第7章 生物质热解炭化技术

合集下载

第7章 生物质热解炭化技术

第7章 生物质热解炭化技术

炭窑
炭窑优点: ① 最简单的烧炭技术 ② 投资成本最低 炭窑缺点: ① ② ③ ④ 生产周期长 劳动强度大 炭产率低 污染严重
移动式炭化炉
移动式炭化炉及烧炭流程 安装 密封 装炉 点火炭化 封炉冷却 出炉
炭窑
移动式炭化炉优点(和炭窑相比): ① 生产强度降低 ② 生产周期缩短 移动式炭化炉缺点(和炭窑相比): ① ② 投资成本增加 污染严重
流态化炉

优点?

缺点?
多层炭化炉ຫໍສະໝຸດ 果壳炭化炉、立式多槽炭化炉、螺旋炉
果壳炭化炉 立式多槽炭化炉 螺旋炉
7.3 生物质干馏及干馏装置
外热式干馏釜 内热式干馏釜
外热式干馏釜(车辆式)
内热式干馏釜(连续立式)

谢!
7.2 生物质烧炭及烧炭装置
炭窑 移动式炭化炉 果壳炭化炉 立式多槽炭化炉 螺旋炉 流态化炉 多层炭化炉
炭窑
炭窑及烧炭流程 筑窑: 炭化室 烟道 燃烧室 烘窑:新窑需要 装料、点火、炭化 封窑冷却 出窑
炭窑
炭窑的产品: 黑炭和白炭,其区别在哪?
黑炭:闷窑熄火 白炭:趁热扒出,湿沙熄火
第七章 生物质热解炭化技术


7.1. 生物质热解炭化技术概述 7.2. 生物质烧炭及烧炭装置 7.3. 生物质干馏及干馏装置
7.1 概述
可燃气
烧炭 干馏
焦炭
生物质
液体
炭化工艺类型:烧炭(有限供氧)和干馏(隔绝空气) 焦炭产物可作为燃料或广泛用于制造活性炭、渗碳剂、二硫 化碳、饲料添加剂、工艺品等

生物质热解气化原理与技术

生物质热解气化原理与技术

生物质热解气化原理与技术生物质热解气化是一种将生物质转化为可用气体燃料的技术。

生物质是指植物和动物的有机物质,如木材、农作物废弃物、动物粪便等。

热解气化是将生物质加热至高温,并在缺氧或氧气限制条件下进行分解,生成可燃气体和固体残渣的过程。

生物质热解气化的原理是通过热解和气化两个过程将生物质转化为气体燃料。

首先,生物质在高温下进行热解,热解过程中生物质的有机物质被分解为气体、液体和固体。

其中,气体主要是一氧化碳(CO)、二氧化碳(CO2)、氢气(H2)、甲烷(CH4)等。

液体主要是烃类物质,如醇类、酮类、醚类等。

固体残渣是热解过程中不能分解的物质,主要是炭质物质。

然后,热解产物在气化过程中被进一步转化为可用气体燃料。

气化是在缺氧或氧气限制条件下进行的,通过气化反应将热解产物中的固体炭质物质转化为一氧化碳和氢气。

气化过程中,氧气与炭质物质反应生成一氧化碳,同时一氧化碳与水蒸气反应生成氢气。

生物质热解气化技术具有以下几个优势。

首先,生物质是一种可再生能源,与化石燃料相比具有更低的碳排放。

生物质热解气化能够有效利用生物质资源,减少对化石燃料的依赖。

其次,生物质热解气化可以将生物质转化为多种气体燃料,具有较高的灵活性。

不同类型的生物质可以产生不同成分的气体燃料,可以根据需求进行选择和调整。

再次,生物质热解气化可以利用生物质的多级能量,通过热解气化过程可以同时产生气体、液体和固体燃料。

气体燃料可以直接用于燃烧或发电,液体燃料可以用于替代石油燃料,固体残渣可以用作肥料或再生能源的原料。

生物质热解气化技术的应用具有广泛的前景。

首先,生物质热解气化可以用于生物质能源的开发利用。

生物质能源是一种清洁、可再生的能源,可以用于代替传统的化石能源,减少对环境的污染。

其次,生物质热解气化可以用于生物质废弃物的处理。

农作物废弃物、木材废料等生物质废弃物在经过热解气化处理后可以转化为有用的气体燃料,同时还可以减少废弃物对环境的影响。

生物质炭化技术及其在农林废弃物资源化利用中的应用

生物质炭化技术及其在农林废弃物资源化利用中的应用

生物质炭化技术及其在农林废弃物资源化利用中的应用吕豪豪;刘玉学;杨生茂【摘要】随着科学技术不断进步和农村经济快速发展,包括农作物秸秆在内的各种农林废弃物总量和种类显著增加,农林废弃物的高效处理及资源化利用已成为制约农业可持续发展的一个难题.生物质炭化技术是近年来新兴的农林废弃物资源化利用新技术.该技术主要通过将农林废弃物生物质炭化并以稳定的碳形式固定形成新型的生物炭产品.生物炭不仅在固碳减排、改良土壤与肥料增效方面具有良好作用,而且在土壤修复与水污染处理等一系列环境资源领域中也具有广阔的应用前景.本文阐述了我国农林废弃物资源化利用的现状以及生物质炭化及生物炭物理化学性质特征,重点探讨生物炭产品在农业及环境资源领域的应用现状与发展前景,并对生物炭技术领域及其在未来农业及环境中的应用进行展望,旨在为农林固体废弃物高效资源化提供新的思路,为农林废弃物的高效循环处理利用提供新的模式.【期刊名称】《浙江农业科学》【年(卷),期】2015(056)001【总页数】4页(P19-22)【关键词】农林废弃物;生物质炭化;固碳减排;生物炭;多孔性结构【作者】吕豪豪;刘玉学;杨生茂【作者单位】浙江省农业科学院环境资源与土壤肥料研究所浙江省生物炭工程技术研究中心,浙江杭州310021;浙江省农业科学院环境资源与土壤肥料研究所浙江省生物炭工程技术研究中心,浙江杭州310021;浙江省农业科学院环境资源与土壤肥料研究所浙江省生物炭工程技术研究中心,浙江杭州310021【正文语种】中文【中图分类】TK6文献著录格式:吕豪豪,刘玉学,杨生茂.生物质炭化技术及其在农林废弃物资源化利用中的应用[J].浙江农业科学,2015,56(1):19-22.DOI 10.16178/j.issn.0528⁃9017.20150105随着科学技术不断进步和农村经济快速发展,农作物产量不断提高、农产品加工产业迅速发展以及新农村建设不断展开,包括农作物秸秆在内的各种农林废弃物总量和种类呈上升趋势,特别是近十年来,随着农村城市化进程步伐的加快,农民生活水平明显提高,对于可用作燃料和肥料的农林废弃物利用率越来越低,农林废弃物的高效处理处置及资源化利用已成为制约农业可持续发展的一个难题。

生物质碳化技术ppt

生物质碳化技术ppt
-
7.2.4生物质碳化产品 • 生物质碳化产品—木炭,可用于冶金、有色金属
生产、活性炭制造等,用途极其广泛
-
(1)木炭的主要成分:
除C元素外,还有H和O等元素。各种元素含量 多少,依赖于热裂解方法和炭化最终温度,与原料 无关。随炭化最终温度的升高,木炭中C元素的含 量增加,H和O的含量降低。
-
固定碳 木炭放入白金坩埚内,900℃喷灯火焰下煅烧
-
(3)节柴炭烧炉
节柴炭烧炉由砖砌成,烧炭同时,可利用产 生的热量取暖或烧水。 结构:由炉盖、炭化室、燃烧室、火山墙、迎风
墙、烟囱、炉门等组成。 程序:装料、缺氧闷烧、闭炉和出炭。
-
(3)可移出式烧炭炉
结构紧凑、操作容易、移动方便、出炭率高、 炭质较好、劳动强度和受季节影响小。 结构:上炉体、下炉体、烟道、风孔、炉
炭化温度高,木炭的炭含量就大。
-
(4)木炭的反应能力 在高温下与活性气体和蒸气相互作用的能力,
是评价固体原料在工业中使用的基本性质的方法 之一,与其含碳素的无定形多孔结构有关。其中 所含的灰分,尤其是碱金属、碱土金属及其氧化 物的存在,对木炭的化学反应能力也起催化作用。
-
谢谢
-Hale Waihona Puke 7.2 生物质炭化设备-
7.2.1生物质炭化设备
• 烧炭在我国已有2000年以上的历史。 • 常见的碳化设备:
炭窑、移动式炭化炉、果壳炭化炉和流态 化炉。
-
(1)炭窑
原料:薪炭材
结构:炭化室、烟道、燃烧室和 排烟孔。
特点:1、最简单的木材热裂解 方法。
2、得炭率25%,周期3~7 天。
3、闷窑熄火熄火产物为 黑炭,窑外熄火产物 为白炭。

生物质热解炭化项目简介

生物质热解炭化项目简介

一、项目背景生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。

生物质能则是太阳能以化学能形式储存在生物质中的能量形式,它一直是人类赖以生存的重要能源之一,是仅次于煤炭、石油、天然气之后第四大能源,在整个能源系统中占有重要的地位。

全国生物质总量高达10亿吨,利用率仅4.78%。

二、热解工艺生物质热解是指在隔绝空气或供给少量空气的条件下,通过热化学转换,将生物质转变成为木炭、液体和气体等低分子物质的过程。

三、生物质热解产品分析生物质热解工艺着眼于生物质能源的高值、绿色、循环和综合利用,是一种可将生物质能源综合处理,获取活性炭、木醋液等高附加值产品的装备及工艺。

此工艺以来源广泛的生物质能源为原料,通过升温热解的方式,可产出含有目标产品木醋液的热解气体,通过冷却器将热解气体冷却到一定温度,其中的木醋液成分即可冷凝,再加以收集提纯加工,即可获得木醋液成品。

热解气体中的不凝气体成分为可燃气体,可将其引回炉腔燃烧,实现装备的燃料自给供应,生物质原料经热解后转化为生物炭。

生物质经过热解技术的转化,1吨生物质原料可产燃气230~310m3;生物炭250~300kg;木焦油50kg;木醋液250kg。

生物炭富含微孔具有很好的修复性能,既可作为高品质能源、土壤改良剂,也可作为还原剂、肥料缓释载体及二氧化碳封存剂等,已广泛应用于固碳减排、水源净化、重金属吸附和土壤改良等。

目前国内生物炭价格3000-4000元/吨。

木醋液是含有有机酸类、醛类、酮类、酚类等多种有机化合物和少量无机物(Ca、Mg、Na、Fe等)的水溶液,具有杀菌、抗菌、抑菌、防虫、促进作物生长的功效是农用化学品的理想替代物,可利用价值高。

另外,在土壤中喷施木醋液或将木醋液与木炭粉混合形成炭醋粉施加到土壤中,可有效改良土壤环境,疏松土壤,提高土壤中的有机质和速效养分的含量,调节土壤酸碱度,促进有用微生物的繁殖,促进酶活性,改善土壤透气性和保持肥效,补充铁、锰、铜、锌等微量元素,减轻农作物根腐问题,防治地下病虫害,促进农作物生长,并有调节地温,改善果实食味和质量,缓解大小年的作用。

生物质炭化工艺

生物质炭化工艺

生物质炭化工艺生物质炭化工艺是将生物质原料在高温无氧或低氧条件下进行热解,生成炭质产物的过程。

这种工艺可以将生物质转化为生物质炭,具有广泛的应用前景和环境保护意义。

生物质炭化工艺一般包括预处理、干燥、炭化和冷却等几个步骤。

首先,生物质原料经过预处理,去除杂质、调整湿度和粒度,以提高炭化效率和产物质量。

然后,生物质原料经过干燥,除去水分,以降低炭化过程中的能耗。

接下来,生物质原料进入炭化炉进行热解,热解过程中,生物质中的有机物发生裂解和重组,生成炭质产物和气体产物。

最后,炭质产物经过冷却,得到生物质炭。

生物质炭化工艺有多种方法,常见的包括焦化、气化和热解等。

焦化是将生物质原料在高温下分解,生成焦炭的过程。

焦炭具有高热值和良好的化学稳定性,可以用作燃料或冶金原料。

气化是将生物质原料在高温下与气体反应,生成可燃气体的过程。

气化产物可以用作燃料或化工原料。

热解是将生物质原料在低氧或无氧条件下进行加热,生成炭质产物的过程。

热解产物主要是生物质炭,具有良好的吸附性能和环境友好性。

生物质炭化工艺具有多项优点。

首先,生物质炭化可以将生物质转化为高附加值的炭质产物,实现资源的高效利用。

其次,生物质炭化可以减少生物质的体积和质量,便于储存和运输。

再次,生物质炭化可以降低生物质的水分含量,提高热值和燃烧效率。

此外,生物质炭化过程中产生的气体可以用作燃料或化工原料,实现能源的综合利用。

生物质炭化工艺在能源、农业和环境保护等领域具有广泛的应用前景。

在能源领域,生物质炭可以替代传统的化石燃料,减少温室气体的排放,降低能源消耗。

在农业领域,生物质炭可以用作土壤改良剂,提高土壤肥力和作物产量。

在环境保护领域,生物质炭可以吸附和去除水体和大气中的有害物质,净化环境。

然而,生物质炭化工艺也面临一些挑战和问题。

首先,生物质原料的选择和处理对炭化效果和产物质量有很大影响。

不同的生物质原料具有不同的结构和组成,需要针对性地进行处理和优化。

生物质热解制备高品质炭材料及其功能化应用

生物质热解制备高品质炭材料及其功能化应用

生物质热解制备高品质炭材料及其功能化应用生物质热解是利用高温条件下无氧加热产生的化学反应,将生物质转化为炭材料的一种方法。

与传统的化石燃料相比,生物质热解制备的炭材料具有更低的碳排放和环境影响,因此被广泛地应用于环境保护、能源储存等领域。

本文将介绍生物质热解制备高品质炭材料的方法及其功能化应用。

一、生物质热解制备高品质炭材料的方法生物质热解制备炭材料的关键在于选择适当的生物质原料和热解条件。

常用的生物质原料包括木材、秸秆、稻壳等,这些材料中含有丰富的碳水化合物和纤维素,是制备炭材料的理想原料。

热解条件通常是在高温下进行,一般在450℃至1000℃之间,热解时间也很重要,一般需要几小时至几十小时不等。

在热解过程中,生物质会分解为气态、液态和固态产物。

气态产物主要是水蒸气、CO2和少量的其他气体,液态产物包括生物油和酚类化合物,而固态产物就是炭材料。

为了获得高品质的炭材料,需要优化热解参数,如热解温度、热解时间、升降温速率等。

二、高品质炭材料的功能化应用高品质的炭材料具有很多优异的性能,如高比表面积、低密度、优异的机械强度和耐化学腐蚀性等,这些性质使其广泛应用于环境治理和能源储存领域。

1.环境治理生物质炭材料可以吸附各种有机和无机污染物,如有机染料、重金属离子等。

炭材料具有高比表面积和孔隙结构,可以提高吸附性能。

此外,生物质炭材料还可以作为吸附剂、废水处理剂、气相过滤器等,对环境污染具有良好的治理效果。

2.能源储存生物质炭材料可以作为电容器电极材料,用于储存电能。

炭材料具有优异的导电性和孔隙结构,可以提高电容器的能量密度和功率密度。

此外,生物质炭材料还可以作为锂离子电池的负极材料,用于储存电能。

炭材料具有大量的微孔和介孔,可以提高锂离子电池的循环性能和能量密度。

结论生物质热解制备高品质炭材料是一种绿色、可持续的方法,具有优异的性能和广泛的应用前景。

生物质炭材料可以用于环境治理、能源储存等领域,对减缓能源短缺、改善环境质量发挥重要作用。

生物质热解制备生物碳化性能实验报告

生物质热解制备生物碳化性能实验报告

生物质热解制备生物碳化性能实验报告一、实验背景随着全球能源需求的不断增长和环境保护意识的日益增强,寻找可持续、可再生的能源资源成为当务之急。

生物质作为一种丰富的可再生资源,其热解转化为生物炭的技术引起了广泛关注。

生物炭具有良好的吸附性能、孔隙结构和稳定性,在土壤改良、碳封存、能源储存等领域具有巨大的应用潜力。

本实验旨在研究生物质热解制备生物炭的性能,为其进一步的应用提供理论依据和技术支持。

二、实验目的1、探究不同生物质原料在热解过程中的转化规律和产物分布。

2、分析热解温度、停留时间等参数对生物炭产率和性能的影响。

3、评估生物炭的物理化学性质,如孔隙结构、元素组成、表面官能团等。

4、研究生物炭对重金属离子的吸附性能和在土壤中的改良效果。

三、实验材料与设备1、实验材料选取了常见的生物质原料,包括玉米秸秆、木屑和稻壳。

化学试剂:盐酸、氢氧化钠、硝酸银等,用于分析生物炭的化学性质。

2、实验设备热解炉:采用固定床式热解炉,能够精确控制温度和加热速率。

电子天平:用于称量生物质原料和生物炭的质量。

扫描电子显微镜(SEM):用于观察生物炭的微观形貌。

比表面积及孔隙度分析仪:测定生物炭的比表面积和孔隙结构。

元素分析仪:分析生物炭的元素组成。

傅里叶变换红外光谱仪(FTIR):表征生物炭表面的官能团。

四、实验方法1、生物质预处理将玉米秸秆、木屑和稻壳分别粉碎至一定粒度,然后在 105℃的烘箱中干燥至恒重,备用。

2、热解实验将预处理后的生物质原料分别装入热解炉中,在不同的温度(400℃、500℃、600℃)和停留时间(30min、60min、90min)下进行热解。

热解过程中,产生的气体通过冷凝器冷却收集,固体产物即为生物炭。

3、生物炭性能分析产率计算:生物炭产率=生物炭质量/生物质原料质量 × 100%。

元素分析:使用元素分析仪测定生物炭中碳(C)、氢(H)、氧(O)、氮(N)等元素的含量。

孔隙结构分析:采用比表面积及孔隙度分析仪,通过氮气吸附法测定生物炭的比表面积、孔容和孔径分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 生物质热解炭化技术


7.1. 生物质热解炭化技术概述 7.2. 生物质烧炭及烧炭装置 7.3. 生物质干馏及干馏装置
7.1 概述
可燃气
烧炭 干馏
焦炭
生物质
液体
炭化工艺类型:烧炭(有限供氧)和干馏(隔绝空气) 焦炭产物可作为燃料或广泛用于制造活性炭、渗碳剂、二硫 化碳、饲料添加剂、工艺品等
炭窑
炭窑优点: ① 最简单的烧炭技术 ② 投资成本最低 炭窑缺点: ① ② ③ ④ 生产周期长 劳动强度大 炭产率低 污染严重
移动式炭化炉
移动式炭化炉及烧炭流程 安装 密封 装炉 点火炭化 封炉冷却 出炉
炭窑
移动式炭化炉优点(和炭窑相比): ① 生产强度降低 ② 生产周期缩短 移动式炭化炉缺点(和炭窑相比): ① ② 投资成本增加 污染严重
7.2 生物质烧炭及烧炭装置
炭窑 移动式炭化炉 果壳炭化炉 立式多槽炭化炉 螺旋炉 流态化炉 多层炭化炉
炭窑
炭窑及烧炭流程 筑窑: 炭化室 烟道 燃烧室 烘窑:新窑需要 装料、点火、炭化 封窑冷却 出窑
炭窑
பைடு நூலகம்炭窑的产品: 黑炭和白炭,其区别在哪?
黑炭:闷窑熄火 白炭:趁热扒出,湿沙熄火
流态化炉

优点?

缺点?
多层炭化炉
果壳炭化炉、立式多槽炭化炉、螺旋炉
果壳炭化炉 立式多槽炭化炉 螺旋炉
7.3 生物质干馏及干馏装置
外热式干馏釜 内热式干馏釜
外热式干馏釜(车辆式)
内热式干馏釜(连续立式)

谢!
相关文档
最新文档