够完全恢复原状的物质。
弹性体的形变可以分为弹性形变和塑性形变两种,其中弹性形变是指在外力作用下形变后又能够完全恢复的形变,而塑性形变则是指在外力作用下形变后无法完全恢复的形变。
1.2 林纳与胡克定律弹性体的力学性质可以由林纳和胡克定律来描述。
林纳定律指出,在小形变范围内,弹性体的形变与受力成正比。
而胡克定律则指出,在弹性体上施加的外力与其形变之间存在线性关系,即应力与应变成正比。
二、应力应变关系2.1 应力的定义与计算应力是指单位面积上的受力大小,通常用σ表示。
应力可以分为正应力和剪应力两种,其中正应力是指垂直于物体表面的受力,而剪应力是指平行于物体表面的受力。
在弹性体受力作用下,可以使用以下公式来计算应力:σ = F / A其中,σ为应力,F为受力大小,A为受力的面积。
2.2 应变的定义与计算应变是指物体在受力作用下的形变程度,通常用ε表示。
应变可以分为正应变和剪应变两种,其中正应变是指物体在受力作用下的长度、体积等发生的相对变化,而剪应变是指物体表面平行位移的相对变化。
在弹性体受力作用下,可以使用以下公式来计算应变:ε = ΔL / L其中,ε为应变,ΔL为长度变化量,L为原始长度。
2.3 应力应变关系应力与应变之间存在一定的关系,这种关系可以用材料的弹性模量来描述。
弹性模量是指在正应变下的应力大小,通常用E表示。
弹性模量可以分为弹性体积模量、剪切模量和弹性体积模量三种,分别对应不同形变情况下的应力应变关系。
3.1 弹性体积模量弹性体积模量是指在正应变下,单位体积的物体受力后的应力大小,通常用K表示。
弹性体积模量是材料的一个重要力学性质,它描述了材料在受力作用下的体积变化情况。
3.2 剪切模量剪切模量是指在剪切应变下,材料受力后的应力大小,通常用G表示。
剪切模量描述了材料在受力作用下的形变情况。
3.3 杨氏模量杨氏模量是衡量正应变下的应力大小的指标,通常用E表示。
第1章 弹性力学基本理论

偏微分方程 困难 宽
5
1.1.1 弹性力学及其基本假设
弹性力学是一门基础理论,把弹性力学理论直接用于工程
问题分析具有很大的困难,其主要原因主要是在于它的基本方
程即偏微分方程边值问题求解通常比较困难。由于经典的解析
方法很难用于工程构件分析,因此探讨近似解法是弹性力学发
展中的一个重要任务。弹性力学问题的近似求解方法,如差分
(1.11)
17
1.1.4 应变
因此,剪应变 xy 为
应变通常是一个很小的值,而且无量纲
xy
1
2
u y x
ux y
应变分量的矩阵型式
(1.12)
ε yxx
xy y
xz yz
zx yy z
(1.13)
除了上面的两种应变,还有一种体积应变(Volume Starin)。体 积应变表示弹性体体积的扩张或收缩,按线弹性理论,体积应变 的大小等于三个线应变的和,即
x1 y1
cos sin
s in c os
0x 0 y
z1 0
0 1z
(a)
22
1.2.1 应力坐标变换
第二次旋转确定了x’y’z’坐标,它们与 x1y1z1 坐标的关系如下
x' 1
y
'
图 1-3 应变的几何描述
在图1-3(a)中,单元体在x方向上有一个的伸长量。微分单元 体棱边的相对变化量就是x方向上的正应变。即
x
ux x
相应地,y轴方向的正应变为:
y
弹性力学简答部分(纯粹个人总结)

1.什么是弹性力学弹性力学,也称弹性理论,固体力学学科的一个分支,其中研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、应变和位移。
2.弹性力学的基本假定(1)连续性——假设所研究的整个弹性体内部完全由组成物体的介质所充满,各个质点之间不存在任何空隙。
(2)完全弹性——对应一定的温度,如果应力和应变之间存在一一对应关系,而且这个关系和时间无关,也和变形历史无关,称为完全弹性材料。
完全弹性分为线性弹性和非线性弹性材料弹性常数不随应力或应变的变化而改变(3)均匀性——假设弹性物体是由同一类型的均匀材料组成的。
(4)各向同性——假定物体在各个不同的方向上具有相同的物理性质。
(5)小变形——假设在外力或者其他外界因素(如温度等)的影响下,物体的变形与物体自身几何尺寸相比属于高阶小量。
3.概念:体力:分布在物体体积内的力,如重力和惯性力。
面力:分布在物体表面上的力,如流体压力和接触力。
内力:外界因素作用下,物体内部各个部分之间的相互作用力应力:分布在物体内部任意点上的力,实质上是面力的一种应变:是描述物体受力后发生变形的相对概念的力学量位移:物体内任一点位置的移动平面应力问题:只在板边上受有平行于板面并且不沿厚度变化的面力或约束。
(1) 几何特征:一个方向的尺寸比另两个方向的尺寸小得多。
(2)应力特征:平面应力问题只有三个应力分量:应变分量、位移分量也仅为x、y 的函数,与z 无关。
平面应变问题:(1) 几何特征:一个方向的尺寸比另两个方向的尺寸大得多,且沿长度方向几何形状和尺寸不变化。
(2)应力特征:以任一横截面为xy 面,任一纵线为z 轴。
设z方向为无限长,则沿z 方向其他变量都不变化,仅为x,y 的函数。
4.圣维南原理(用积分的方式表示)见例题圣维南原理: 若把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力,则近处的应力分布将有显著改变,而远处所受的影响可忽略不计。
5.逆解法、半逆解法逆解法:(1)根据问题的条件(几何形状、受力特点、边界条件等),假设各种满足相容方程的φ(x,y)的形式;(2)然后利用应力分量计算式,求出(具有待定系数);(3)再利用应力边界条件式,来考察这些应力函数φ(x,y)对应什么样的边界面力问题,从而得知所设应力函数φ(x,y)可以求解什么问题。
(完整版)徐芝纶弹性力学主要内容及知识点

1.弹性力学是研究弹性体由于受到外力作用、边界约束或温度改变等原因而引起的应力、形变和位移。
2外力分为体积力和面积力。
体力是分布在物体体积内的力,重力和惯性力。
体积分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。
面力是分布在物体表面上的力,面力分量以沿坐标轴正方向为正,沿坐标轴负方向为负。
3内力,即物体本身不同部分之间相互作用的力。
3弹性力学中的基本假定:连续性,完全弹性,均匀性,各向同性,小变形假定。
凡是符合连续性、完全弹性、均匀性、各向同性等假定的物体称之为理想弹性体。
连续性,假定整个物体的体积被组成这个物体的介质所填满,不留下任何空隙。
完全弹性,指的是物体能完全恢复原形而没有任何剩余形变。
均匀性,整个物体时统一材料组成。
各向同性,物体的弹性在所有各个方向都相同。
4求解弹性力学问题,即在边界条件上,根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。
弹性力学、材料力学、结构力学的研究对象分别是弹性体,杆状构件和杆件系统。
解释在物体内同一点,不同截面上的应力是不同的。
应力的符号不同:在弹性力学和材料力学中,正应力规定一样,拉为正,压为负。
切应力:弹性力学中,正面沿坐标轴正方向为正,沿负方向为负。
负面上沿坐标轴负方向为正,沿正方向为负。
材料力学中,所在的研究对象上任一点弯矩转向顺时针为正,逆时针为负。
5.形变:所谓形变,就是形状的改变。
包括线应变(各各线段每单位长度的伸缩,即单位伸缩和相对伸缩,伸长时为正,收缩时为负);切应变(各线段直接直角的改变,用弧度表示,以直角变小时为正,变大为负)6试述弹性力学平面应力问题与平面应变问题的主要特征及区别:平面应力问题:几何形状,等厚度薄板。
外力约束,平行于板面且不沿厚度变化。
平面应变问题:几何形状,横断面不沿长度变化,均匀分布。
外力约束,平行于横截面并不沿长度变化。
7.主应力:设经过P点的某一斜面上的切应力等于0,则该斜面上的正应力称为P点的一个主应力;应力主向:该斜面的法线方向称为该斜面的一个应力主向。
弹性力学基本概念和考点汇总

弹性力学基本概念和考点汇总弹性力学是研究物体在受力作用下的形变和应力的学科。
它是物理学和工程学中的一门重要课程,被广泛应用于材料力学、结构设计和工程力学等领域。
在学习弹性力学的过程中,有一些基本概念和考点是必须要掌握的。
1.弹性形变和塑性形变:弹性形变是指物体在受到外力作用后,恢复到原始形状的形变。
而塑性形变是指物体在受到外力作用后,不能完全恢复到原始形状的形变。
2.弹性力学中的基本假设:在弹性力学中,通常做出两个基本假设。
第一个是小变形假设,即物体在受力作用下发生的形变是很小的;第二个是线弹性假设,即物体的应力和应变之间的关系是线性的。
3.弹性势能和应变能:弹性势能是指物体在受力过程中,由于形变而储存的能量。
而应变能是指物体在受力过程中,由于形变而转换成的能量。
4. Hooke定律:Hooke定律是指物体在小变形范围内,应力和应变之间的关系是线性的。
它可以表示为应力等于弹性模量乘以应变。
5.弯曲力学:弯曲力学是研究杆件在受到弯曲力作用下的形变和应力分布。
在弯曲力学中,有一些重要的概念和公式,如弯曲应力、弯曲应变、弯矩和弯曲方程等。
6.薄壁压力容器:薄壁压力容器是指在薄壁条件下,承受内外压力作用的容器。
在薄壁压力容器的分析中,常常需要考虑切应力和平均应力的计算。
7.稳定性分析:稳定性分析是指对于一个受到外力作用的物体,判断其是否处于稳定平衡状态的分析。
在稳定性分析中,需要考虑物体的刚度、屈曲和挠度等因素。
8.复合材料力学:复合材料是由两种或两种以上不同材料组成的材料。
在复合材料力学中,需要考虑不同材料的力学性能和界面效应等因素。
9.动力学分析:动力学分析是研究物体在受到外力作用下的运动状态和运动规律。
在动力学分析中,需要考虑物体的质量、加速度和作用力等因素。
以上是弹性力学中的一些基本概念和考点的汇总。
掌握这些基本概念和考点可以帮助我们理解弹性力学的基本原理和应用,进而应用于实际问题的分析和解决。
弹性力学基础

弹性力学基础弹性力学是力学中的一个重要分支,研究物体在受力后的变形和恢复能力。
本文将介绍弹性力学的基本概念、公式和应用。
一、基本概念弹性力学研究的对象是弹性体,即当受到外力作用后,可以恢复原状的物质。
弹性体的变形可以分为弹性变形和塑性变形两种。
弹性变形是指在外力作用下,物体发生变形但不改变其内部结构,当外力消失后,物体可以完全恢复原状。
塑性变形是指在外力作用下,物体发生变形会改变其内部结构,当外力消失后,物体无法完全恢复原状。
二、弹性模量弹性模量是衡量物体弹性变形程度的物理量,常用的弹性模量包括杨氏模量、剪切模量和泊松比。
其中,杨氏模量是衡量物体在拉伸或压缩时的弹性变形程度的量值,剪切模量是衡量物体在受到切割力时的弹性变形程度的量值,泊松比是物体在受到拉伸或压缩时在垂直方向上的变形程度与水平方向上的变形程度之比。
三、胡克定律胡克定律是弹性力学中的基本定律,描述了物体受到力的作用下的弹性变形。
根据胡克定律,当物体受到力的作用后,物体发生的弹性变形与力的大小成正比,与物体的初始长度成反比。
胡克定律可以用数学公式表示为F = kx,其中F为外力的大小,k为弹性系数,x为物体的弹性变形量。
四、应力和应变应力是物体受到外力作用后单位面积上的力的大小,用σ表示。
应变是物体受到外力作用后单位长度变化量与原始长度的比值,用ε表示。
根据胡克定律,应力与应变之间存在线性关系,称为胡克定律。
五、弹性力学的应用弹性力学在工程领域中有广泛的应用,例如在结构设计中,通过弹性力学的理论分析,可以确定结构的稳定性和安全性。
在材料科学中,弹性力学可以帮助研究材料的强度和刚度,为材料的选择和设计提供指导。
此外,弹性力学还在地震学、电子学和生物学等领域中有着重要的应用。
总结:弹性力学是研究物体受力后的变形和恢复能力的学科。
本文介绍了弹性力学的基本概念,包括弹性体、弹性变形和塑性变形等概念;弹性模量、杨氏模量、剪切模量和泊松比等物理量;胡克定律、应力和应变的关系;以及弹性力学在工程、材料科学和其他学科中的应用。
弹性力学期末考试复习

弹性力学期末考试复习弹性力学是固体力学的重要分支,它主要研究弹性体在外力作用下的应力、应变和位移。
对于即将迎来弹性力学期末考试的同学们来说,有效的复习是取得好成绩的关键。
下面就为大家提供一份全面的弹性力学期末考试复习指南。
一、基本概念和理论1、应力应力是弹性体内单位面积上所承受的内力。
要理解正应力和切应力的定义、方向以及它们在不同坐标系下的表达式。
重点掌握平面应力状态和空间应力状态的分析方法,如莫尔圆的应用。
2、应变应变描述了物体在受力作用下的变形程度。
包括线应变和角应变,要熟悉它们的定义和计算方法。
同时,要了解应变张量的概念以及主应变和应变不变量。
3、本构关系本构关系反映了材料的应力和应变之间的内在联系。
对于各向同性线性弹性材料,要熟练掌握胡克定律的表达式,并能应用于简单的问题求解。
4、平衡方程平衡方程描述了物体内部的力的平衡条件。
在直角坐标系和柱坐标系、球坐标系下的平衡方程都需要掌握,能够根据具体问题建立相应的平衡方程。
5、几何方程几何方程描述了应变和位移之间的关系。
要理解位移分量和应变分量之间的数学表达式,并能通过已知位移求应变,或通过已知应变求位移。
二、常见的问题类型和解题方法1、平面问题平面问题分为平面应力问题和平面应变问题。
对于这两类问题,要能够根据给定的条件判断所属类型,并选择相应的解法。
常见的解法有应力函数法,通过求解满足双调和方程的应力函数,进而求得应力分量。
2、轴对称问题在轴对称情况下,要学会利用柱坐标系下的基本方程进行求解。
掌握圆环、圆筒等常见轴对称结构的应力和位移分析。
3、薄板弯曲问题薄板弯曲问题中,要理解薄板的基本假设,掌握弯矩、扭矩和挠度的计算方法,以及相应的边界条件的处理。
4、能量法能量法在弹性力学中也有重要应用,如虚功原理、最小势能原理等。
要能够运用这些原理求解结构的位移和内力。
三、复习资料和学习资源1、教材仔细阅读教材是复习的基础。
推荐使用经典的弹性力学教材,如徐芝纶院士编写的《弹性力学》,书中对基本概念和理论的讲解清晰透彻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本概念:(1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理:作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。
(3) 弹性力学的基本假定:连续性、完全弹性、均匀性、各向同性和小变形。
(4) 平面应力与平面应变;设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。
同时,体力也平行与板面并且不沿厚度方向变化。
这时,0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。
设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。
由胡克定律,0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。
因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。
(5) 一点的应力状态;过一个点所有平面上应力情况的集合,称为一点的应力状态。
(6) 圣维南原理;(提边界条件)如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。
(7) 轴对称;在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。
这种问题称为空间轴对称问题。
一、平衡微分方程:(1) 平面问题的平衡微分方程;00yxx x xy yy f x yf x yτστσ∂∂++=∂∂∂∂++=∂∂(记)(2) 平面问题的平衡微分方程(极坐标);10210f f ρρϕρϕρϕρϕρϕϕ∂σ∂τσσ∂ρρ∂ϕρ∂σ∂ττρ∂ϕ∂ρρ-+++=+++=1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。
2、平衡方程也反映了应力分量与体力(自重或惯性力)的关系。
二、几何方程;(1) 平面问题的几何方程;x y xy ux v y v u x yεεγ∂=∂∂=∂∂∂=+∂∂(记)(2) 平面问题的几何方程(极坐标);1212121u u v v u v ρρρϕϕϕρϕρϕρϕεεερεεερρ∂ϕγγγρρϕρ∂=+=∂∂=+=+∂∂=+=+-∂∂1、几何方程反映了位移和应变之间的关系。
2、当位移完全确定时,应变也确定;反之,当应变完全确定时,位移并不能确定。
(刚体位移) 三、物理方程;(1) 平面应力的物理方程;()()()1121x x y y y x xy xyE EEεσμσεσμσμγτ=-=-+=(记)(2) 平面应变的物理方程;()22111121x xy y yx xy xyE E Eμμεσσμμμεσσμμγτ⎛⎫-=- ⎪-⎝⎭⎛⎫-=- ⎪-⎝⎭+=(3) 极坐标的物理方程(平面应力);1()1()12(1)E E G Eρρϕϕϕρρϕρϕρϕεσνσεσνσνγττ=-=-+==(4) 极坐标的物理方程(平面应变);221()11()12(1)E E Eρρϕϕϕρρϕρϕμμεσσμμμεσσμμγτ-=---=--+=四、 边界条件;(1) 几何边界条件;平面问题:()()()()s s u u s v v v == 在u s 上;(2) 应力边界条件;平面问题:()()xyx xsxyy ysl m f l m f σττσ+=+=(记)(3) 接触条件;光滑接触:()()n nσσ'= n 为接触面的法线方向 非光滑接触:()()()()n n n n u u σσ'='= n 为接触面的法线方向(4) 位移单值条件;()()2u u θπθ+=(5) 对称性条件:在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。
这种问题称为空间轴对称问题。
一﹑概念1.弹性力学,也称弹性理论,是固体力学学科的一个分支。
2.固体力学包括理论力学、材料力学、结构力学、塑性力学、振动理论、断裂力学、复合材料力学。
3基本任务:研究由于受外力、边界约束或温度改变等原因,在弹性体内部所产生的应力、形变和位移及其分布情况等。
.4研究对象是完全弹性体,包括杆件、板和三维弹性体,比材料力学和结构力学的研究范围更为广泛5.弹性力学基本方法:差分法、变分法、有限元法、实验法.6弹性力学研究问题,在弹性体内严格考虑静力学、几何学和物理学 三方面条件,在边界上考虑边界条件,求解微分方程得出较精确的解答;.7.弹性力学中的基本假定:连续性、完全弹性、均匀性、各向同性、小变形假定。
8.几何方程反映的是形变分量与位移分量之间的关系。
9.物理方程反映的是应力分量与形变分量之间的关系。
10.平衡微分方程反映的是应力分量与体力分量之间的关系。
11当物体的位移分量完全确定时,形变分量即完全确定。
反之,当形变分量完全确定时,位移分量却不能完全确定。
12.边界条件表示在边界上位移与约束、或应力与面力之间的关系式。
它可以分为位移边界条件、应力边界条件和混合边界条件。
13.圣维南原理主要内容:如果把物体表面一小部分边界上作用的外力力系,变换为分布不同但静力等效的力系(主失量相同,对同一点的主矩也相同),那么只在作用边界近处的应力有显著的改变,而在距离外力作用点较远处,其影响可以忽略不计。
14. 圣维南原理的推广:如果物体一小部分边界上的面力是一个平衡力系(主失量和主矩都等于零),那么,这个面力就只会使近处产生显著的应力,而远处的应力可以不计。
这是因为主失量和主矩都等于零的面力,与无面力状态是静力等效的,只能在近处产生显著的应力。
15.求解平面问题的两种基本方法:位移法、应力法。
16.弹性力学的基本原理:解的唯一性原理﹑解的叠加原理﹑圣维南原理。
会推导两种平衡微分方程17.逆解法步骤:(1)先假设一满足相容方程(2-25)的应力函数 (2)由式(2-24),根据应力函数求得应力分量(3)在确定的坐标系下,考察具有确定的几何尺寸和形状的弹性体,根据主要边界上的面力边界条件(2-15)或次要边界上的积分边界条件, 分析这些应力分量对应于边界上什么样的面力,从而得知所选取的应力函数可以解决什么样的问题。
(或者根据已知面力确定应力函数或应力分量表达式中的待定系数18.半逆解法步骤:(1)对于给定的弹性力学问题,根据弹性体的几何形状、受力特征和变形的特点或已知的一些简单结论,如材料力学得到的初等结论,假设部分或全部应力分量的函数形式(2)按式(2-24),由应力推出应力函数f 的一般形式(含待定函数项); (3)将应力函数f 代入相容方程进行校核,进而求得应力函数f 的具体表达形式;(4)将应力函数f 代入式(2-24),由应力函数求得应力分量(5)根据边界条件确定未知函数中的待定系数;考察应力分量是否满足全5.平面问题的应力边界条件为)()()()(s f m l s f m l y s y xy x s xy x =+=+σττσ填空7.圣维南原理的三个积分式如果给出单位宽度上面力的主矢量和主矩,则三个积分边界条件变为8.艾里应力函数⎰⎰⎰⎰⎰⎰--±=--±=--±=⋅±=⋅⋅±=⋅⋅±=⋅2/2/2/2/2/2/2/2/2/2/2/2/1)(1)(1)(1)(1)(1)(h h yh h l x xy h h x h h l x x h h xh h l x x dy y f dy ydy y f ydy dy y f dy τσσsh h l x xy h h l x x N h h l x x F dy Mydy F dy =⋅=⋅=⋅⎰⎰⎰-=-=-=2/2/2/2/2/2/1)(1)(1)(τσσy x y x y f x y x x f y y x xyy y x x ∂∂∂-=-∂∂=-∂∂=),(,),(,),(22222φτφσφσ计 算 理 解 计算一、单项选择题(按题意将正确答案的编号填在括弧中,每小题2分,共10分)1、弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。
A .相容方程B .近似方法C .边界条件D .附加假定2、根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。
A .几何上等效B .静力上等效C .平衡D .任意 3、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。
A .平衡方程、几何方程、物理方程完全相同B .平衡方程、几何方程相同,物理方程不同C .平衡方程、物理方程相同,几何方程不同D .平衡方程相同,物理方程、几何方程不同在研究方法方面:材力考虑有限体ΔV 的平衡,结果是近似的;弹力考虑微分体dV 的平,结果比较精确。
4、常体力情况下,用应力函数表示的相容方程形式为024422444=∂∂+∂∂∂+∂∂yΦy x Φx Φ,6、设有函数⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+-=Φh y h y qy h y h y qx 332332251344, (1)判断该函数可否作为应力函数?(3分)(2)选择该函数为应力函数时,考察其在图中所示的矩形板和坐标系(见题九图)中能解决什么问题(l >>h )。
(15分)解:(1)将φ代入相容方程024422444=∂∂+∂∂∂+∂∂yΦy x Φx Φ,显然满足。
因此,该函数可以作为应力函数。
(2)应力分量的表达式:⎪⎪⎭⎫ ⎝⎛--=∂∂Φ∂-=⎪⎪⎭⎫ ⎝⎛-+-=∂Φ∂=-+=∂Φ∂=22323322333222461342,3346y h hqxy x h yh y q x h qyh qy h y qx y xy y x τσσ考察边界条件:在主要边界y =±h/2上,应精确满足应力边界条件()q h y h y q hy hy y -=⎪⎪⎭⎫⎝⎛-+-=-=-=23321342σ ()013422332=⎪⎪⎭⎫ ⎝⎛-+-===hy hy y h y h y q σ ()04622232=⎪⎪⎭⎫ ⎝⎛--=±=±=hy hy xy y h h qx τ 在次要边界x =0上,应用圣维南原理,可列出三个积分的应力边界条件:())(03342/2/3302/2/奇函数=⎪⎪⎭⎫⎝⎛-=⎰⎰-=-dy h qy h qy dy h h x h h x σ()03342/2/3302/2/=⎪⎪⎭⎫⎝⎛-=⎰⎰-=-ydy h qy h qy ydy h h x h h x σ()2/2/==-⎰dy x h h xyτ在次要边界x =l 上,应用圣维南原理,可列出三个积分的应力边界条件:())(033462/2/33322/2/奇函数=⎪⎪⎭⎫⎝⎛-+-=⎰⎰-=-dy h qy h qy h y ql dy h h l x h h x σ()233462/2/33322/2/ql ydy h qy h qy h y ql ydy h h l x h h x -=⎪⎪⎭⎫ ⎝⎛-+-=⎰⎰-=-σ()ql y h h ql dy h h l x h h xy -=⎪⎪⎭⎫ ⎝⎛--=⎰⎰-=-2/2/2232/2/46τ对于如图所示的矩形板和坐标系,结合边界上面力与应力的关系,当板内发生上述应力时,由主边界和次边界上的应力边界条件可知,左边、下边无面力;而上边界上受有向下的均布压力;右边界上有按线性变化的水平面力合成为一力偶和铅直面力。