生物质热解技术

合集下载

生物质热解技术

生物质热解技术

生物质热解技术(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--生物质压缩成型技术1 压缩成型原理生物质主要有纤维素、半纤维素和木质素组成。

木质素为光合作用形成的天然聚合体,具有复杂的三维结构,属于高分子化合物,它在植物中的含量一般为15%~30%。

木质素不是晶体,没有熔点但有软化点,当温度为70-110℃时开始软化,木质素有一定的黏度;在200-300℃呈熔融状、黏度高,此时施加一定的压力,增强分子间的内聚力,可将它与纤维素紧密粘接并与相邻颗粒互相黏结,使植物体变得致密均匀,体积大幅度减少,密度显著增加,当取消外部压力后,由于非弹性的纤维分子之间相互缠绕,一般不能恢复原来的结构和形状。

在冷却以后强度增加,成为成型燃料。

压缩时如果对生物质原料进行加热,有利于减少成型时的挤压力。

对于木质素含量较低的原料,在压缩成型过程中,可掺入少量的黏结剂,使成型燃料保持给定形状。

当加入黏结剂时,原料颗粒表面会形成吸附层,颗粒之间产生引力,使生物质粒子之间形成连锁的结构。

这种成型方法所需的压力较小,可供选择的黏结剂包括黏土、淀粉、糖蜜、植物油和造纸黑液等。

2 压缩成型生产工艺压缩成型技术按生产工艺分为黏结成型、压缩颗粒燃料和热压缩成型工艺,可制成棒状、块状、颗粒状等各种成型燃料。

生物质—-干燥—-粉碎—-调湿—-成型—-冷却—-成型燃料主要操作步骤如下:(1)干燥生物质的含水率在20%-40%之间,一般通过滚筒干燥机进行烘干,将原料的含水率降低至8%-10%。

如果原料太干,压缩过程中颗粒表面的炭化和龟裂有可能会引起自燃;而原料水分过高时,加热过程中产生的水蒸气就不能顺利排出,会增加体积,降低机械强度。

(2)粉碎木屑及稻壳等原料的粒度较小,经筛选后可直接使用。

而秸秆类原料则需通过粉碎机进行粉碎处理,通常使用锤片式粉碎机,粉碎的粒度由成型燃料的尺寸和成型工艺所决定。

(3)调湿加入一定量的水分后,可以使原料表面覆盖薄薄的一层液体,增加黏结力,便于压缩成型。

生物质热解技术

生物质热解技术

生物质热解技术按温度,升温速率,固定停留时间(反应时间)和颗粒大小等实验条件可将热解分为炭化(慢热解),快速热解和气化。

由于液体产物的诸多优点和随之而来的人们对其研究兴趣的日益高涨,对液体产物收率相对较高的快速热解技术的研究和应用越来越受到人们的重视。

快速热解过程在几秒或更短的时间内完成。

所以,化学反应,传热传质以及相变现象都起重要作用。

关键问题是使生物质颗粒只在极短的时间内处于较低温度(此种低温利于生成焦炭),然后一直处于热解过程最优温度。

要达到此目的的一种方法是使用小生物质颗粒(应用于流化床反应器),另一种方法是通过热源直接与生物质颗粒表面接触达到快速传热(这一方法应用于生物质烧蚀热解技术中)。

由众多实验研究得知,较低的加热温度和较长气体停留时间会有利于炭的生成,高温和较长停留时间会增加生物质转化为气体的量,中温和短停留时间对液体产物增加最有利。

秸秆发电商品化前景分析解决浪费性生物质能资源的唯一出路在于商品化。

生物质能秸秆发电技术,不仅为农村提供更多电力,更有意义的是将使生物质能资源的商品化成为可能,一方面农民可通过出售秸秆获得更多的收入;另一方面过去农村使用直接燃烧秸秆的方式进行炊事,要为秸秆的收集、运输、储存以及在直接燃烧时花费大量的时间和劳力。

如果能使用秸秆发电,农村使用更多的商品能源,农民将获得更多的时间从事生产性劳动,以尽早脱贫致富。

因此,将秸秆发电进行能源方式转化,是一件利国利民的好事。

1 生物质能秸秆发电的工艺流程农作物秸秆在很久以前就开始作为燃料,直至1973年第一次石油危机时丹麦开始研究利用秸秆作为发电燃料。

在这个领域丹麦BWE公司是世界领先者,第一家秸秆燃烧发电厂于1998年投入运行(Haslev,5Mw)。

此后,BWE公司在西欧设计并建造了大量的生物发电厂,其中最大的发电厂是英国的Elyan发电厂,装机容量为38Mw。

1.1 秸秆的处理、输送和燃烧发电厂内建设两个独立的秸秆仓库。

生物质热解气化原理与技术

生物质热解气化原理与技术

生物质热解气化原理与技术生物质热解气化是一种将生物质转化为可用气体燃料的技术。

生物质是指植物和动物的有机物质,如木材、农作物废弃物、动物粪便等。

热解气化是将生物质加热至高温,并在缺氧或氧气限制条件下进行分解,生成可燃气体和固体残渣的过程。

生物质热解气化的原理是通过热解和气化两个过程将生物质转化为气体燃料。

首先,生物质在高温下进行热解,热解过程中生物质的有机物质被分解为气体、液体和固体。

其中,气体主要是一氧化碳(CO)、二氧化碳(CO2)、氢气(H2)、甲烷(CH4)等。

液体主要是烃类物质,如醇类、酮类、醚类等。

固体残渣是热解过程中不能分解的物质,主要是炭质物质。

然后,热解产物在气化过程中被进一步转化为可用气体燃料。

气化是在缺氧或氧气限制条件下进行的,通过气化反应将热解产物中的固体炭质物质转化为一氧化碳和氢气。

气化过程中,氧气与炭质物质反应生成一氧化碳,同时一氧化碳与水蒸气反应生成氢气。

生物质热解气化技术具有以下几个优势。

首先,生物质是一种可再生能源,与化石燃料相比具有更低的碳排放。

生物质热解气化能够有效利用生物质资源,减少对化石燃料的依赖。

其次,生物质热解气化可以将生物质转化为多种气体燃料,具有较高的灵活性。

不同类型的生物质可以产生不同成分的气体燃料,可以根据需求进行选择和调整。

再次,生物质热解气化可以利用生物质的多级能量,通过热解气化过程可以同时产生气体、液体和固体燃料。

气体燃料可以直接用于燃烧或发电,液体燃料可以用于替代石油燃料,固体残渣可以用作肥料或再生能源的原料。

生物质热解气化技术的应用具有广泛的前景。

首先,生物质热解气化可以用于生物质能源的开发利用。

生物质能源是一种清洁、可再生的能源,可以用于代替传统的化石能源,减少对环境的污染。

其次,生物质热解气化可以用于生物质废弃物的处理。

农作物废弃物、木材废料等生物质废弃物在经过热解气化处理后可以转化为有用的气体燃料,同时还可以减少废弃物对环境的影响。

生物质热解技术及其应用与展望

生物质热解技术及其应用与展望

生物质热解技术及其应用与展望近年来,能源危机和环境问题成为社会关注的重点。

生物质热解技术作为一种可持续发展的解决能源危机和环境问题的技术,备受研究者的关注和重视。

本文将介绍生物质热解技术的基本概念、应用和未来展望。

一、生物质热解技术的基本概念生物质热解技术是将生物质通过热解反应,将其中的有机物转化为液体、气体和固体,达到能源利用和环境保护的目的。

生物质是指可再生的固体有机物,包括木材、秸秆、草木、生活垃圾等。

生物质热解的途径主要有干式、湿式两种方式,其中干式热解主要适用于木材等干质生物质,湿式热解主要适用于秸秆、废弃物等含水量较高的生物质。

生物质热解技术主要包括热解过程、产物分析和应用三个方面。

热解过程是指将生物质置于反应器中进行升温、反应和冷却,产物分析包括气体产物、液体产物和固体产物的分析,应用是指生物质热解产生的热能、气体和液体等能源的利用。

二、生物质热解技术的应用与展望生物质热解技术的应用主要包括能源生产、材料化工和农业环保等方面。

能源生产方面,生物质热解技术可将生物质转化为燃料气、合成气等,作为锅炉、发电机等装置的燃料,或者通过合成反应制备液态燃料,如丁二烯、二甲醚等,用于车用燃料。

这些燃料的优点是低碳、低排放、低污染,对保护环境具有积极作用。

材料化工方面,生物质热解产生的生物油可以作为基础化学原料,制备化学品、材料和合成纤维等,其中生物基聚酯等材料的生产已经得到了广泛应用,例如减少塑料袋、食品袋等对环境的污染。

农业环保方面,生物质热解技术还可以将农业废物转化为能源和肥料,解决了废弃物处理的问题。

例如,将棉秆等农业废弃物热解成燃料,可以用于农业灌溉等。

未来,随着技术的不断进步和费用的降低,生物质热解技术将会得到更广泛的应用。

同时,由于生物质热解技术具有可持续性和环保性,未来其发展前景广阔,有望成为能源替代品,推动清洁能源革命。

三、生物质热解技术的发展挑战虽然生物质热解技术具有广阔的应用前景,但是其发展还面临着一些挑战。

生物质热解原理与技术

生物质热解原理与技术

生物质热解原理与技术生物质热解是将生物质原料在高温、无氧或低氧气氛下加热分解的过程,其产物可以用于能源、化工等领域。

生物质热解技术被认为是一种可持续的能源生产方式,因为它可以利用可再生的生物质原料,减少对化石燃料的依赖,同时减少环境污染。

生物质热解的原理是利用热能将生物质原料中的有机物分解成气体、液体和固体三种产物。

生物质热解的反应过程可以分为三个阶段:干燥、热解和气化。

在干燥阶段,生物质原料中的水分被蒸发出来,此时生物质原料温度升高。

在热解阶段,生物质原料中的有机物开始分解,产生一些易挥发的产物,如水、酚等。

在气化阶段,生物质原料中的产物被进一步分解,产生大量的气体产物,如一氧化碳、二氧化碳和甲烷等。

生物质热解的技术包括固定床热解、旋转炉热解、流化床热解和微波热解等。

固定床热解是最常用的技术之一,它是将生物质原料放置在固定的床上,通过加热使其分解。

旋转炉热解则是通过旋转的方式将生物质原料加热分解。

流化床热解是将生物质原料放置在流化床中,通过气体流动使其分解。

微波热解则是利用微波加热生物质原料。

生物质热解的产物包括固体炭、液体油和气体。

固体炭可以用作固体燃料,液体油可以用于发电、加热和化工等领域,气体则可以用于发电或者制氢等领域。

生物质热解技术的优点是可以利用可再生的生物质原料,减少对化石燃料的依赖,同时减少环境污染。

但是,生物质热解技术也存在一些缺点,如生物质原料的供应不稳定、生产成本较高等问题。

生物质热解是一种可持续的能源生产方式,其原理是利用热能将生物质原料中的有机物分解成气体、液体和固体三种产物。

生物质热解技术具有广阔的应用前景,但是需要进一步完善技术和降低成本。

生物质热解及催化转化技术的研究

生物质热解及催化转化技术的研究

生物质热解及催化转化技术的研究随着全球能源需求的不断增加,人们对可再生能源的探索和开发也日益迫切。

在众多可再生能源中,生物质资源是一种广泛存在且具有潜力的能源资源,其具有废弃物资源多、分布范围广、低碳排放等特点,因此备受研究者和工业界的关注。

而生物质热解及催化转化技术是将生物质转化为高附加值产品和燃料的主要途径之一。

一、生物质热解技术生物质热解是指在高温、高气压等条件下,将生物质分解成各种气体、液体和固体产物的过程。

该技术广泛应用于生物质能源转化和化工领域。

其过程可分为三个阶段:干燥和水解阶段,主裂解阶段和残留炭化阶段。

在这些不同的阶段中,产物中包含了各种各样的物质,如混合气体、生物质油、水和炭化物等。

生物质热解技术的优点是可以高效地利用生物质资源,减少排放并实现能源回收。

但同时也存在着一些问题,如产物质量不稳定、生产成本较高等。

因此,在实际应用中,需要进一步开发生物质热解技术,以提高产物的质量和减少生产成本。

二、生物质催化转化技术随着催化化学的快速发展,生物质催化转化技术逐渐受到研究者和工业界的关注。

生物质催化转化技术是指在催化剂作用下,将生物质原料转化为高附加值产品和燃料的过程。

其作用可以改善生物质热解过程中产物的稳定性、产物选择性和反应速率等。

在生物质催化转化技术中,催化剂的选择十分关键。

常用的催化剂有氧化铈、氢氧化钠、钡钠等。

这些催化剂可以改善生物质热解过程中的产物选择性,使产物更接近需求和市场需求,提高了生物质热解的产物价值和重要性。

同时,催化剂也可以提高生物质热解过程中的反应速度,改善反应速度和效率。

三、生物质热解及催化转化技术的研究进展随着对可再生能源的关注和需求的增加,越来越多的研究者和工业企业开始研究和开发生物质热解及催化转化技术。

在国内外的研究中,生物质热解技术的研究主要集中在反应机理和反应条件等方面;而生物质催化转化技术的研究则侧重于催化剂和反应条件等方面。

同时,研究者也注意到了生物质热解及催化转化技术在实际应用中面临的问题,如清洁能源的生产成本高、生产效率低、安全性等。

第十章 生物质热解技术

第十章生物质热解技术1 概述热化学转化技术包括燃烧、气化、热解以及直接液化,转化技术与产物的相互关系见图10-1。

热化学转化技术初级产物可以是某种形式的能量携带物,如,木炭(固态)、生物油(液态)或生物质燃气(气态),或者是能量。

这些产物可以被不同的实用技术所使用,也可通过附加过程将其转化为二次能源加以利用。

图10-1 热化学转化技术与产物的相互关系生物质热解、气化和直接液化技术都是以获得高品位的液体或者气体燃料以及化工制品为目的,由于生物质与煤炭具有相似性,它们最初来源于煤化工(包括煤的干馏、气化和液化)。

本章中主要围绕热解展开。

1.1生物质热解概念热解(Pyrolysis又称裂解或者热裂解)是指在隔绝空气或者通入少量空气的条件下,利用热能切断生物质大分子中的化学键,使之转变成为低分子物质的过程。

可用于热解的生物质的种类非常广泛,包括农业生产废弃物及农林产品加工业废弃物、薪柴和城市固体废物等。

关于热解最经典的定义源于斯坦福研究所的J. Jones提出的,他的热解定义为“在不向反应器内通入氧、水蒸气或加热的一氧化碳的条件下,通过间接加热使寒潭有机物发生热化学分解,生成燃料(气体、液体和固体)的过程”。

他认为通过部分燃烧热解产物来直接提供热解所需热量的情况,严格地讲不应该称为部分燃烧或缺氧燃烧。

他还提出将严格意义上的热解和部分燃烧或缺氧燃烧引起的气化、液化等热化学过程统称为PTGL(Pyrolysis,Thermal Gasification or Liquification)过程。

生物质由纤维素、半纤维素和木质素三种主要组分组成,纤维素是β-D-葡萄糖通过C1-C4苷键联结起来的链状高分子化合物,半纤维素是脱水糖基的聚合物,当温度高于500℃时,纤维素和半纤维素将挥发成气体并形成少量的炭。

木质素是具有芳香族特性的,非结晶性的,具有三度空间结构的高聚物。

由于木质素中的芳香族成分受热时分解较慢,因而主要形成炭。

生物质 热解

生物质热解
生物质热解是一种热化学转化技术方法,它指的是在没有氧化剂存在或只提供有限氧的条件下,将生物质加热到超过500℃,通过热化学反应将生物质大分子物质(如木质素、纤维素和半纤维素)分解成较小分子的燃料物质(如固态炭、可燃气、生物油)。

生物质热解技术能够以较低的成本、连续化生产工艺,将常规方法难以处理的低能量密度的生物质转化为高能量密度的气、液、固产物,减少了生物质的体积,便于储存和运输。

同时,还能从生物油中提取高附加值的化学品。

生物质热解气化技术以其规模适度、启动灵活、原料收集半径小等优点,可与大型直燃发电优势互补,建设形成10 MW以下规模的生物质气化发电项目,完成生物质发电的规模与空间布局。

总的来说,生物质热解是一种有效的生物质能源利用技术,它不仅可以提高能源的利用效率,还可以帮助减少环境污染。

生物质热解技术的发展现状与趋势

生物质热解技术的发展现状与趋势当今社会面临着严重的环境问题,能源资源的稀缺和污染问题越来越严重。

因此,使用可再生能源成为解决环境和能源问题的重要途径。

生物质能源作为一种可再生的资源,吸引了越来越多的关注。

生物质热解技术是将生物质转化为燃料和其他有用产品的一种重要方法。

本文将介绍生物质热解技术的现状和未来趋势。

一、生物质热解技术的发展历程生物质热解技术起始于19世纪末,当时用于制备木炭和燃料,并发展成为以木质素为原料的化工工业。

20世纪70年代,随着油价的不断上涨,研究人员开始将目光投向生物质能源,并发展出了新的热解技术,如快速热解和流化床热解等技术。

近年来,随着生物质能在能源和环境领域的不断应用,热解技术也得到了广泛的研究和应用。

二、生物质热解技术的原理及分类生物质热解是将生物质在高温条件下,通过热解反应,将其分解为固体、液体和气体三种组分的一种技术。

其中,固体产物包括生物质炭和灰,液体产物包括木质素油、醇和酸等化合物,气体产物主要是一氧化碳、二氧化碳和氨等气体。

根据生物质热解的反应条件,可将其分为缓慢热解和快速热解两种类型。

缓慢热解是在低温下进行的反应,主要产生生物质炭和液态产物,其中液态产物含有丰富的木质素化合物。

快速热解是在高温下进行的反应,主要产生气态产物,其中以一氧化碳和二氧化碳比例最高。

快速热解相比较缓慢热解,具有反应速度快、能耗低和产气率高的特点。

三、生物质热解技术的应用现状生物质热解技术的应用现状主要存在于两个方面:一是生产生物质炭和木质素油,用于能源开发和生物质化学制品生产;二是用于污水、垃圾和农业残留物等的处理,达到减少污染和资源再利用的目的。

生物质炭是生物质热解的重要产物之一,其具有高效的吸附性能和热值,被广泛用于农业、太阳能、污水处理、水质净化和园林等领域。

近年来,随着环保意识的不断加强,生物质炭的需求量逐年上升。

木质素油是生物质热解的另一种重要产物,其含有许多有机化学品,如酚、醇、甲醛、醛酮等,适用于制备各种化学品和生物质燃料。

生物质热解技术研究及其应用前景分析

生物质热解技术研究及其应用前景分析生物质能作为一种可再生资源,在能源领域的应用备受关注。

其中,生物质热解技术是一种重要的转化方式,能够将生物质转化为液体、气体和固体等可利用的产物。

本文将从生物质热解技术的基本原理、近年来的研究进展和未来的应用前景三个方面进行探讨。

一、生物质热解技术的基本原理生物质热解技术是一种将生物质在高温条件下进行裂解、转化的过程。

热解过程中,生物质被加热至一定温度,分解出燃料气、液体油和固体炭等。

其中,得到的燃料气可以用作热电联产等领域的燃料,液体油可以作为燃料直接使用或通过催化裂解转化为化学品,固体炭则可以作为燃料或用于其他领域。

生物质热解技术的基本原理可以归纳为以下两个方面:1.热解动力学过程热解动力学过程是指生物质在热解温度下的物理化学反应过程。

主要包括生物质的干馏、缩合、挥发裂解和裂解产物的再组合等反应。

热解过程中,生物质在高温下分解产生大量气体,但是还会留下部分残留物,主要是炭和灰分。

这些物质对于热解产物的性质和结构具有重要的影响。

2.反应机理反应机理主要包括热解过程中所涉及的化学反应机理和热传递机理。

化学反应机理是指生物质在热解过程中涉及的化学反应,包括分解、缩合和反应区域内的化学反应等。

热传递机理是指能量在反应区域内的传递规律,生物质的热分解是通过热传递来提供反应过程所需的能量。

二、生物质热解技术的研究进展近年来,生物质热解技术的研究越来越受到关注,主要体现在以下几个方面。

1.反应机理研究热解反应机理对热解技术的开发和应用至关重要,因此,对其研究成为目前生物质热解技术领域的研究热点。

已有研究发现,热解反应的速率由以下几个因素决定:温度、反应物浓度、反应物类型和反应物微观结构等。

通过对这些因素的研究,可以帮助优化热解条件,使得反应过程更加高效。

2.反应产物的研究生物质热解过程产生的反应产物包括气体、液体和固体。

已有研究表明,气体产物可包括碳氢气体、甲醛、甲酚和苯等,液体产物可包括醇、酸和酮等,固体产物则主要是炭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物质压缩成型技术
1 压缩成型原理
生物质主要有纤维素、半纤维素和木质素组成。

木质素为光合作用形成的天然聚合体,具有复杂的三维结构,属于高分子化合物,它在植物中的含量一般为15%~30%。

木质素不是晶体,没有熔点但有软化点,当温度为70-110℃时开始软化,木质素有一定的黏度;在200-300℃呈熔融状、黏度高,此时施加一定的压力,增强分子间的内聚力,可将它与纤维素紧密粘接并与相邻颗粒互相黏结,使植物体变得致密均匀,体积大幅度减少,密度显著增加,当取消外部压力后,由于非弹性的纤维分子之间相互缠绕,一般不能恢复原来的结构和形状。

在冷却以后强度增加,成为成型燃料。

压缩时如果对生物质原料进行加热,有利于减少成型时的挤压力。

对于木质素含量较低的原料,在压缩成型过程中,可掺入少量的黏结剂,使成型燃料保持给定形状。

当加入黏结剂时,原料颗粒表面会形成吸附层,颗粒之间产生引力,使生物质粒子之间形成连锁的结构。

这种成型方法所需的压力较小,可供选择的黏结剂包括黏土、淀粉、糖蜜、植物油和造纸黑液等。

2 压缩成型生产工艺
压缩成型技术按生产工艺分为黏结成型、压缩颗粒燃料和热压缩成型工艺,可制成棒状、块状、颗粒状等各种成型燃料。

生物质—-干燥—-粉碎—-调湿—-成型—-冷却—-成型燃料
主要操作步骤如下:
(1)干燥
生物质的含水率在20%-40%之间,一般通过滚筒干燥机进行烘干,将原料
的含水率降低至8%-10%。

如果原料太干,压缩过程中颗粒表面的炭化和龟裂有可能会引起自燃;而原料水分过高时,加热过程中产生的水蒸气就不能顺利排出,会增加体积,降低机械强度。

(2)粉碎
木屑及稻壳等原料的粒度较小,经筛选后可直接使用。

而秸秆类原料则需通过粉碎机进行粉碎处理,通常使用锤片式粉碎机,粉碎的粒度由成型燃料的尺寸和成型工艺所决定。

(3)调湿
加入一定量的水分后,可以使原料表面覆盖薄薄的一层液体,增加黏结力,便于压缩成型。

(4)成型
生物质通过压缩成型,一般不使用添加剂,此时木质素充当了黏合剂。

生物质压缩成型的设备一般分为螺旋挤压式、活塞冲压式和换模滚压成型。

螺旋挤压机源于日本,是目前国内比较常见的技术,生产的成型燃料为棒状,直径50-70mm。

将已经粉碎的生物质通过螺旋推进器连续不断推向锥形成型筒的前端,挤压成型。

因为生产过程是连续进行的,所以成型燃料的质量比较均匀,外表面在挤压过程中发生炭化,容易点燃。

但是,由于螺杆处在较高温度和压力下工作,螺杆与物料始终处于摩擦状态,导致压缩区螺纹的磨损非常严重。

当螺杆磨损到一定程度,螺杆与出料筒失去尺寸配合,原料就无法完成成型。

因此,压缩区螺纹的磨损决定了螺杆的使用寿命,螺杆使用寿命成为生物质压缩成型技术实用化决定性因素。

对螺杆磨损,由于受工艺技术的制约,目前没有从根本上解决问题,平均寿命仅为60-80h。

活塞冲压机首先将已经粉碎的生物质通过机械送入预压室形成预压块,当活塞向后退时,预压块进入压缩筒,当活塞向前运动时,将生物质挤压成型,然后送入保型筒。

活塞冲压机通常不使用电加热装置,工作为间断式冲压,容易出现不平衡现象,成型燃料的密度稍低,容易松散。

对于环模滚压成型机,松散的生物质被送入压模和滚筒之间的空腔,在滚筒的压力作用下被挤入成型机,压缩成颗粒状,可调整的刀具将其切割成合适的长度。

环模滚压成型机可分为卧式和立式两种。

(5)冷却
生物质在压缩成型时,其温度会升高(通常为90-95℃),通风冷却后可以提高成型燃料的持久性。

原料种类、含水率、温度和粉碎程度将影响成型燃料的质量。

生物质成型燃料生产线产量一般为4t/h,能源消耗量大约80-130kWh/t,实际功率受生产等因素的影响。

生物质热解技术
1.生物质热解的原理
生物质热解是复杂的热化学反应过程,包含分子间断裂、异构化和小分子聚合等反应。

木材、林业废弃物和农业废弃物的主要组分是纤维素、半纤维素和木质素。

根据热重分析表明纤维素在325K时开始热分解,随着温度升高讲解逐步加剧,至623~645K时降解为低分子碎片,其降解过程为
(C
6H
10
O
5
)n→n C
6
H
10
O
5
C 6H
10
O
5
→H
2
O +2CH
3
-CO-CHO
CH
3-CO-CHO+ H
2
→CH
3
-CO-CH
2
OH
CH
3-CO-CH
2
OH+ H
2
→CH
3
-CHOH-CH
3
+ H
2
O
半纤维素结构上带有支链,是木材中最不稳定的组分,在225~325℃分解,比纤维素更易热分解,其热解机制与纤维素相似。

2.生物质热解的过程和产物
热解过程中生物质中的碳氢化合物都可转化为能源形式。

通过控制反应条件(主要是加热速率、反应气氛、最终温度和反应时间),可得到不同的产物分
布。

根据热解过程的温度变化和生成产物的情况等特征,可以划分为以下4个阶段。

(1)干燥阶段
温度为120~150℃,热解速度非常缓慢,过程主要是木材含水分依靠外部供给的热量进行蒸发。

(2)预炭化阶段
温度为150~275℃,木材的热分解反应比较明显,木材的化学组分开始发生变化,其中不稳定组分(如半纤维)分解生成CO2、CO和少量醋酸等物质。

上述两个阶段需要外界提供热量以保证温度上升,为吸热反应阶段。

(3)炭化阶段
温度为275~450℃,木材急剧地进行热分解,生产大量的分解产物,这一阶段放出大量反应热,为放热反应阶段。

(4)煅烧阶段
温度为450~500℃,依靠外部供给热量进行木炭的煅烧,排除残留在木炭中挥发物质,提高木炭中固定炭含量。

以上四个阶段的界限难于明确划分。

此外,由于干馏釜各个受热的情况不同,木材热导率较小。

因此不同位置的木材甚至大块木材的内部和外部,也可能处于不同的热解阶段。

生物质热解可以得到固体、液体和气体三类初产物。

①固体。

生物质热解时残留在干馏釜内的固体产物为木炭。

木炭疏松多孔,是制造活性炭、二硫化碳的原料。

②液体。

从木材干馏设备导出的蒸气气体混合物经冷凝分离后,可以得到液体产物(粗木醋液)和气体产物(不凝性气体或生物质燃气)。

粗木醋液是棕黑色液体,除含有大量水分外,还含有200种以上的有机物,其中一些化合物包括饱和酸、不饱和酸、醇酸、杂环酸、饱和醇、不饱和醇、酮类、醛类、脂类、酚类、内酯、芳香化合物、杂环化合物及胺类。

以阔叶材为类,干馏时得到的粗木醋液澄清时分为两层,上层为澄清木醋液,下层为沉淀木焦油。

澄清木醋液是从黄色到红棕色的液体,有特殊的烟焦气味,主要含有80%~90%的水分和10%~20%的有机物。

澄清木醋液进一步加工处理可得到醋酸、丙酸、丁酸、甲醇和有机溶剂等产品。

沉淀木焦油是黑色、粘稠的油状液体,其中含有大量的酚类物质,经加工可得到杂酚油、木馏油、木焦油抗聚剂和木沥青等产品。

③气体。

干馏得到的可燃气主要成分为CO2、CO、CH4、C2H4和H2等,其产量与组成因温度和加热速度不同而各异。

3.影响生物质热解的因素
(1)热解的最终温度
生物质热解的最终温度对热解产物产量、组成有着较大的影响。

实验表明,木炭的产量随着温度的升高而逐渐降低,在270~400℃的温度范围内降低较大,而在400~700℃的温度范围内则降低较慢。

随着最终温度的升高,木醋液的组成也在不断的发生变化,在270~400℃的温度范围内组成变化较大,而当温度高于400℃时组分变化不显著。

因此,如果以制取醋酸和甲醇为目的,热解的最终温度应限制在380~400℃之内。

(2)升温速度
加热速度对热解的各个阶段也有一定的影响。

当加热速度增加时,焦油的热。

相关文档
最新文档