激光器及其原理简介
各种典型激光器原理

氦氖激光器
氦氖激光器使用氮气和氖气的混合物作为工作气体。这种激光器产生可见光, 通常在红色、绿色和黄色波长范围内。氦氖激光器具有高效率、长寿命和稳 定的输出特性。
二氧化碳激光器
二氧化碳激光器使用二氧化碳分子作为激发介质。它们产生的激光主要是红外线光,可用于切割、打孔、激光 治疗等应用。二氧化碳激光器是商业和医疗领域最常用的激光器之一。
半导体激光器
半导体激光器基于半导体材料的特性。它们小巧、高效,常用于通信、激光打印和光存储等领域。半导体激光 器还可以通过改变工作电流调节输出频率和功率。
钛宝石激光器
钛宝石激光器使用钛宝石晶体作为激发介质。它们产生的激光具有脉冲宽度 短、波长可调节的特性,广泛应用于化学、生物、材料科学等领域的研究。
各种典型激光器原理
激光器是一种产生单色、高亮度、相干且聚焦成束的光源。本演示将介绍激 光器的基本原理以及各种典型的激光器类型和应用。
激光器的基本原理
激光器工作基于受激辐射和光放ቤተ መጻሕፍቲ ባይዱ效应。激发介质中的原子或分子由于能量 吸收而处于激发态,而后通过受激辐射过程与其他自由原子或分子发生相互 作用,产生出与激发辐射的频率和相位相同的光。
光纤激光器
光纤激光器使用光纤作为激光传输的媒介。它们具有小尺寸、高能量转换效 率和灵活的束传输特性。光纤激光器广泛应用于通信、材料加工和传感器等 领域。
其他激光器及激光应用
除了上述类型的激光器外,还有很多其他类型的激光器,如纤维激光器、固体激光器、气体激光器等。此外, 激光技术在医学、制造、测量、娱乐等各个领域都有广泛的应用,如激光切割、激光雕刻、激光测距、激光秀 等。
简述激光器的工作原理

简述激光器的工作原理激光器是一种利用激光放大效应产生激光光束的装置。
它是由激光介质、激励源和光腔三部分组成。
激光介质是激光器的核心部件,它是产生激光的源泉。
常见的激光介质有固体激光介质、液体激光介质和气体激光介质。
激光介质的选择取决于所需的激光波长和应用领域。
激光介质中的原子或分子被激发到高能级,当它们从高能级退回到低能级时,会释放出光子,形成激光。
激励源是激活激光介质的能量来源,常见的激励源有光电子器件、化学反应、电子束和光束。
激光介质需要吸收足够的能量才能激发原子或分子,使其产生受激辐射。
激励源提供的能量将被吸收并转化为激光介质内的电子激发能量。
光腔是激光器的光反馈系统,它由两个反射镜构成。
一个是半透明的输出镜,它允许一部分激光通过;另一个是高反射镜,它能反射大部分激光。
光腔的作用是将激光在激光介质中来回多次反射,增强激光的能量和相干性。
当激光在光腔中多次反射后,将由输出镜透过,形成一束高亮度、高单色性、高相干性的激光光束。
激光器的工作原理可以用四个步骤来描述:激发、受激辐射、光放大和光反馈。
激励源提供能量激发激光介质中的原子或分子,使其跃迁到高能级。
在激发态上的原子或分子通过受激辐射的方式退回到低能级。
当一个光子碰撞并激发一个处于激发态上的原子或分子时,它会与原子或分子发生相互作用,使原子或分子跃迁到低能级,并同时释放出与碰撞的光子一致的光子。
然后,这些发射的光子将被光腔中的反射镜引导和反射,多次来回在激光介质中反射。
在每次来回的过程中,光子与激光介质中的原子或分子发生相互作用,从而使更多的原子或分子跃迁到低能级并释放出更多的光子。
其中一部分光子通过输出镜透过,形成激光光束。
输出镜的透射率决定了激光器输出功率的大小。
总结起来,激光器的工作原理是通过激励源提供能量激发激光介质中的原子或分子,使其跃迁到高能级,然后受激辐射产生与激发光子一致的光子,光子在光腔中多次反射,与激光介质中的原子或分子相互作用,从而实现光放大,最终通过输出镜形成激光光束。
激光器的工作原理及应用

激光器的工作原理及应用激光器是一种能够产生高强度、高单色性、高方向性的光束的装置。
它的工作原理基于光的受激辐射过程,通过光的放大和反射来产生激光。
激光器在科学研究、医疗、通信、材料加工等领域有着广泛的应用。
一、激光器的工作原理激光器的工作原理主要包括以下几个步骤:1. 激发:激光器中通常使用激发源,如电流、光、化学反应等,来激发激光介质中的原子或分子。
激发源的能量会导致部分原子或分子跃迁到高能级。
2. 反射:激光介质中的原子或分子在高能级上停留的时间很短,会迅速跃迁到低能级。
在这个过程中,原子或分子会发射出一个光子,光子的能量与原子或分子跃迁的能级差有关。
3. 放大:发射出的光子在激光介质中被反射、折射和吸收,其中一部分光子被吸收并使激光介质中的更多原子或分子跃迁到高能级。
这样,光子的数目会逐渐增加,形成光子的放大效应。
4. 反馈:在激光器中,有一个光学腔用于反射光子。
光子在腔内来回反射,与激光介质中的原子或分子相互作用,从而增强光子的放大效应。
5. 输出:当光子的数目达到一定的阈值时,就会发生光的放大和放射,从而形成激光束。
激光束通过一个输出镜逃逸出激光器,成为可用的激光光束。
二、激光器的应用1. 科学研究:激光器在科学研究中有着广泛的应用。
例如,激光器可以用于光谱分析、原子物理实验、量子光学研究等。
激光器的高单色性和高方向性使得科学家能够更精确地测量和研究光的性质。
2. 医疗:激光器在医疗领域有着重要的应用。
例如,激光手术可以用于眼科手术、皮肤整形、癌症治疗等。
激光手术具有创伤小、恢复快、准确性高等优点。
3. 通信:激光器在光通信中起到了关键的作用。
激光器可以产生高纯度的光信号,通过光纤传输信号,实现高速、远距离的通信。
激光器的应用使得光纤通信得到了极大的发展。
4. 材料加工:激光器在材料加工中有着广泛的应用。
例如,激光切割可以用于金属、塑料、玻璃等材料的切割。
激光焊接可以用于金属的焊接和精密零件的组装。
激光器的基本原理

激光器的基本原理
激光器是一种能够产生高度定向、一致相位和高能量的光束的装置。
它的基本原理是通过受激辐射来放大输入光信号,并利用光学共振腔来增强并放出这个特定频率的光。
激光器的主要组成部分包括激光介质、泵浦源和光学共振腔。
激光介质是产生激光的关键组件,它能够吸收外界能量并将其转化为激活原子的激发能量。
常见的激光介质包括气体(例如氦氖激光器)、固体(例如Nd:YAG激光器)和半导体(例
如激光二极管)。
泵浦源用于向激光介质提供能量,激发介质内的原子或分子跃迁到激发态。
泵浦源可以是电子束、光闪烁、电流或其他方法。
通过泵浦源的能量输入,激发态的原子或分子会积聚在一个能级上,形成所谓的反转粒子分布,即在激光产生所需的光子数目超过平衡分布的状态。
在光学共振腔中,激光介质被夹在两个反射镜(一个是部分透射镜)之间,形成一个光学回路。
当光信号通过激光介质时,部分光子被反射,部分光子穿过透射镜。
反射的光子循环反复通过激光介质,与其他经过泵浦源激发的原子或分子相互作用,从而引发受激辐射。
穿过透射镜的光子则是经过放大增强的光信号。
在光学共振腔中,反射镜的选择性反射可以筛选特定波长的光,使其在腔内来回传播多次,从而增强这个特定频率的光强度。
这种光学共振效应使激光器产生了高度定向和一致相位的特性。
最后,通过调整激光介质和光学共振腔的参数,如长度、反射率等,可以调节激光器输出光的特性,例如波长、脉冲宽度和功率等。
综上所述,激光器基本原理是通过受激辐射和光学共振效应来实现输入光信号的放大和增强,从而产生出高度定向、一致相位和高能量的激光光束。
激光器工作原理及产生条件分析

激光器工作原理及产生条件分析激光(Laser)是一种特殊的光,它具有高度的定向性、单色性和相干性。
激光器就是产生激光的设备。
激光器的工作原理是基于激光的产生条件,通过适当的激发和增强过程来实现的。
激光器的工作原理可以简单地描述为:通过一种叫做“激活物”的物质,将外界能量输入到一个叫做“光学腔”的空腔中,然后通过对该腔进行波长选择和增强,将能量转换为激光输出。
首先,激光器的产生条件是需要一个激活物或激活介质。
激活物可以是固体、液体、气体或半导体材料。
常见的激活物有氦氖气体、二氧化碳气体、氮气气体等。
这些激活物能够吸收能量并在得到适当激发时产生辐射。
其次,激光器需要一个光学腔来存储和增强激活物辐射的能量。
光学腔一般由两个平面镜组成,其中一个是全反射镜(high reflector),另一个是半透镜(output coupler)。
光学腔的设计使得光线可以在内部多次来回反射,增强激活物的辐射到足够的水平,从而产生激光。
光学腔的运作方式是基于激活物的能级跃迁过程。
激活物在低能级时吸收外界能量,并跃迁到高能级。
当被适当波长的外部能量激发后,激活物中的电子跃迁到高能级,形成一个激活态。
然后,激活态的电子会通过非辐射过程或受到外界的合适刺激而跃迁返回到低能级。
这个过程中会释放出一束能量非常集中的光子,形成了激光。
激活物跃迁过程的产生是有条件的。
首先,外界必须提供足够的能量,激发激活物中的电子跃迁到高能级。
这个能量可以来自于电流、光束等不同的外部激发方式。
其次,光学腔中的全反射镜和半透镜的制作和放置要符合特定的要求。
全反射镜可以使光线在光学腔内多次反射,形成光的积累。
半透镜可以适当地将部分光线通过,形成激光输出。
这种光线的选择和增强过程,需要光学腔中的全反射镜的反射率接近100%、半透镜的反射率适当,以及两个镜子之间的距离符合特定的倍数关系。
最后,在实际应用中,除了满足激光器工作原理基本的产生条件,还需要进一步优化和控制激光输出的参数。
激光器的工作原理及应用

激光器的工作原理及应用激光器是一种能够产生高度聚焦、单色、相干和高能量的光束的装置。
它的工作原理基于光的受激辐射过程,通过在激光介质中产生受激辐射,使得光子得以放大并产生激光。
激光器的工作原理可以简单概括为以下几个步骤:1. 激发:激光器中的激发源(如电流、光或化学反应等)向激光介质中输入能量,使其处于激发态。
2. 受激辐射:当激光介质中的原子或分子处于激发态时,它们会受到外界的一个光子刺激,从而跃迁到一个较低的能级,并释放出与刺激光子相同频率和相位的光子。
3. 反射:在激光介质两端设置反射镜,使得光子在介质中来回多次反射,增加光子数目和能量。
4. 放大:由于反射镜的存在,光子在介质中来回反射时会逐渐受到受激辐射过程的放大,从而形成激光。
5. 输出:当激光放大到一定程度时,其中一端的反射镜会被设计成半透明镜,使得部分光子能够通过该镜逸出,形成激光输出。
激光器的应用非常广泛,以下是一些常见的应用领域:1. 切割和焊接:激光器的高能量和聚焦性能使其在金属切割和焊接领域得到广泛应用。
激光切割可以精确切割各种材料,而激光焊接可以实现高效、精确的焊接过程。
2. 医疗领域:激光器在医疗领域有多种应用,如激光手术、激光治疗、激光美容等。
激光手术可以精确切割组织,减少出血和伤口,提高手术效果。
激光治疗可以用于疾病的诊断和治疗,如激光眼科手术、激光皮肤治疗等。
3. 通信和信息技术:激光器在光通信和信息技术领域有重要应用。
激光器可以产生高速、稳定的光信号,用于光纤通信、激光打印、激光显示等。
4. 科学研究:激光器在科学研究中起到了重要的作用。
激光器可以用于光谱分析、光学显微镜、激光干涉仪等实验装置,帮助科学家们研究和理解光的性质和物质的结构。
5. 激光雷达:激光雷达利用激光器发射出的激光束来测量目标物体的距离、速度和方向。
激光雷达在测距、制导导航、环境监测等领域有着广泛的应用。
6. 激光制造:激光器在制造业中有着重要的应用,如激光打标、激光刻蚀、激光打孔等。
激光器的工作原理及应用

激光器的工作原理及应用激光器是一种能够产生高度聚焦、高亮度、单色、相干性极强的光束的装置。
它的工作原理基于激光的放大过程,通过激发原子或者份子的能级跃迁来实现。
1. 工作原理激光器的工作原理主要包括以下几个步骤:激发、放大、反射和输出。
首先,通过能量输入的方式(如电子激发、光或者化学反应等),将激光介质中的原子或者份子激发到高能级。
这个过程可以通过光泵浦、电子束激发、化学反应等方式实现。
接下来,激发态的原子或者份子在经过一系列的非辐射跃迁后,会回到基态,并释放出光子。
这些光子会与其他激发态的原子或者份子发生受激辐射,产生更多的光子。
这个过程称为光放大。
然后,放大后的光经过光学谐振腔的反射,使光在谐振腔内来回多次反射,增强光的能量和相干性。
最后,经过一系列的光学元件(如输出镜、偏振器等)的处理,将激光束输出为一束高度聚焦、单色、相干性极强的光。
2. 应用领域激光器由于其独特的光学性质和精确的控制能力,在许多领域中得到广泛应用。
2.1 创造业激光器在创造业中有着广泛的应用。
例如,激光切割可以用于金属板材、塑料、纺织品等材料的切割,具有高效、精确、无接触等优点。
激光焊接可以用于汽车、航空航天、电子等行业的焊接,具有焊缝小、热影响区小、焊接速度快等优势。
激光打标可以用于产品标识、二维码、防伪标识等方面。
2.2 医疗领域激光器在医疗领域中有着广泛的应用。
例如,激光手术可以用于眼科手术、皮肤整形、癌症治疗等。
激光治疗可以用于减轻疼痛、促进伤口愈合、去除皮肤病变等。
激光诊断可以用于医学成像、激光扫描等方面。
2.3 通信领域激光器在通信领域中有着重要的应用。
激光器可以作为光纤通信系统中的光源,通过光的调制和解调来实现信息的传输。
激光器的单色性和相干性使得光信号能够在光纤中传输更远距离,并且具有更高的传输速率。
2.4 科学研究激光器在科学研究中有着广泛的应用。
例如,激光干涉仪可以用于测量长度、表面形貌等。
激光光谱仪可以用于分析物质的组成和结构。
激光器的工作原理及应用

激光器的工作原理及应用激光器是一种能够产生高度聚焦、单色、相干光束的装置,其工作原理基于激光的受激辐射过程。
激光器广泛应用于科学研究、医疗、通信、制造业等领域。
本文将详细介绍激光器的工作原理以及其在不同领域的应用。
一、激光器的工作原理激光器的工作原理基于激光的受激辐射过程,该过程包括三个基本要素:激发源、工作物质和光学腔。
1. 激发源:激发源是激光器中产生激发能量的部分。
常见的激发源包括闪光灯、半导体激光二极管、化学反应等。
激发源能够将能量输送到工作物质中,使其处于激发态。
2. 工作物质:工作物质是激光器中产生激光的介质。
常见的工作物质有气体(如二氧化碳、氦氖)、固体(如Nd:YAG晶体)和半导体材料等。
工作物质处于激发态时,其原子或分子之间的能级结构发生变化,形成能级间的粒子聚集。
3. 光学腔:光学腔是激光器中光线的传输通道。
光学腔由两个反射镜构成,其中一个是半透明的,称为输出镜。
当激发源激发工作物质时,工作物质中的粒子会通过受激辐射过程发射出光子。
这些光子在光学腔中来回反射,逐渐增强,形成激光束。
最后,一部分光子通过输出镜逸出,形成激光输出。
二、激光器的应用激光器由于其独特的特性,在各个领域都有广泛的应用。
以下将介绍激光器在科学研究、医疗、通信和制造业等领域的应用。
1. 科学研究:激光器在科学研究中发挥着重要的作用。
例如,激光器被用于原子物理学研究中的光谱分析,通过测量物质发射或吸收的特定波长的光谱线,可以了解物质的性质和组成。
此外,激光器还被应用于等离子体物理学、光学相干断层扫描(OCT)等领域。
2. 医疗:激光器在医疗领域有广泛的应用。
例如,激光手术技术被广泛应用于眼科手术,如近视手术和白内障手术。
激光器的高度聚焦能力可以精确切割组织,减少手术创伤。
此外,激光器还可用于皮肤美容、激光治疗、激光疗法等。
3. 通信:激光器在通信领域的应用主要体现在光纤通信技术中。
激光器产生的激光光束可以通过光纤进行传输,实现高速、大容量的信息传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
♦ Ne原子可以产生多条激光谱线, 图中标明了最强的三条:
0.6328μm 1.15 μm 3.39 μm
它们都是从亚稳态到非亚稳态、 非基态 之间发生的,因此较易实现粒子数反转。
§4 增益系数
激光器内受激辐射光 来回传播时,并存着
增益 损耗
增益——光的放大;
损耗——光的吸收、散射、衍射、透射 (包括一端的部分反射镜处必要 的激光输出)等。
§6 激光的特性及其应用
★方向性极好的强光束 --------准直、测距、切削、武器等。
★相干性极好的光束 --------精密测厚、测角,全息摄影等。
例1.激光光纤通讯
由于光波的频率 比电波的频率高 好几个数量级,
一根极细的光纤 能承载的信息量, 相当于图片中这 麽粗的电缆所能 承载的信息量。
若 E2 > E 1,则两能级上的原子数目之比
N2
− E2 − E1
= e kT
<1
N1
数量级估计:
T ~103 K;
kT~1.38×10-20 J ~ 0.086 eV;
E 2-E 1~1eV;
N2
− E2 − E1
= e kT
−1
= e 0.086
≈ 10−5
<< 1
N1
但要产生激光必须使原子激发;且 N2 > N1, 称粒子数反转(population粒子数反转 一. 为何要粒子数反转 (population inversion)
从E2 E1 自发辐射的光,可能引起 受激辐射过程,也可能引起吸收过程。
⎜⎛ ⎝
dN 21 dt
⎟⎞ ⎠受激
=
B21ρ (ν
,T
)N 2
=
W21N 2
⎜⎛ ⎝
dN12 dt
⎟⎞ ⎠吸收
1 ln 2L
1 R1 R2
= Gm
例如,若氦氖激光器Ne原子的 0.6328 μm, 1.15 μm, 3.39 μm 受激辐射 光中, 只让波长0.6328 μm的光输出,
我们可以控制R1、R2的大小: 对 0.6328 μm ——R1、R2大 ——Gm 小(易满足阈值条件,使形成激光) ; 对 1.15 μm 、3.39 μm ——R1、R2小 —— Gm大(不满足阈值条件,形不成激光)。
=
c
λ2
Δλ
I (ν 0 )
I (ν 0 ) 2
→ Δλ = λ2Δν
νν0
c
ν0
( ) = 6328×10−10 2 ×1.3×109
3 × 108
=
1.7 ×10−2
0
A
为什么激光的谱线宽度会
小到 Δλ ≈ 10-8Å?
由于光学谐振腔两端反射镜处必是波节,
所以有光程 nL = k λk ( k=1、2、3、….)
这是由于光强增大伴随着 粒子数反转程度的减弱。 (负反馈)
当光强增大到一定程度,G下降到Gm时,
增益=损耗,激光就达到稳定了。
通常称
G
≥
1 ln 2L
1 R1R2
= Gm
-----为阈值条件。 ( threshold condition)
§5 光学谐振腔 纵膜与横模 (optical harmonic oscillator) (longitudinal mode and transverse mode)
连续式(功率可达104 W) 脉冲式(瞬时功率可达1014 W )
三 . 波长:极紫外──可见光──亚毫米
(100 n m )
(1.222 m m )
§1 粒子数按能级的统计分布 原子的激发 由大量原子组成的系统,在温度不太低的 平衡态,原子数目按能级的分布服从 玻耳兹曼统计分布:
− En
N n ∝ e kT
2
n —谐振腔内媒质的折射率
λk—真空中的波长
k=1
λk
=
2nL k
k=2
k=3 L
可以存在的纵模频率为
νk
=
c
λk
=k
c 2nL
相邻两个纵模频率的间隔为
Δν k
=
c 2nL
数量级估计: L~1m;
n~1.0; c~3×108 m/s
Δν k
=
c 2nL
=
3 × 108 2×1×1
= 1.5 × 108 Η Z
而氦氖激光器 0.6328 μm 谱线的宽度为
Δν =1.3×109 HZ 因此,在Δν 区间中,可以存在的纵模个数为
N = Δν = 1.3×109 ≅ 8 Δν k 1.5 × 108
利用加大纵模频率间隔Δνk的方法,可以使Δν
区间中只存在一个纵模频率。
比如缩短管长L到 10 cm, 即 L→L/10 则 Δνk→10 Δνk
激光形成阶段:增益 > 损耗
激光稳定阶段:增益 = 损耗
一.激光在工作物质内传播时的净增益
设xx=0处,光强为II0
x+dx
I+dI
有
d I ∝ Idx
写成等式 d I = G I dx
定义:增益系数 G (gain coefficient)
G = dI Idx
即单位长度上光强增加的比例。
一般G不是常数。 为简单起见,先近似地认为G是常数。
例2 . 激光手术刀 (不需开胸,不住院)
臂动脉
内窥镜
主动脉 冠状动脉
附属通道 有源纤维 套环
♦照明束
……照亮视场
♦ 纤维镜激光光纤
……成象
♦ 有源纤维强激光
……使堵塞物熔化
♦ 附属通道
(可注入气或液)
……排除残物以明视线
照明束 纤维镜
♦ 套环
……(可充、放气)
阻止血流或使血流流通
例3.激光——
I2 ⎯ 再经过工作物质,并被左反射镜反射 出发时的光强。
显然有 I 1 = R 2 I 0 eGL
I 2 = R 1 I 1 eGL
所以 I 2 = R 1 I 1 eGL
= R 1 R 2 I 0 e2GL ♦在激光形成阶段
须
I2 / I0 > 1
即
R1 R2 e2GL> 1
或
G
>
1 2L
ln
♦在碰撞中 He 把能量传递给 Ne而回到基态,
而 Ne则被激发到 5S 或 4S;
(要产生激光,除了增加上能级的粒子数外, 还要设法减少下能级的粒子数)
♦正好Ne的5S,4S是亚稳态,下能级 4P, 3P 的寿命比上能级5S,4S要短得多, 这样就可以形成粒子数的反转。
♦放电管做得比较细(毛细管),可使原子 与管壁碰撞频繁。借助这种碰撞,3 S态 的Ne原子可以将能量交给管壁发生 “无辐射跃迁”而回到基态, 以及时减少3S态的Ne原子数, 有利于激光下能级4P与3P态的抽空。
N2
B21⎯受激辐射系数
令
W21 = B21· ρ(ν、T)
则
⎜⎛ ⎝
dN 21 dt
⎟⎞ ⎠受激
=
W21
N2
W21 ⎯单个原子在单位时间内发生 受激辐射过程的概率。
受激辐射光与外来光的频率、偏振方向、 相位及传播方向均相同 ------有光的放大作用。
三 . 吸收(absorption) E2 N2
全同光子
设 ρ(ν、T)……温度为T时, 频率为 ν = (E2 - E1) / h附近,单位频率间隔的
外来光的能量密度。
单位体积中单位时间内,从E2→ E1 受激辐射的原子数:
⎜⎛ ⎝
dN 21 dt
⎟⎞ ⎠受激
∝
ρ (ν、T
)N2
写成等式
⎜⎛ dN21 ⎝ dt
⎟⎞ ⎠受激
= B 21 ρ (ν、T )
1 R1R2
= Gm
式中Gm——称为阈值增益, 即产生激光的最小增益。
♦在激光稳定阶段
光强增大到一定程度后
须
I2 / I0 = 1
即
G
=
1 ln 2L
1 R1R2
= Gm
在激光的形成阶段G > Gm , 光放大, 怎麽光强不会无限放大下去?
不会。
在激光的稳定阶段 怎么又会G = Gm ? 原因是实际的增益系数G 不是常量,当 I↑时,会 G↓。
激光原理 与 技术
第一台(红宝石)激光器
第一台 激光器
红宝石 晶体
MAIMEN
激光器 结构
3.1 激光原理
普通光源-----自发辐射 激光光源-----受激辐射 激光又名镭射 (Laser), 它的全名是 “辐射的受激发射光放大”。 (Light Amplification by Stimulated Emission of Radiation)
⎜⎛ ⎝
dN 21 dt
⎟⎞ ⎠自发
∝
N2
写成等式
⎜⎛ ⎝
dN 21 dt
⎟⎞ ⎠自发
=
A21N 2
A21 ⎯自发辐射系数,单个原子在单位
时间内发生自发辐射过程的概率。
各原子自发辐射的光是独立的、 无关的 非相干光 。
二.受激辐射 (stimulated radiation)
E2 N2
hν
E1 N1
dN 12 dt
⎟⎞ ⎠吸收
= W12
N1
W12 ⎯ 单个原子在单位时间内发生 吸收过程的概率。
A21 、B21 、B12 称为爱因斯坦系数。
爱因斯坦在 1917年从理论上得出
B21 = B12
A21
=
8π hν
C3
3
B12
爱因斯坦的受激辐射理论为六十年代初实验上