输电线路风偏故障分析与防治

合集下载

防治输电线路风偏故障及外力破坏方案

防治输电线路风偏故障及外力破坏方案

防治输电线路风偏故障及外力破坏方案1、防治输电线路风偏故障线路风偏故障指线路的导线(包括耐张塔跳线)在风力的作用下,对杆塔或邻近线路的各种物体(如树木、房屋或其他电力线路等)发生放电造成或线路接地的现象。

线路发生风偏故障,如果风力在一定时段内变化不大,将会造成线路长时间接地,严重影响了线路的安全运行,必须采取适当的措施进行防治。

一.HO输电线路设计采取的最大设计风速一般不应低于30m∕s o校验杆塔电气间隙选取的风压不均匀系数α,当档距超过200m时Q=0.61(设计风速v220m∕s);对耐张塔跳线或档距不超过200m时α=I o此外,杆塔电气间隙还应考虑风雨共同作用(湿闪)的情况,并应留有适当的裕度。

二.加强对线路所经区域的气象及导线风偏的观测,记录、搜集有关气象资料(特别是瞬时风及飓线风的数据)以及导线发生风偏故障的规律和特点。

通过对取得资料的汇总、分析并结合运行经验,制订相应的防范措施。

现时可采取的防范措施有:a.在容易发生风偏故障的地段,导线宜采用V型绝缘子串悬挂;b.对耐张塔跳线没有安装跳线串的,应考虑加装跳线串(跳线串不宜采用复合绝缘子,并根据具体情况考虑是否加装重锤);c.对直线塔悬垂绝缘子串,可考虑在导线下方加装重锤。

d.加强线路走廊障碍物的检查清理,校验导线对树木、边坡等在风偏情况下的净空距离,不满足要求的应进行处理。

三.对发生风偏故障的线路,应做好线路故障的分析并填写《输电线路故障(一类障碍、事故)技术调查分析表》,同时应单独建立技术档案、记录等。

线路风偏故障过后,应仔细检查导线、金具、铁塔等受损情况,及时消除缺陷。

四.开展导线风偏的试验与研究(-)开展强风作用下有雨和无雨时的空气间隙工频放电对比试验,找出规律,为线路设计提供依据;(二)研究观测气象和导线风偏的在线监测系统,为线路设计考虑绝缘子串及导线风偏时,风速及风压不均匀系数的选取提供依据;(三)对杆塔设计在各种不利情况下的气象条件组合,特别是在导线发生风偏时的气象条件的选取,进行更深一步的探讨和研究,为今后完善设计理论提供帮助。

110kV输电线路风偏故障分析及对策

110kV输电线路风偏故障分析及对策

110kV输电线路风偏故障分析及对策【摘要】本文主要介绍了110kV的输电线路风偏故障发生的类型以及特点,并对故障形成的原因进行了详细的分析,针对故障问题笔者重点提出了解决风偏故障发生的措施。

【关键词】110kV;输电线路;风偏故障0.引言电力是给人们提供方便的主要能源之一,经济社会不断发展的过程,人们对电力的需求也越来越大,输电线路的规模近些年来的扩展速度非常快。

但是输电线路因为处于室外,受到地理环境的影响不仅损耗比较严重,同时也容易生发故障给人们造成不便,并且给人们生命以及财产构成了威胁。

1.风偏故障类型及特点风偏故障主要是在大风天气情况下比较容易发生,当大风对导线、杆塔、拉线产生风力影响时,造成与地面上的建筑物或者树木以及其他导线之间的间隙小于大气击穿的电压,就会造成跳闸故障的发生。

一般情况下110KV的输电线路比较容易发生跳闸。

风偏故障发生的类型主要有三种:直线杆塔绝缘子对塔身放电或者对拉线放电、耐张杆塔跳线之后引起的电流对塔身放电、输电线对附近的建筑物以及树木放电[1]。

由于近年来气候变化比较异常,沿海地区的台风天气以及内陆地区的冬季寒流发生的频率越来越高。

因此大风天气的情况比较多,大风天气造成的输电线路风偏故障发生也随之增加,这给国家的电网安全带来了极大的挑战,同时也给人们生命安全和财产安全造成了极大的威胁。

在特殊气候条件更应该加大对风偏故障的防治的重视。

风速对故障发生有着很大的影响,一般风速越大110kV的输电线路风偏故障发生的次数就会增加。

如下表一是2013年某地区在最大风速达到30米每秒时的不同电压的输电线风偏故障发生的状况。

表一因为不同地区的大风发生的季节不同因此输电线路风偏故障发生就存在季节性,另外不同的地理形势对风速的影响也会不同,在风口地段发生故障的几率就会比较高。

2.风偏故障的分析2.1风速对风偏角的影响在西北地区,很多城市是沿着大山分布的,因此会有多处的风口区,并且每年到了冬季受到西北风的影响,山体将风的阻挡在峡谷和隘口等锁口处,因为气流的翻越会造成峡谷效应[2]。

输电线路防风偏措施分析

输电线路防风偏措施分析

输电线路防风偏措施分析摘要:近年来,随着电网的快速发展和电网规模的迅速扩大,输电线路的走廊变得越来越紧张。

越来越多的输电线路需要穿过地形复杂和恶劣天气条件的区域。

同时,自然条件的变化显着增加了输电线路上的风偏闪络事故,这对输电线路的安全稳定运行产生了重大影响。

因此,本文介绍了防风偏从输电线偏离的措施,以便可以将其用作相关工作的参考。

关键词:输电线路;防风偏;措施前言:当前,我国在防风偏技术的理论研究和实践中已经取得了丰硕的成果。

各种防风偏技术不断涌现,线路风偏故障的机会不断减少,电网电源的可靠性得到了显着提高。

然而,线路防风偏技术在线路污染控制方面还远远没有成熟,并且仍会不时发生风偏跳闸事故。

因此,各线路运维单位将加强与内部高校的合作,对风偏进行详细的理论研究和实践,进一步发展防风偏技术和电网防灾减灾技术。

必须促进电力系统的稳定运行并确保安全。

此,本文分析了防止输电线路防风偏的措施。

一、输电线路风偏故障的特点(一)气象条件发生了变化当输电线路上经常出现风偏故障时,通常是天气状况变化最大的时候。

一般来说,风力比较大。

输电线路受风影响,线路发生故障。

(二)输电线路风偏故障的发生比较有规律性一般而言,输电线路的故障周期较为规律。

从长远来看,哪个季节多风,有多大风,具有一定的规律性。

但是,可能会发生异常情况。

例如,突然的强风可能会在该区域中持续一段时间,从而严重损坏传输线。

(三)输电线路发生风偏故障的地方杆塔相对集中根据有关部门对输电线路风偏故障的记录,输电线路发生风偏故障的电线杆和电线塔相对集中。

在这种情况下,它通常会对输电线路的正常运行造成很大的冲击,从而极大地影响电力系统的正常运行。

二、风偏事故现象和原理(一)杆塔发生倾斜或歪倒如果风过大并且超过了塔架的机械强度,则塔架会倾斜或变形,从而损坏塔架或导致断电。

主要原因是:1)风超过了塔架的设计强度。

2)杆塔组件的腐蚀和强度损失。

3)由于在建造塔后基础尚未压实,因此一段时间后基础周围的土壤可能会腐蚀并不均匀地下沉,从而导致塔变形。

500kV输电线路风偏故障及防范措施探析

500kV输电线路风偏故障及防范措施探析

500kV输电线路风偏故障及防范措施探析随着电网建设的快速发展,我国各大区域已形成以电压等级为主网架的坚强电网。

运行经验的不断积累,以及输电线路设计水平不断提高,使得目前线路的操作过电压已较低,基本不再发生因操作过电压而导致线路闪络的故障。

此外,污闪治理工作的大幅推进使得线路的交流耐压水平稳步提升。

风偏故障是指输电线路在强风的作用下,导线向杆塔身部出现了一定的位移和偏转而导致放电间隙减小而造成的闪络事故本文结合工作实际,从500kV输电线路风偏故障的特点及原因出发并着重就风偏故障的防范措施进行了探索与研究。

标签:500kV、输电线路、风偏故障、防范措施1 500kV输电线路风偏故障产生原因1.1 外因目前,我国在对500kV 输电线路进行构建的过程中,要求相关部门必须严格遵守相应的设计规范,其中指出,如果500kV 输电线路需要在拥有500~1000m海拔高度的地区进行构建,最小空气间隙在工频电压下应高于1.3m;如果500kV输电线路在不高于500m的海拔地区进行建立,那么最小空气间隙在工频电压下应高于1.2m。

500kV输电线路在各种恶劣的天气条件下运行时,位移以及偏转的现象很容易在杆塔中产生,那么将减小空气间隙,其无法满足技术规程相关要求;同时,在恶劣的天气条件下,工频电压在线路、杆塔间隙中将会降低。

1.2 内因在对该500kV输电线路进行调查的过程中发现,多半线路路段都符合原有设计规程要求,但是,同现阶段我国的500kV输电线路设计规程相比,原有规程中的裕度相对较小。

现有规程中的风压不均匀系数为0.75,比原有的0.61要高。

在实际设计线路的过程中,设计人员必须对这些裕度和相关参数变化进行充分的掌握,并提升设计的合理性,只有这样才能够提升500kV输电线路低于恶劣天气的能力,将风偏事故发生的概率降到最低。

2 500kV输电线路风偏放电路径及故障特点2.1 受恶劣气候条件影响严重当气候条件相互对恶劣时,会导致风偏故障频发,例如,实际风速高于设计风速、冰雹以及强降雨天气情况下,都发生了严重的风偏事故。

输电线路风偏故障分析与防范

输电线路风偏故障分析与防范

输电线路风偏故障分析与防范由于近年来石嘴山地区大风天气较多,该地区110-220kV线路发生多次大风跳闸故障。

针对故障原因,笔者对大风天气与地区线路运行条件进行深入分析,提出了地区电网防风偏治理的方案。

标签:线路;风偏故障;防范1风偏故障类型及特点1.1 风偏故障类型及故障统计风偏故障是输电线路在大风天气下导线(带电体)与杆塔、拉线、树、竹、建筑物等(地电位体)之间或其他相导线的空气间隙小于大气击穿电压而造成的跳闸故障。

风偏故障不能消除或发生相间短路时,会扩大事故范围。

风偏故障主要类型有直线杆塔绝缘子对塔身或拉线放电,耐张杆塔跳线引流对塔身放电,导线对通道两侧建(构)筑物或边坡、树竹木等放电现象。

以石嘴山地区输电线路运行记录为例,2009-2011年输电线路间共发生风偏故障17次,发生风偏故障的线路主要为110-220kV线路,其中220kV线路风偏故障11次,占风偏跳闸故障的64.7%,110kV线路风偏故障6次,占风偏跳闸故障的35.3%。

由于近年来大风天气持续增多、微气候气象条件的不断变化,输电线路风偏故障不断发生,对电网的安全运行也带来了严峻考验,因此对输电线路风偏故障的防治必须引起高度重视。

1.2 输电线路风偏故障特点1.2.1 气象条件发生明显变化。

根据石嘴山地区电网2001年-2011年间110-220kV线路风偏跳闸数据,可以知道2001年-2009年间110-220kV输电线路风偏故障较少,而2010-2011年间该地区风偏故障次数显著增加,调查气象资料,2001年-2009年地区最大风速为21m/s,而2010-2011年间地区瞬时最大风速为30m/s,地区瞬时最大风速有所增强。

1.2.2 风偏跳闸时间具有规律性。

石嘴山地区发生风偏跳闸故障主要集中在每年12月至次年4月,该时间段为西北地区大风季节。

此外,该地区电网110kV 及以上架空输电线路并非每年都会发生。

某些年份的线路风偏故障往往非常严重。

输电线路风偏闪络故障及防范措施分析25

输电线路风偏闪络故障及防范措施分析25

输电线路风偏闪络故障及防范措施分析摘要:随着电力科学技术水平的不断提升,我国电网设施建设进入了新的发展阶段,输电线路运行与安全保护性能不断增强。

输电线路风偏闪络故障是线路在强风扰动下,线路放电间隙减小形成的放电问题,较高的放电水平会对线路形成一定的损害,造成风偏跳闸等系列问题,影响线路的正常运行。

本文探讨了输电线路风偏闪络故障及防范措施的相关问题,旨在提供一定的参考与借鉴。

关键词:输电线路;风偏闪络;故障;防范1输电线路风偏闪络故障分析1.1设计裕度导致的风偏闪络故障在新的输电线路建设指导规范中,相应的抗风性能设计裕度为30、50a,而原有旧的规范中相应的设计裕度仅为15、30a一遇。

同时,原有规范对于抗风性能的设计是依据最大设计风速来进行的,而新的规范则要求根据基本风速来计算,就二者的计算结果来看,采用基本风速来计算更贴近实际情况,线路整体抗风性能裕度要高出5%。

另外,针对风压的计算新规范也将原有规范的不均匀风压系数设置为0.75,同样也更贴近实际风力效果。

相关线路运行实际效果统计表明,部分按照旧规范设计的输电线路裕度过小,输电线路在面临风力侵扰的情况下,相应的抗风能力相对不足。

1.2强风天气导致的风偏闪络故障强风天气对线路造成的侵扰是形成闪络故障的直接诱因,在风力作用下输电线路的抖动或波动造成线路间隔变化,同时绝缘子与导线塔头间的绝缘效果将收到一定破坏,进而在特定位置形成相应的闪络放电现象。

在风偏闪络放电能量较小的情况下,将会对放电位置的导线或金属夹具造成损坏,在能量较大的情况下,则会形成风偏跳闸,导致大面积停电等系列严重事故的产生。

另外,一般强风天气与暴雨等气候条件共同出现的,这时雨水将在风力作用下形成水线,在水线流动与闪络同向的情况下,将会降低线路空隙放电电压,诱发出一系列风偏故障。

1.3微地形环境导致的风偏闪络故障微地形环境指的是在输电线路架设区域局部位置山体、河流、植被等因素构成的地形环境,这种局部地形环境中的风力条件也是导致风偏闪络故障的重要因素。

架空输电线路风偏故障原因分析及预防措施

架空输电线路风偏故障原因分析及预防措施
近年来500kV交流和直流线路在强风作用下发生风偏闪络的次数仍然很频繁[3]。发生风偏故障的输电线路通常以山区为主,大风天气多。一方面在设计时未对当地气候条件进行深入剖析,导致杆塔头部尺寸与标准要求存在不符之处,另一方面则是由于对恶劣气象条件估计不足,在极端天气及微气象条件下,瞬时风速超过了设计值,导致风偏故障发生[4]。
架空输电线路发生风偏故障范围广、次数多、影响大,防止风偏故障的发生是设备运行管理单位的“六防”工作之一。对风偏故障特点的分析总结有助于采取针对性措施减少风偏故障的次数,在发生故障时能准确判断是否为风偏故障,并及时查找故障点。
架空输电线路风偏故障有以下特点:一是发生风偏闪络的区域均有强风且大多数情况下伴有大暴雨或冰雹;二是直线杆塔发生风偏跳闸居多,耐张杆塔相对较少;三是风偏故障的放电部位多在塔头及跨越物上,杆塔上放电点均有明显电弧烧痕,放电路径清晰,故障点查找较为容易;四是绝大多数风偏闪络均发生于线路工作电压下,由于强风的持续作用,重合闸不成功,从而导致线路停运。
2)加装重锤片。在悬垂绝缘子串的下方加装重锤,在抑制跳线风偏上起到了很好的作用,然而此方法效果并不十分理想,仅依靠加装重锤片仍无法从根本上解决问题。
3)优化绝缘子型式,采用防风偏绝缘子。新一代防风偏绝缘子的优点是绝缘子风偏摆动幅度小,防止导线与杆塔的电气间隙不满足要求;此外防风偏绝缘子安装可靠,充分考虑了与杆塔连接的金具,有利于后续技改工程。在费用方面,防风偏绝缘子优于瓷质绝缘子和玻璃绝缘子;在防风性能方面,不加重锤、防风拉线等防风措施的情况下,中相及外角侧的普通合成绝缘子串不能满足安全空气间隙的要求,而采用防风偏绝缘子后,即使在40m/s风速情况下,安全空气间隙也能满足要求。
架空输电线路风偏故障原因分析及预防措施
摘要:架空输电线路运行在复杂多变的自然环境中,在强风特别伴有降雨的作用下容易发生风偏故障,造成线路故障跳闸。本文针对架空输电线路风偏故障产生的原因、风偏故障的特点及影响因素进行分析,并提出预防风偏故障的措施。

220kv输电线路风偏故障及其防治对策

220kv输电线路风偏故障及其防治对策

220kv输电线路风偏故障及其防治对策摘要:随着经济不断发展,我国电网建设发展迅速,220kv电网建设规模不断扩大。

大部分输电线路建设在地形复杂地区,地形复杂地区的气候差异较大,给输电线路建设带来严峻考验。

在恶劣的自然环境下,输电线路容易出现故障,尤其在强风地区,输电线路在强风的作用下容易出现偏移或位移现象,产生风偏故障,降低输电线路安全性与稳定性。

为保障输电线路的安全,需分析风偏故障的具体情况,并提出相应的治理措施。

关键词:220kv;输电线路;风偏故障;防治对策1、风偏故障的基本情况近年来,我国由于风偏故障造成的安全事故较多。

例如,2018年,福建省遭受强力台风,导致输电线路出现异常,220kv福中Ⅰ线路C相故障跳闸,出现明显的闪络现象;2019年,河南出现风偏跳闸;2020年,福建省厦门市受到强风影响出现风偏跳闸。

风偏故障会影响电网系统的安全运行,对系统带来极大影响,其涉及地区较广,容易造成严重事故。

例如,2015年,某线路出现跳闸后,重合闸失败,与之并列的线路受到高双频影响,杆塔受到强风破坏,因此拉线出现放电问题。

风偏跳闸容易出现在每年的夏季,这时天气变化复杂,容易出现风偏闪络现象。

2、220kv输电线路风偏故障2.1外因目前,我国在对220kv输电线路进行构建的过程中,要求相关部门必须严格遵守相应的设计规范,其中指出,如果220kv输电线路需要在拥有500~1000m海拔高度的地区进行构建,最小空气间隙在工频电压下应高于1.3m;如果220kv输电线路在不高于500m的海拔地区进行建立,那么最小空气间隙在工频电压下应高于1.2m。

220kv输电线路在各种恶劣的天气条件下运行时,位移以及偏转的现象很容易在杆塔中产生,那么将减小空气间隙,其无法满足技术规程相关要求;同时,在恶劣的天气条件下,工频电压在线路、杆塔间隙中将会降低。

2.2空气间隙放电电压降低空气间隙放电电压降低主要受暴雨及冰雹影响,当线路出现放电时,导线风偏角加大,导线与杆塔之间的空气间隙明显缩小,空气间隙放电电压降低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

输电线路风偏故障分析与防治
输电线路的风偏闪络一直是影响线路安全运行的因素之一,与雷击等其他原因引起的跳闸相比,风偏跳闸的重合成功率低,一旦发生风偏跳闸,造成线路停运的几率较大。

1输电线路风偏跳闸情况统计及特点
2004年江苏省发生了10次500kV、2次220kV风偏跳闸事故,在此之前,江苏较少发生风偏事故。

同时国网公司也在2004年对风偏事故较为重视,2004年7月23日国网公司系统内发生过输电线路风偏跳闸有关单位,召开了“输电线路风偏跳闸分析会”,分析情况如下:
1.11999-2003年输电线路风偏跳闸统计。

据统计,国家电网公司系统(同口径)在过去的5年间共发生110(66)千伏及以上输电线路风偏跳闸244条次。

按区域划分,华北94条次,华东42条次,西北66条次, 华中25条次,东北17条次。

超过10条次以上的省份有:新疆、陕西、青海、江苏、福建、天津、山西、山东、内蒙等9省(区、市),以新疆为最多,达到了30条次。

统计数据显示,过去5年间输电线路风偏跳闸多发于北方和沿海风力大的地区。

按电压等级分类,500千伏输电线路发生33条次,占13.5%;330千伏输电线路发生8条次,占3.3%;220千伏输电线路发生139条次,占57%;110千伏输电线路发生64条次,占26.2%。

说明过去5年间风偏跳闸主要发生在110-220千伏线路,约占全部风偏跳闸的83.2%。

从风偏放电的类型来看,转角(耐张)塔跳线共发生风偏放电164条次,直线塔导线对杆塔放电80条次,其余是档距中导线对周边障碍物放电。

说明过去5年中发生的风偏放电以耐张塔跳线放电居多,占67.2%。

1.2 2004年500千伏输电线路风偏放电情况统计及特点。

(1)按类别划分。

2004年3-7月,在不到半年的时间内,公司系统500千伏交直流输电线路已发生风偏跳闸21条次,且大多重合不成功。

在21条次风偏放电中,按发生地域划分,分别为河南8条次、山东3条次、江苏3条次、湖北3条次、山西2条次、湖南1条次、北京1条次;按发生时段划分, 7月份7条次、6月份10条次、5月份2条次、4月份1条次、3月份1条次;按交直流线路划分,交流18条次、直流3条次。

(2)风偏的特点。

今年的风偏放电与往年相比,具有以下特点:1)时段集中。

主要发生在5-7月,而往年发生时间较为分散和随机。

2)范围广泛。

往年主要发生在北方地区和沿海地区,今年内陆地区发生较多,涉及的区域有河南、江苏、湖北、湖南、山东、山西、华北。

3)直线塔风偏放电明显增多。

在21条次风偏跳闸中有19起发生于直线塔,仅2条次发生于耐张塔,而往年则较多是耐张塔的跳线串对杆塔放电。

4)500千伏主干线路风偏放电突出。

在过去的5年中500千伏线路风偏放电共发生了33条次,而今年仅半年时间就已发生21条次。

2风偏闪络规律及特点
对2004年发生的21起风偏放电进行归纳,具有以下共同点:
⑴放电发生区域及时段均有强风出现,伴有大雨或暴雨;
⑵故障发生地点大多并无明显的地形地貌特殊性;
⑶杆塔上曲臂构架和导线或金具上均有明显的电弧烧痕,放电路径清晰;
⑷从放电路径来看,主要表现在导线对杆塔构件放电、导地线线间放电和导线对周边物体放电三种形式。

⑸重合闸成功率低,部分故障杆塔在重合闸时出现多相放电,强风消失后试送成功。

3 原因分析
⑴强风雨是导致风偏放电的直接原因。

根据气象部门的报告和现场查询,放电发生的区域均出现了罕见的强风,气象部门称这种强风为飑线风,由中小尺度局部强对流空气造成,飑线风具有以下特征:
一是常发生在局部区域和局部地带,范围可小至几平方公里至十几平方公里,由局部区域的冷暖强对流空气造成,形成一定宽度的风带;
二是风力强劲,瞬时风速达到每秒30多米以上;
三是生成快、消失快、阵发性强,持续时间在数十分钟以内;
四是大多发生在6-7月间;
五是常伴有雷雨和冰雹。

气象部门反映,这种天气每年都有,但今年尤为强烈,主要表现为空气对流能量大,风力强劲,影响范围较广,时间也较长,原因是高空冷空气在所经区域移动较慢,与低空高热空气在局部小范围内不断交汇,产生强对流所致。

根据故障杆塔导线和塔身上的放电点位置,由塔身放电点作垂直线向导线侧,找出与绝缘子串摆动轨迹相交点,在不考虑空气间隙放电电压降低的因素,根据不同的风压不均匀系数α取值(500千伏第一代杆塔设计α取值为0.75、第二代杆塔设计取值为0.61),反推风速值,得出风速均大于30米/秒。

⑵暴雨及冰雹导致空气间隙的放电电压降低。

根据杆塔上的放电位置反推,发生放电时一是导线风偏角很大,使空气间隙明显减小,二是间隙的放电电压较无雨、无冰雹时有一定程度的降低。

⑶在设计中对灾害性天气条件的估计不足。

此次发生风偏放电的各线路,在设计中考虑的最大风速均为30米/秒,没有考虑出现更强风力的可能性,但气象部门己实测出超出30米/秒以上的大风。

例如,江苏萧县气象局在故障发生时记录到的最大风力为32.7米/秒。

此次发生风偏的杆塔中,在设计中对当地出现瞬时强风的可能性估计不足,设防水平不高,例如在耐张塔的外角跳线上没有安装跳线串。

⑷其他原因的排除。

在以上各次放电故障的调查中,对雷电定位监测数据,故障录波数据及波形,线路闪络处的地形地貌,线路设备包括绝缘子、避雷线、接地电阻、接地引下线的状况等进行了全面的调研和综合分析,可以排除来自雷击、污闪、鸟害等其他原因的影响,而且发生闪络处的地形地貌、杆塔结构、布置、线路元件均没发现引发放电的特殊性,可以判明是因强风引起的风偏放电。

另外,风偏跳闸增多还与电网发展,输电线路所经区域增多,遭遇强风袭击的概率增加相关。

4 放电机理及影响因素
输电线路铁塔塔头设计的流程:确定导地线、气象条件---绝缘子片数及长度---工频(大风)、外过电压、内过电压条件下的空气间隙---悬垂串摇摆角计算---绘制间隙园图。

500kV 线路间隙一般由大风控制,220kV线路间隙一般由大气过电压控制。

在强风的作用下,导线风偏角会增大,当导线与杆塔构件的空气间隙明显减小时,间隙可能在工作电压下发生击穿。

在DL/T5092-1999《110千伏-500千伏架空送电线路设计技术规程》中规定,对于海拔500-1000米的交流线路,工频电压下的最小空气间隙不得小于1.3米;对于海拔500米以下的线路,工频电压下的最小空气间隙不得小于1.2米。

根据导线和杆塔构架上的电弧烧痕,可以反推出发生工频放电时的间隙。

尽管电弧烧痕点在风的作用下存在一定的分散性,但基本可以断定,发生放电的原因主要是大风造成空气间隙减小造成的,其放电机理及影响因素主要有以下方面:
(1)当强风作用在导线和绝缘子串的风压面上时,导线风偏角增大,同时导线出现一定程度的偏转和位移,当导线与杆塔构架间空气间隙的绝缘强度小于工作电压时发生空气击穿,放电电弧会分别在导线和构架上留下电气烧痕。

根据试验数据,在无雨、无冰雹的天气条件下,四分裂导线与杆塔构架间 1.2米空气间隙的工频闪络电压值(有效值)约在420千伏左右,1米空气间隙的工频闪络电压值(有效值)约在350千伏左右,仍高于正常工作电压,但是由于暴雨在大风的引导下有可能形成与放电方向相同的雨线,导致空气间隙放电电压降低,从杆塔和导线上的第一次放电的位置和空气间隙距离推算证明了这一点。

例如500千伏获仓线214号杆塔第一次放电点在杆塔横担下2.76米处,测算出的放电间隙距离为1.0米,风偏角为51.82°。

(2)风偏跳闸与单纯雷击跳闸的一个重要区别就是:雷击跳闸常可以重合成功,而风偏跳闸重合成功率不高。

这是在重合闸时由于风的连续性使导线与杆塔的间隙减小,同时重合闸时系统中很可能出现操作过电压,所以第二次击穿的可能在间隙距离较大时发生。

例如500千伏获仓线214号杆塔第二次放电点在距杆塔横担下3.2米处,测算出放电间隙距离为1.94米,风偏角为40.16°。

(3)在强风作用下,导线会出现一定的位移和偏转。

另外,在电磁场作用下,在导线金具的尖端和杆塔构件的尖端上会出现局部高场强,使放电更容易在这些位置发生,从现场观测到的放电痕迹来看,一部分放电出现在脚钉、防振锤和角铁边缘尖端上正说明了这一点。

5 应对措施
⑴对新建线路直线塔采用V型绝缘子串,直线转角塔采用L型绝缘子串。

⑵直线塔设计中,采用0.61的风压不均匀系数并考虑高空风压系数的影响,在工程应用中按照0.75风压不均匀系数进行校验。

⑶定位中充分考虑微气象条件影响,在个别易发生灾害性气候地区,对铁塔的Kv值取用留有裕度。

⑷耐张塔跳线风压不均匀系数按1.2进行设计。

⑸已运行的线路,按照0.75风压不均匀系数进行校验,不满足的加重锤片处理。

在2004年后江苏对已经20条500kV线路进行了校验。

改造杆塔1000基。

不仅加重锤片,还进行了对直线串进行倒V形改造。

有效地防止了风偏事故。

相关文档
最新文档