概率论与数理统计期末复习模拟试题
精选2020概率论与数理统计期末模拟题库288题(含答案)

2020年概率论与数理统计期末测试复习题288题[含答案]一、选择题1.一个机床有1/3的时间加工零件A ,其余时间加工零件B 。
加工零件A 时停机的概率是0.3,加工零件A 时停机的概率是0.4。
求(1)该机床停机的概率;(2)若该机床已停机,求它是在加工零件A 时发 生停机的概率。
解:设1C ,2C ,表示机床在加工零件A 或B ,D 表示机床停机。
(1)机床停机夫的概率为1122()().(|)().(|)P B P C P D C P C P D A =+12110.30.43330=⨯+⨯=(2)机床停机时正加工零件A 的概率为11110.3().(|)33(|) = 11()1130P C P D C P C D P D ⨯==2.若A.B 相互独立,则下列式子成立的为( A )。
A. )()()(B P A P B A P = B. 0)(=AB P C. )|()|(A B P B A P = D. )()|(B P B A P =3.若随机事件A B ,的概率分别为6.0)(=A P ,5.0)(=B P ,则A 与B 一定(D )。
A. 相互对立B. 相互独立C. 互不相容D.相容4.设随机变量X ~N(μ,81),Y ~N(μ,16),记}4{},9{21+≥=-≤=μμY p X P p ,则( B )。
A. p1<p2B. p1=p2C. p1>p2D. p1与p2的关系无法确定5.在假设检验中, 下列说法错误的是( C )。
A. 1H 真时拒绝1H 称为犯第二类错误。
B. 1H 不真时接受1H 称为犯第一类错误。
C. 设α=}|{00真拒绝H H P ,β=}|{00不真接受H H P ,则α变大时β变小。
D. α.β的意义同(C ),当样本容量一定时,α变大时则β变小。
概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
概率论与数理统计期末考试试题(答案)

概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。
事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。
假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
概率论与数理统计期末考试题及答案

模拟试题填空题(每空3分,共45 分)1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)=P( A U B)=12、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B9发生且A不发生的概率相等,则A发生的概率为:_______________________ ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率:;没有任何人的生日在同一个月份的概率I Ae x, X c 04、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A=0, x>2分布函数F(x)= ,概率P{—0.5<X <1}=5、设随机变量X~ B(2,p)、Y~ B(1,p),若P{X>1} =5/ 9,贝U p =若X与丫独立,则Z=max(X,Y)的分布律:6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)=COV(2X-3Y , X)=7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时,丫"⑶;8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1nX =—S X i为n i 二样本均值,则日的矩估计量为:9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参数a的置信度为95%的置信区间:计算题(35分)1、(12分)设连续型随机变量X的密度函数为:「1求:1) P{|2X —1|<2} ; 2) Y =X 2的密度函数 S(y) ; 3) E(2X-1);2、(12分)设随机变量(X,Y )的密度函数为3、( 11分)设总体X 的概率密度函数为:X 1,X 2,…,X n 是取自总体X 的简单随机样本。
最新2020概率论与数理统计期末模拟考试288题(含标准答案)

解:
(3) P(-0.5<X<1)=F(1)—F(-0.5)=1
8.已知随机变量 的概率密度为 ,令 ,则Y的概率密度 为(A)。
A. B. C. D.
9.已知随机向量(X,Y)的协差矩阵V为
计算随机向量(X+Y, X-Y)的协差矩阵(课本116页26题)
.解:由于零件的长度服从正态分布,所以
所以 的置信区间为 经计算
的置信度为0.95的置信区间为 即(5.347,6.653)
3.设系统L由两个相互独立的子系统L1.L2串联而成,且L1.L2的寿命分别服从参数为 的指数分布。求系统L的寿命Z的密度函数。
解:令X.Y分别为子系统L1.L2的寿命,则系统L的寿命Z=min (X, Y)。
13.设随机变量X的密度函数为f (x),则Y = 7—5X的密度函数为(B)
14.设 是任意两个互相独立的连续型随机变量,它们的概率密度分别为 和 ,分布函数分别为 和 ,则(B)。
A. 必为密度函数B. 必为分布函数
C. 必为分布函数D. 必为密度函数
15.连续型随机变量X的密度函数f (x)必满足条件(C)。
解:DX=4, DY=9, COV(X,Y)=6
D(X+Y)= DX + DY +2 COV(X,Y)=25
D(X-Y) = DX + DY -2 COV(X,Y)=1
COV(X+Y, X-Y)=DX-DY=-5
故(X+Y, X-Y)的协差矩阵
10.某厂生产铜丝,生产一向稳定,现从其产品中随机抽取10段检查其折断力,测得 。假定铜丝的折断力服从正态分布,问在显著水平 下,是否可以相信该厂生产的铜丝折断力的方差为16?
概率论与数理统计期末复习参考试题

<概率论与数理统计>期末复习参考试题一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件 1〕A 、B 、C 至少有一个发生 2〕A 、B 、C 中恰有一个发生 3〕A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
那么P(B )A =3.假设事件A 和事件B 互相独立, P()=,A αP(B)=0.3,P(AB)=0.7,那么α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅那么A=______________7. 随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,那么a =________b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,那么{0}P x <= _________ 9. 一射手对同一目的独立地进展四次射击,假设至少命中一次的概率为8081,那么该射手的命中率为_________10.假设随机变量ξ在〔1,6〕上服从均匀分布,那么方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,那么{max{,}0}P X Y ≥= 12.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{a b,c}X Y ≤≤<= 13.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,那么〔x,y 〕关于X 的边缘概率密度在x = 1 处的值为 15.)4.0,2(~2-N X ,那么2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 互相独立,那么(3)D X Y -=17.设X的概率密度为2()x f x -=,那么()D X =18.设随机变量X 1,X 2,X 3互相独立,其中X 1在[0,6]上服从均匀分布,X 2服从正态分布N 〔0,22〕,X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,那么D 〔Y 〕=19.设()()25,36,0.4xy D X D Y ρ===,那么()D X Y +=20.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或~ 。
概率论与数理统计(A)期末复习资料

《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。
概率论与数理统计期末考试题及答案

模拟试题一(一)一、 填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。
P( A ∪B) = 。
3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A=, 分布函数F (x )= , 概率{0.51}P X -<<=;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y ,则Z=max(X,Y)的分布律:;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互,则D(2X-3Y)=, COV(2X-3Y, X)=;7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k =时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11nii X X n ==∑为样本均值,则θ的矩估计量为:。
9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间:;二、 计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Yy ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
品2件)的箱子中丢失一件产品,但不知是几等品,今
从中任取2件产品,(1)求取到的都是一等品的概率;(2)已
知取到的都是一等品,丢失的也是一等品的概率。2 3
, 98
2’. 设A1, A2, A3是随机试验E的三个相互独立的事件, 已知P(A1)=, P(A2)=,P(A3)=,则三事件中至少有 一个发生的概率.
电池,测得它们的寿命为:19,18,22,20,16,25.设
电池的寿命近似服从正态分布。试问:这些结果是
否表明,这类型号的电池的平均寿命比该公司宣称
的要短?(显著水平=0.05)
附表 z0.05=1.65, z0.025=1.96,t0.05(5)=2.015 t0.025(5)=2.570,t0.05(6)=1.943,t0.025(6)=2.447
四”离散型随机变量X的分布律为
X
-2 1 3
Pk 0.15 0.5 0.35 求X的分布函数和E(2X+1)。
五、设随机变量X的概率密度函数为
f
(
x
)
3 2
x
2
1 x 1
0
其他
求(1)E(X),D(X);(2)P{|X-E(X)|≤D(X)};(3)F(x).
答案 (1)E(X)=0,D(X)=3/5
(D) P(B)P(A)
2.设随机变量X和Y的方差存在且不为零,则D(X+Y) =D(X)+D(Y)是( ) (A) X和Y不相关的充分条件,但不是必要条件; (B) X和Y独立的充分条件,但不是必要条件; (C) X和Y不相关的充分必要条件; (D) X和Y独立的充分必要条件。
3.若连续型随机变量X的分布函数为
x)
2x
1 x2 2 1 x2
1
2
1
x0 0 x1
1 x2 x2
六、设随机变量(X,Y)的联合概率密度函数为
求A。
Axy y x 1,0 y 1
f (x, y)
0
其它
六、设随机变量(X,Y)的联合概率密度函数为
8xy y x 1,0 y 1
f (x, y)
0
其它
设其直径X服从[0,3]上的均匀分布,则横截面积Y
的数学期望E(Y)=
.
3
4
4.从总体X~N(,2)中抽出容量为9的样本,算得样
本均值为 x =125,样本均方差为s=14,则的置信水
平为95%的置信区间为
. (114.24,135.76)
(附:z0.025=1.96,t0.025(8)=2.306,t0.05(8)=1.859)
(3)P{X+Y≤1}=1/6
六、设随机变量(X,Y)的联合概率密度函数为
8xy y x 1,0 y 1
f (x, y)
0
其它
求(1) 条件概率密度 fX|Y(x|y) , fY|X(y|x)
(2) Z=X+Y的概率密度函数。
(3) F(x, y)
七. 设总体X的概率密度为
f
(
x,
求(1) X与Y的边缘概率密度fX(x) , fY(y),并说明X与Y是
否相互独立?(2)Cov(X, Y),说明X与Y是否相关?
(3)P{X+Y≤1}。
答案
(1)
f
X
(
x
)
4
x 0
3
0 x 1, 其它
fY
(
y)
4
y(1 0
y2)
0 y1 其它
X与Y不独立
(2)Cov(X, Z)=4/225, X与Y相关 Nhomakorabea)
1
x 1 0
2 1
0 x1 其他
其中 > 1是未知参数. x1, x2,…,xn 是来自X的样本观
察值. 求(1) 的矩估计量;(2) 的最大似然估计量.
答案
ˆ矩
1 X
ˆ最
大
1
1 n
n
ln X i
i 1
八. 一公司声称其某种型号的电池的平均寿命至少 为21.5小时,有一实验室检验了该公司生产的6套
3.设随机变量X的概率密度函数为
2x 0 x 1
f
(x)
0
其他
求(1)Y=-3lnX的概率密度;(2)E(Y)
答若案设随(机1) 变fY量(Xy的) 概率32 e密0 2度3y 函数yy 为00
(2) E(Y ) 3 2
Cx 0 x 1
f
(x)
0
其他
?
求(1)C的值;(2)F(x);(3)P{a≤X≤b}
(2)P{|X-E(X)|≤D(X)}=27/125
0
(3)F (
x)
1
2
(1
1
x3
)
x 1 1 x 1
x1
五’、设随机变量X的概率密度函数为
f ( x) 2axx
0 x1 1 x2
0
其他
求(1)a的值;(2)P{1/2≤X≤2};(3)F(x).
答案 (1)a=1 ; (2)7/8
0
(3)F (
5.设X1, X2, … , Xn 是来自总体X~N(,2) 的样本, 且
n1
C ( Xi1 Xi )2 是2的无偏估计,则C=
1
. 2(n 1)
i 1
二、选择题
1.设A, B为随机事件,且BA,则以下各式不正确的
是(
)
(A) P(B|A)=P(B)
(B) P(AB)=P(A)
(C) P(AB)=P(A)
一、填空题 2011年概率统计模拟题1
1.一张考卷上有5道选择题,每道题有4个可能答
案,其中有一个答案是正确的,某考生靠猜测答
对4道题的概率是
.
C54
1 44
3 4
15 1024
2.已知P(A)=1/4, P(B|A)=1/3, P(A|B)=1/2,则P(A∪B)
=
.
1/3
3.一零件的横截面是圆,对截面的直径进行测量,
/
S
服从t(n-1)(D)(n
n
1)
X
2
1 服从
F(1, n 1)
三、解答题
Xi2
i2
1.一袋中装有8个红球和2个黑球,每次从中取1个球,
取后不放回,连续取两次,试求(1)取出的两个球颜色
相同的概率;(2)至少有一个黑球的概率。
29 17 ,
45 45
2. 装有10件某产品(其中一等品5件,二等品3件,3等
A
x0
F
(
x)
Cx
Bx 2 1x
2 1
2
1
0 x1 1 x2
x2
则常数A,B,C的取值为(
)
(A) A=-1,B=1/2,C=1 (B) A=0,B=1/2,C=2
(C) A=-1,B=1,C=2 (D) A=0,B=1,C=0
4. 在假设检验中,记H1为备择假设,则犯第一类 错误的概率是指( )
(A) H1真,接受H1 (B) H1不真,接受H1 (C) H1真,拒绝H1 (D) H1不真,拒绝H1
5.设 X 1 , X 2 , , X n 是来自标准正态总体的简单随机
样本,X 和 S 2分别是样本均值和样本方差,则( )
(A)X ~ N(0,1) (B) nX ~ N (0,1)
(C)X
答案 (1)Z的分布律 Z
0
1
Pk 2(1-p)p (1-p)2+p2
(2)X与Z的联合分布律
Z X
0
1
?求(1)Z=X+Y
0 (1-p)p (1-p)2
1 (1-p)p
p2
(2)Z=Max{X, Y}
(3)Z=Min{X, Y} 的分布律.
(3)Cov(X, Z)=p(-1+3p-2p2).
四’、在射击比赛中,每人射击3次(每次1发),约 定全部不中得0分,只中一弹得5分,中两弹得10分, 中三弹得20分,设某人每次射击命中率为0.6,求(1) 他得分值的分布律;(2)他得分值的数学期望。
3’.设随机变量X服从参数为1的指数分布,
求(1)Y=e X的概率密度;(2)E(1/Y)
四、设X,Y 相互独立,且P{X=0}=P{Y=0}=1-p, P{X=1}=P{Y=1}=p, (0< p<1),令
1 X Y为偶数 Z 0 X Y为奇数 求(1)Z的分布律;(2)X与Z的联合分布律;(3)Cov(X, Z).
简答: H0:≥ 0=21.5, H1: <21.5, 2未知,利用t检 验,检验统计量为 t X 0 ,其拒绝域为t≤-t(n-1)
Sn
算得t=-1.162>-2.015= -t0.05(5), 接受原假设,认为这种
型号的电池的平均寿命不比该公司宣称要短。