10.2分式的基本性质2教案
分式教案(2)

分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。
本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会分式的运算方法,提高运算能力。
3. 学会解分式方程,提高解决问题的能力。
三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。
难点:分式方程的解法。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。
问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。
2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。
3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。
4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。
5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。
6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。
7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。
8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。
9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。
10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。
六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。
分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。
八年级数学上册《分式的基本性质》教案、教学设计

6.课后拓展:布置具有挑战性的拓展题,鼓励学生进行深度思考,提高学生的数学思维能力。
-设计意图:培养学生的创新意识,提高学生的数学素养。
7.教学评价:结合课堂表现、练习成绩和课后拓展成果,全面评价学生的学习效果。
-设计意图:关注学生的全面发展,激发学生的学习积极性,提高教学质量。
-设计意图:从生活实例出发,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.问题驱动:提出问题“分数可以表示什么?分式与分数有什么联系和区别?”让学生思考并回答,为新课的学习做好铺垫。
(二)讲授新知
1.分式的定义:讲解分式的概念,强调分式的三个要素:分子、分母和分数线。通过具体实例,解释分式的意义和表示方法。
-题目2:(x^3 - 2x^2 + x) / (x^2 - 1) × (x^2 + 1) / (x - 1)
-设计意图:通过拓展挑战题,锻炼学生的运算能力,提高学生的数学思维。
4.小组合作题:分组讨论并完成以下问题:
-问题:已知一个分数的分子和分母分别是两个连续的整数,且它们的和为17,求这个分数。
八年级数学上册《分式的基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解分式的定义,掌握分式的表示方法,能够正确书写分式。
2.掌握分式的基本性质,如约分、通分、乘除法则等,并能够灵活运用这些性质解决相关问题。
3.能够运用分式进行简单的代数运算,解决实际问题,提高学生的运算能力和解决问题的能力。
-分式的基本性质有哪些?
-分式的运算方法有哪些?
-如何运用和评价。
-设计意图:通过小组讨论,培养学生的合作精神和交流能力,提高学生对分式知识的理解。
八年级数学上册教案-10.2 分式的基本性质-京改版

分式的基本性质一、教材分析分式的基本性质,是在学生小学学习过的分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的约分、通分及分式计算的基础,是学好本章及以后学习方程、函数的关键。
二、学情分析大部分学生数学基础比较薄弱,对数学学习感觉很困难,导致学习兴趣低下。
为了激发学生的学习数学的兴趣,平时我在课堂上鼓励学生积极发言、小组讨论、合作探究等多种形式调动学生学习的积极性。
三、教学目标知识与技能:1.理解分式的基本性质.2.会用分式的基本性质将分式变形.过程与方法:利用分式与分数有许多类似之处,从分数入手,研究出分式的基本性质,同时还要讲清分式与分数的联系与区别.情感态度与价值观:培养数学学习兴趣及类比能力,使学生养成良好的学习习惯.四、教学重点难点重点理解分式的基本性质.难点灵活应用分式的基本性质将分式变形.五、教学过程设计一、问题引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质二、探究新知1.分数的基本性质:分式的分子、分母同乘以或除以同一个不等于0的整式,分式的值不变. (为什么乘以或除以的整式都要不等于0?)2、43201524983434320152015,.A AC A A C÷==(C ≠0)A 、B 、C 是整式。
三、运用新知1、例题:填空: (1) (2)2、填空: (1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x - 四、巩固练习1、例题:不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233aby x -- (2) 2317b a --- 2、练习:不改变分式的值,使下列分式的分子和分母都不含“-”号(1) 2135x a -- (2) m b a 2)(-- 五、小结1、分数的基本性质:分式的分子、分母同乘以或除以同一个不等于0的整式,分式的值不变. (为什么乘以或除以的整式都要不等于0?)2、 (C ≠0)A 、B 、C 是整式。
初中数学精品教案《分式的基本性质》

初中数学精品教案《分式的基本性质》一、教学内容本节课选自人教版初中数学教材八年级下册第十一章第一节,主要内容包括分式的概念、分式的基本性质以及分式的约分。
二、教学目标1. 理解分式的概念,掌握分式的基本性质,能够运用这些性质简化分式。
2. 学会分式的约分方法,能够正确约分。
3. 能够解决实际问题中涉及分式的计算问题。
三、教学难点与重点教学难点:分式的基本性质及其应用。
教学重点:分式的概念、约分方法。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 实践情景引入小明和小华一起做数学题,题目是:计算下列分数的值:(1)3/4(2)5/10引导学生思考:这些分数有什么共同特点?如何简化分数?2. 例题讲解(1)分式的概念分式是指形如a/b(a、b是整数,且b不为0)的表达式。
(2)分式的基本性质性质1:分子分母同时乘以或除以同一个不为0的数,分式的值不变。
性质2:分式的分子和分母同时乘以或除以同一个分式,分式的值不变。
(3)分式的约分约分原则:将分子和分母同时除以它们的最大公因数。
3. 随堂练习(1)6/9(2)12/18(3)20/254. 讲解与示范针对练习中的题目,讲解约分的方法和步骤。
5. 巩固练习(1)计算下列分式的值:1/2 + 3/42/3 1/6(2)已知分式3/4,将其简化为最简分式。
六、板书设计1. 分式的概念2. 分式的基本性质3. 分式的约分方法4. 例题及解答七、作业设计1. 作业题目(1)计算下列分式的值:1/3 + 2/54/7 1/14(2)将分式8/12简化为最简分式。
2. 答案(1)7/15(2)9/14(3)2/3八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解分式的概念和基本性质,通过讲解和练习,使学生掌握分式的约分方法。
课后,教师应关注学生的作业完成情况,了解他们对知识的掌握程度,并对学生在学习中遇到的问题进行解答和指导。
2024年初中数学精品教案《分式的基本性质》

2024年初中数学精品教案《分式的基本性质》一、教学内容本节课选自人教版初中数学教材八年级下册第十一章《分式》的第一节《分式的基本性质》。
详细内容包括分式的定义、分式的分子分母同乘(除)一个不等于0的整式,分式的值不变、分式的约分、分式的乘除运算。
二、教学目标1. 理解并掌握分式的定义及基本性质,能够运用基本性质进行分式的简化。
2. 学会分式的乘除运算,并能够熟练地进行计算。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点重点:分式的定义及基本性质,分式的乘除运算。
难点:分式的乘除运算中,如何确定最简分式。
四、教具与学具准备1. 教具:PPT、黑板、粉笔。
2. 学具:学生用书、练习本、计算器。
五、教学过程1. 实践情景引入通过PPT展示一个实际情景:小明和小红相约去公园玩,他们带了一些水果分着吃,如何表示他们每个人吃到的水果比例?2. 新课导入引导学生通过实际情景,理解分式的概念,进而引入新课。
3. 例题讲解讲解分式的定义、基本性质以及分式的乘除运算。
4. 随堂练习让学生进行随堂练习,巩固所学知识。
六、板书设计1. 分式的定义2. 分式的基本性质3. 分式的乘除运算4. 最简分式的确定七、作业设计1. 作业题目(1)已知分式,求的值。
答案:(1) 6(2)① ②2. 作业要求(1)完成作业题目,要求书写工整,步骤清晰。
(2)家长签字,确保作业质量。
八、课后反思及拓展延伸1. 反思本节课通过实践情景引入,让学生理解分式的概念,有助于激发学生的学习兴趣。
讲解过程中,注重引导学生发现分式的基本性质,提高学生的逻辑思维能力。
2. 拓展延伸引导学生思考:分式的乘除运算中,如何确定最简分式?为下节课学习分式的约分和通分打下基础。
重点和难点解析:1. 分式的定义及基本性质的理解。
2. 分式的乘除运算,特别是确定最简分式的方法。
3. 实践情景引入的教学设计,以增强学生的兴趣和实际应用能力。
详细补充和说明:一、分式的定义及基本性质的理解分式的定义是分母不为零的整式之比,这是分式学习的基础。
2024年分式的基本性质课时教案

2024年分式的基本性质课时教案一、教学内容本节课选自人教版数学八年级下册第十四章《分式》第一节《分式的基本性质》。
具体内容包括分式的概念、分式的分子与分母同乘(除)一个不等于0的整式,分式的值不变、分式的分子与分母同乘(除)一个不等于0的整式,分式的约分等。
二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质进行分式的化简和运算。
2. 培养学生的逻辑思维能力和抽象思维能力,提高学生的数学素养。
3. 培养学生运用分式基本性质解决实际问题的能力,增强学生的应用意识。
三、教学难点与重点教学难点:分式的分子与分母同乘(除)一个不等于0的整式,分式的值不变;分式的约分。
教学重点:分式的基本性质及其运用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:学生用书、练习本、文具。
五、教学过程1. 实践情景引入通过一个关于实际问题的情景,如“计算两个长方形的面积比”,引出分式的概念。
2. 例题讲解(1)讲解分式的定义,通过具体的例子让学生理解分式的组成。
(2)讲解分式的基本性质,结合例题让学生掌握分子与分母同乘(除)一个不等于0的整式,分式的值不变。
(3)讲解分式的约分,通过例题使学生掌握约分的方法。
3. 随堂练习让学生独立完成教材第14页练习题1、2、3。
5. 课堂小结六、板书设计1. 分式的概念2. 分式的基本性质3. 分式的约分4. 例题及解答过程七、作业设计1. 作业题目:(1)教材第14页习题1、2、3。
(2)已知分式 $\frac{a}{b}$ 的值,求 $\frac{2a}{3b}$、$\frac{3b}{2a}$ 的值。
2. 答案:(1)见教材。
(2)$\frac{2a}{3b}$ 的值为 $\frac{2}{3} \times\frac{a}{b}$,$\frac{3b}{2a}$ 的值为 $\frac{3}{2} \times\frac{b}{a}$。
八、课后反思及拓展延伸1. 反思:关注学生在课堂上的表现,及时发现问题,调整教学方法,提高教学效果。
《分式的基本性质》第2课时教学设计【初中数学人教版八年级上册】

《分式的基本性质》教学设计第2课时分式的基本性质是分式运算的基础,它们是后续学习分式运算的强有力武器.分数与分式关系密切,它们是具体与抽象、特殊与一般的关系,所以在教学分式的基本性质时,要利用学生已有的分数基础,通过分数类比,并注意从具体到抽象、从特殊到一般的认识过程,引导学生理解分式的基本性质,要充分突显类比方法在教学中的统帅作用.分式的约分和通分,是进行分式四则运算中不可或缺的变形.分式的约分找出公因式是关键,约分时,一定要约去分子、分母的所有公因式;分式的通分找出最简公分母是是关键,确定最简公分母先要将各分母分解因式,然后确定公倍式.所教学分式基本性质的运用时,要引导学生观察、分析题目的特点,选择恰当的方法给分式进行变形.如不改变分式的值,使分子、分母里的系数变为整数的题,分子分母系数既有小数的,又有分数的,引导学生思考分子分母既要化整,又要最简.在约分或通分的过程中,要依据分式的性质,千万不能改变分式值的大小.1. 理解分式的基本性质;并能灵活运用这些性质进行分式的恒等变形.2. 通过分式的恒等变形的过程提高学生的运算能力.3. 通过类比、探索分数的基本性质,初步掌握类比的思想方法,积累数学活动经验. 【教学重点】理解分式的基本性质,对分式基本性质的初步运用.【教学难点】灵活运用分式的基本性质对分式进行化简、变形.多媒体课件、教具等.一、提出问题,思考引入问题1 喜羊羊和美羊羊共同去一块面积为a 的草地吃草,吃草前,二位决定平分地盘,喜羊羊说:“我要把它平分2份,我要1份.”美羊羊说:“我要把它平分4n 份,我要2n 份.”聪明的同学,你知道他们的分地方案分到的面积都是一样多的吗?追问1:按照喜羊羊的分地方案,喜羊羊分地多少?喜羊羊分地是2a . 追问2:按照美羊羊的分地方案,美羊羊分地多少?美羊羊分地是n na 42. 追问3:2a 与nna 42相等吗? 通过有趣的问题情景引出问题,激发学生的学习兴趣,为学习分式的基本性质做好铺垫.二、合作交流,探究新知问题2 请同学们思考:32与64相等吗?276与92相等吗?为什么? 32与64相等,因为32262464=÷÷=. 276与92相等,因为9232736276=÷÷=. 追问1:通过32与64,276与92之间的变形过程,你能说出这样变形的依据是什么吗? 根据分式的性质,分式的分子、分母同时除了同一个不等于零的数,分式的值不变. 追问2:分数的基本性质是什么?你能类比猜想出分式的基本性质吗?分数的基本性质:分数的分子、分母乘(或除以)同一个不等于0的数,分数的值不变. 分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.追问3:你能说出分数的基本性质与分式的基本性质的区别吗?在分数的基本性质中,“数”是一个具体的、唯一确定值.在分式的基本性质中,“整式”的值随整式中的字母的取值不同而变化.追问4:你能尝试用符号语言表示分式的基本性质吗?分式的基本性质:MB M A B A M B M A B A ÷÷=⨯⨯=;(M 是不等于零的整式) 追问5:上面的等式中,M B A ,,三个字母分别表示什么?M 的取值范围为什么不等于零?归纳:M B A ,,三个字母分别表示整式,M 是不等于零的整式.三、运用新知例1 下列等式的右边是怎样从左边得到的?(1)()022≠=c bcac b a ;(2)y x xy x 23=;(3)()01≠++=+z z xy z xz xy x . (1)解:∵c ≠0,∴bcac c b c a b a 222=⋅⋅=; 追问:为什么“c ≠0”?(2)解:∵x ≠0,∴yx x xy x x xy x 233=÷÷=; 追问:为什么题目没有给出x ≠0的条件?(3)解:∵z ≠0,∴()zxy z xz z xy z x xy x ++=⋅⋅+=+11. 例2 填空(在括号内填入适当的整式,使分式的值不变):(1)()ba ab b a 2=+;(2)()b a ab a b a +=--222. 分析:(1)从左边分式到右式,要保证分式的值不变,需根据分式的基本性质对分式的分子、分母同时乘以a . (2)先将分式的分子、分母分解因式,其中隐含0≠-b a ,要使分子变为b a +,就要分子分母同除以b a -.解:(1)∵()ba ab a a ab a b a ab b a 22+=⋅⋅+=+,∴括号内填ab a +2. (2)∵()()()a b a b a a b a b a aba b a +=--+=--222,∴括号内填a . 归纳约分定义:在例2(2)中,我们利用分式的基本性质,约去aba b a --222的分子、分母的公因式b a -,这就是约分.即:把分式分子、分母的公因式约去,这种变形叫分式的约分.追问:分式约分的依据是什么?分式约分的依据:分式的分子与分母都除以同一个不等于零的整式,分式的值不变. 归纳通分定义:在例2(1)中,我们利用分式的基本性质,将分式abb a +的分子、分母同时乘以a ,把ab b a +和b a ab a 22+化成同分母的分式,这就是通分.即: 把几个异分母的分式化成与原来的分式相等的同分母的分式,叫做分式的通分. 追问:分式通分的依据是什么?分式通分的依据:分式的分子与分母都乘以同一个不等于零的整式,分式的值不变.例3 约分:(1)c ab bc a 2321525- (2)96922++-x x x (3)y x y xy x 33612622-+- 分析:约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.解:(1)b ac b abc ac abc cab bc a 353555152522232-=⋅⋅-=-; (2)()()()33333969222+-=+-+=++-x x x x x x x x ; (3)()()()y x y x y x y x y xy x -=--=-+-236336126222. 追问:现在会解决课前提出的问题吗?(2a 与n na 42是否相等) 相等.理由如下:2242242a n n n na n na =÷÷=. 例4 通分:(1)b a 223与cab b a 2-;(2)52-x x 与53+x x . 分析:通分之前,首先要确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.解:(1)cb a bc bc b a bc b a 2222232323=⋅⋅=,()c b a ab a a c ab a b a c ab b a 2222222222-=⋅⋅-=-; (2)()()()2510255525222-+=+-+=-x x x x x x x x x ,()()()25153********--=-+-=+x x x x x x x x x . 四、巩固新知1. 约分:(1)c ab b a 2263;(2)2228mn n m ;(3)532164xyz yz x -;(4)x y y x --3)(2.答案:(1)bc a 2;(2)n m 4;(3)24zx -;(4)-2(x -y )2.2. 通分:(1)321ab 和c b a 2252 (2)xy a 2和23x b (3)223ab c 和28bca - (4)11-y 和11+y 答案:(1)321ab = c b a ac 32105,c b a 2252= c b a b 32104;(2)xy a 2= y x ax 263,23x b = y x by 262;(3)223ab c = 223812c ab c , 28bc a -= 228c ab ab ;(4)11-y =)1)(1(1+-+y y y ,11+y =)1)(1(1+--y y y .3. 不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) 233ab y x --;(2) 2317b a ---;(3) 2135x a --; (4) m b a 2)(--.答案:(1) 233ab y x ;(2) 2317b a -;(3) 2135x a ; (4) m b a 2)(--. 五、归纳小结1. 分式的基本性质.(1)分式的基本性质MB M A B A M B M A B A ÷÷=⨯⨯=;(M B A ,,均为整式,且0≠M ) (2)分式的基本性质的作用:分式进行变形的依据.2. 运用基本性质需要注意的问题;3. 分式基本性质的研究方法.从分数→分式,从特殊→一般.4. 利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.略.。
分式的基本性质教学设计

分式的基本性质教学设计教学设计:分式的基本性质一、教学目标1.知识与技能目标:(1)理解和掌握分式的定义和基本性质;(2)能够简化分式和找到分式的最简形式。
2.过程与方法目标:(1)通过引导学生以探究为主的学习方法,培养学生的主动学习能力;(2)通过实例引导学生思考,激发学生的学习兴趣。
3.情感态度与价值观目标:(1)培养学生尊重他人观点,注重合作和相互帮助的学习态度;(2)培养学生应用分式解决实际问题的能力。
二、教学重点与难点1.教学重点:(1)分式的定义和基本性质;(2)分式的简化和寻找最简形式。
2.教学难点:(1)理解分式的定义和基本性质;(2)能够合理简化分式和找到最简形式。
三、教学过程1.导入新课(1) 利用一个简单的例子引发学生对分式的兴趣,例如:小明买了一条绳子长500cm,他想把它剪成两段,其中一段的长度是另一段的2倍,那么这两段绳子的长度各是多少?(2)让学生自己思考并寻找解决的方法。
(3)引导学生分析这个问题可以用分式来表达,以此引出分式的定义。
2.提出问题(1)提问:什么是分式?分式有哪些基本性质?(2)让学生自己思考和讨论,并记录下各个学生的观点。
3.发现规律(1) 给出多个分式的例子,让学生观察并发现规律,如$\frac{2}{3}, \frac{4}{6}, \frac{6}{9}, \frac{8}{12}, ...$(2)引导学生思考:这些分式之间有没有什么关系?怎样才能得到最简形式的分式?4.探究分式的基本性质(1) 给出几个简单的分式比较题目,如:$\frac{2}{5}$和$\frac{6}{15}$哪个更大?$\frac{3}{4}$和$\frac{6}{8}$哪个更小?(2)让学生利用基本数学计算方法来进行比较,观察并总结出分式比较大小的规律。
5.整理总结(1)学生回答问题:分式的基本性质有哪些?如何找到最简形式的分式?(2)教师总结和扩展学生的回答,给出分式的基本定义和简化的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怀柔区第四中学教案(2017-2018学年第一学期)
教学过程 预设问题:
1. 分式的分子、分母是多项式时,怎样约分?
2. 约分的步骤是什么?
3. 应用分式性质进行约分时要注意什么?
教学过程设计
(一) 创设情境,导入新课(自探、合探)
1.分式的基本性质用字母表示为:__________________________________________.
2.因式分解:m 2 –m= , x 2-9= , a 2-2a-3=
3. 不改变分式的值,将下列分式中分子和分母的各项系数都化为整数:
(1)y x y x 2.0203.01.0-+ = (2)n
m n m 5.03.035.1--= 4.
21?11x x x -=+-,111?2+-=-x x x 则?处应填上_______ _ _ 5.根据分式的性质进行约分,把下列分式化为最简分式:
a
a 1282=_____;c a
b b
c a 23245125=_______,()()b a b a ++13262=__________, (二)自探、合探
例1:将下列分式进行约分(提示:怎样找到分子分母的公因式呢?可参考书上7页例2)
(1)()22y x xy
x ++ (2)2232m m m m -+- (3)22699
x x x ++-
(三)学生展示、评价
(2)、(3)两组派学生展示,两组评价。
(四)、教师精讲
通过上面的例题,总结分子分母是多项式时,进行约分的步骤;
1. 先将能分解的分子分母分解因式
2. 找到分子分母的公因式,利用分式的性质进行约分。
3. 检查分式是否是最简分式
注意:当分子、分母中的各项是相乘关系时才能进行约分。
(五)巩固练习:
1、下列分式哪些是可以约分的?对可以约分的分式尝试写出约分的结果。
A 、m m --44
B 、4
4---m m C 、2)2(2m m m -- D 、n m n m +-22 E 、n m n m ++22 F 、21-+x x 2、下列约分正确的是( ) A 1x y x y
-+=-- B 022=--y x y x C b a b x a x =++ D 33=+m m 3、约分:(1)22248ab
b a ; (2)()()a ab a b a --1241822; (3)12122+--x x x (六)检测:1、化简分式2b
ab b +的结果是: ( ) A 、
b a +1 B 、b a 11+ C 、2
1b a + D 、b ab +1 2、下列分式中是最简分式是( ) A 2222n m n m +- B 9322-+m m m C 32
2)
(y x y x +- D 222)(n m n m -- 3、当m=________时,
()()4
322--+m m m 的值为0. 5、化简求值: (1)22
2448x y x xy --其中4
1,21==y x 。
(2)96922+--a a a 其中5=a
(七)小结(1)知识 ;(2)注意:
(八)作业 :书上8页基础2,提升1、2
(九)课后反思:
10.2 分式的性质(第二课时)学案
(一)创设情境,导入新课(自探、合探)
1.分式的基本性质用字母表示为:__________________________________________.
2.因式分解:m 2 –m= , x 2-9= , a 2-2a-3=
3. 不改变分式的值,将下列分式中分子和分母的各项系数都化为整数:
(1)y x y x 2.0203.01.0-+ = (2)n
m n m 5.03.035.1--= 4.
21?11x x x -=+-,111?2+-=-x x x 则?处应填上_______ _ _ 5.根据分式的性质进行约分,把下列分式化为最简分式: a
a 1282=_____;c a
b b
c a 23245125=_______,()()b a b a ++13262=__________,
(二)自探、合探
例1:将下列分式进行约分(提示:怎样找到分子分母的公因式呢?可参考书上7页例2)
(1)
()22y x xy x ++ (2)2232m m m m -+- (3)22699
x x x ++-
(五)巩固练习: 1、下列分式哪些是可以约分的?对可以约分的分式尝试写出约分的结果。
A 、m m --44
B 、4
4---m m C 、2)2(2m m m -- D 、n m n m +-22 E 、n m n m ++22 F 、21-+x x 2、下列约分正确的是( ) A 1x y x y
-+=-- B 022=--y x y x C b a b x a x =++ D 33=+m m 3、约分:(1)22248ab
b a ; (2)()()a ab a b a --1241822; (3)12122+--x x x
(六)检测:
1、化简分式
2b ab b +的结果是: ( ) A 、b a +1 B 、b a 11+ C 、21b
a + D 、
b ab +1 2、下列分式中是最简分式是( ) A 2222n m n m +- B 9322-+m m m C 3
2
2)(y x y x +- D 222)(n m n m -- 3、当m=________时,
()()4
322--+m m m 的值为0. 5、化简求值: (1)22
2448x y x xy --其中4
1,21==y x 。
(2)96922+--a a a 其中5=a。