2.3直线的参数方程1

合集下载

2.3直线的参数方程课件人教新课标1

2.3直线的参数方程课件人教新课标1
=54(t+2)2+20. 当 t=-2 时,|PM|2 取最小值,此时|PM|等于点 P 与直线
的距离,则|PM|= 20=2 5. 解法二:由点 P 向直线作垂线,垂足记为 P0,如图所示,
它对应参数 t=-2.代入直线的参数方程,可得点 P0 的坐标: x=2,y=1,即垂足 P0(2,1),显然有|PP0|= 2+22+1+12 =2 5.
2,6)的距离.
分析:由直线的方程可知,直线的斜率为34,即直线的倾 斜角(设为 α)的正切值 tan α=34,则 sin α=35,cos α=45.因为 点 P 在直线 l 上,为了方便运算,选择点 P 作为直线上的定 点,到点 M 和点 N 的距离可以根据参数方程的特点及几何意 义或者两点之间的距离公式来求.
k= .
解析:(1)由题意可知直线的点斜式方程为 y-3=-24(x-1).
设 y-3=-24(x-1)=t,则xy==13-+2tt.,
∴该直线的参数方程为x=1-2t , y=3+t.
(2)解法一:如图所示,在直线上任取一点 M(x,y),则 |PM|2=(x+2)2+(y+1)2
=1-2t +22+(3+t+1)2 =54t2+5t+25
线l的参数方程是 x= 22t, (t为参数),
y=-4+
2 2t
点P是曲线C上的动点,点Q是直线l上的动点,求|PQ|的最
小值.
解析:曲线C的极坐标方程ρ=4sin θ可化为ρ2=4ρsin θ,其 直角坐标方程为x2+y2-4y=0,即x2+(y-2)2=4.
直线l的方程为x-y-4=0. 所以,圆心到直线l的距离d=|-2-2 4|=3 2. 所以,|PQ|的最小值为3 2-2.
5.直线 y=-1-t (t为参数)与曲线 的交点个数为________.

2.3-2.4《直线的参数方程及渐开线与摆线》 课件(人教A版选修4-4)

2.3-2.4《直线的参数方程及渐开线与摆线》 课件(人教A版选修4-4)
x=2t 7.点(-3,0)到直线 (t为参数)的距离为_______. 2 t y= 2 x=2t 【解析】∵直线 的普通方程为x- 2 2 y=0, 2 y= t 2 |-3-0| ∴点(-3,0)到直线的距离为d= =1.
1+(-2 2) 2
答案:1
8.(2010·天津高考)已知圆C的圆心是直线
AB的中点坐标为( (A)(3,-3) (C)( 3,-3)
) (B)(- 3,3) (D)(3,- 3)
【解析】
1 x=1- 2 t 5.以t为参数的方程 表示( y=-2+ 3 t 2
3
)
(A)过点(1,-2)且倾斜角为 的直线 (B)过点(-1,2)且倾斜角为
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A、B,若点P的坐标为(3, 5 ),求 |PA|+|PB|.
【解析】方法一:
(1)由ρ= 2 5 sinθ,得x2+y2- 2 5 y=0,
即x2+(y- 5 )2=5. (2)将l的参数方程代入圆C的直角坐标方程,
得 (3- 2 t)2 +( 2 t)2 =5 ,
程,并求倾斜角,说明|t|的几何意义.
【解析】
11.(14分)(2010·福建高考)在直角坐标系xOy中,直线l的
2 x=3t 2 参数方程为 (t为参数),在极坐标系(与直角坐标 y= 5+ 2 t 2
系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为
极轴)中,圆C的方程为ρ = 2 5 sinθ .
x=t (t为参数) y=1+t
与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为___ _______. 【解析】将直线的参数方程化为普通方程为x-y+1=0. 由题意可得圆心(-1,0),则圆心到直线x+y+3=0的距离即为圆

2.3 直线的交点坐标与距离公式 2.3.1 两条直线的交点坐标

2.3   直线的交点坐标与距离公式    2.3.1 两条直线的交点坐标

()
√A.-24
C.6
B.24 D.±6
【解析】 (2)设交点坐标为(a,0),
则有2a+a-12k==00,,解得ak==--2142,,故选 A.
第14页
题型二 过两条直线交点的直线系方程应用
例 2 求经过两直线 2x-3y-3=0 和 x+y+2=0 的交点,且与直线 3x+y -1=0 平行的直线 l 的方程.
第9页
(2)l1:x+y+2=0,l2:2x+2y+3=0;
【解析】 (2)解方程组x2+x+y+2y2+=30=①0,②, ①×2-②得 1=0,矛盾. 由此可知方程组无解,因此直线 l1 与 l2 平行.
第10页
(3)l1:x-y+1=0,l2:2x-2y+2=0. 【解析】 (3)解方程组x2-x-y+2y1+=20=①0,②, ①×2 得 2x-2y+2=0. 说明方程②是方程①的 2 倍,方程①的解都是方程②的解. 因此直线 l1 与 l2 重合.
第16页
方法三:∵直线 l 过直线 2x-3y-3=0 和 x+y+2=0 的交点, ∴可设直线 l 的方程为 2x-3y-3+λ(x+y+2)=0,即(λ+2)x+(λ-3)y+2λ -3=0. ∵直线 l 与直线 3x+y-1=0 平行,
∴λ+ 3 2=λ1-3≠2λ--1 3,解得 λ=121.
A.2
B.3
C.4
√D.5
【解析】 (1)解方程组54xx- +63yy- +127==00,,
得xy= =- 1,2,
则直线 x+by+9=0 经过点(1,-2),
所以 1-2b+9=0,解得 b=5,故选 D.
第13页
(2)直线 2x+3y-k=0 和直线 x-ky+12=0 的交点在 x 轴上,则 k 的值为

4-4.1.2曲线的伸缩变换

4-4.1.2曲线的伸缩变换

生 —-------莫泊桑
(6 分钟)
§2.3 直线的参数方程
请同学们 10 分钟完成当堂检测 当堂检测(10 分钟)
1.设平面上的伸缩变换的坐标表达式为x′=12x, 则在这一坐标变换下正弦曲线 y′=3y,
y=sinx 的方程变为________.
x′=2x 2.将曲线 C 经过伸缩变换y′=13y 后对应图形的方程为 x2-y2=1,则曲线 C 的焦
的作用下,点 P(x,y)对应
称为平面直角坐标系中的伸缩变换。
注:(1) 0, 0 px, y
(2)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;
(3)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。 题型三 已知原曲线方程及变换后曲线方程,求伸缩变换
学生先独立思考,然后小组交流,请学生代表板演例 1(2)、例 2
新河中学高二数学选修 4-4 学案 §2.3 直线的参数方程
请同学们 30 秒阅读学习目标 学习目标: 1.能用变换的观点来观察图形之间的因果联系,知道图形之间可以类与类变换的。 2.掌握变换公式,能求变换前后的图形或变换公式。 教学重点:掌握变换公式。
§2.3 直线的参数方程
题型一 已知伸缩变换及原曲线方程,求变换后曲线方程 例 1:在直角坐标系中,求下列方程所对应的图形经过伸缩变换
后的图形。(5 分钟) (1)2x+3y=0; (2)x2+y2=1
x 2x
y
3
Байду номын сангаас
y
教学难点:理解图形伸缩变换与坐标变换之间的关系
请同学们结合课本及课件,认真探究总结,时间 5--8 分钟 自主预习:
(1)怎样由正弦曲线 y=sinx 得到曲线 y=sin2x?写出其坐标变换。

直线的参数方程zy

直线的参数方程zy

我们知道e是直线l的单位方向向量,那 是有时向上有时向下呢?
M0 M
么它的方向应该是向上还是向下的?还
分析: 此时,若t>0,则 是直线的倾斜角, 当0< < 时, sin >0 M 0 M 的方向向上; 又 sin 表示e 的纵坐标, 若t<0,则 e 的纵坐标都大于0 M0 M的点方向向下; 那么e 的终点就会都在第一,二象限, e 的方向 若t=0,则M与点 就总会向上。 M0重合.
辨析:
例:动点M作等速直线运动,它在x轴和y轴方向 分速度分别为9,12,运动开始时,点M位于 A(1,1),求点M的轨迹的参数方程.
解:
x 1 9t (t为参数) y 1 12t
没有
请思考:此时的t 有没有明确的几 何意义?
重要结论:
直线的参数方程可以写成这样的形式:
程中参数t的几何意义吗?
y M M0
又 e是单位向量, e 1 这就是t的几何 M 0M t e t 意义,要牢记
所以,直线参数方程中 参数t的绝对值等于直 线上动点M到定点M0的 距离. |t|=|M0M|
e
O
x
我们是否可以根据t的值来确定向量 M 0 M 的方向呢?
求这条直线的方程. 解: 方程. 解: 在直线上任取一点M(x,y),则 M M (x, y) ( x0 y0 ) ( x x0 , y y0 ) 0 y 设e是直线l的单位方向向量,则 M(x,y) e (cos ,sin ) 因为M 0 M // e, 所以存在实数t R, M0(x0,y0) 使M 0 M te,即 ( x x0 , y y0 ) t (cos ,sin ) e x 所以 x0 t cos , y y0 t sin 即,x x0 t cos , y y0 t sin (cos ,sin ) 所以,该直线的参数方程为 O

三维空间中直线的方程式

三维空间中直线的方程式

三维空间中直线的方程式在三维空间中,直线的方程可以用参数方程和一般方程两种形式表示。

参数方程是将直线上的每一个点都表示为一个参数所确定的向量,而一般方程则是通过直线上两个点的坐标来表示的。

1.参数方程:直线的参数方程可以表示为:x = x0 + aty = y0 + btz = z0 + ct其中(x0,y0,z0)为直线上的已知点,而(a,b,c)为直线的方向向量,t为参数。

2.一般方程:首先,我们需要确定直线的方向向量。

假设直线上的两个点分别为P(x1,y1,z1)和Q(x2,y2,z2),则直线的方向向量可以表示为V=PQ=(x2-x1,y2-y1,z2-z1)。

然后,我们可以通过点P的坐标和方向向量V来推导直线的一般方程。

2.1.点向式:直线的一般方程可以表示为:(x-x1)/a=(y-y1)/b=(z-z1)/c其中(a,b,c)为方向向量V的分量。

2.2.对称式:直线的一般方程也可以表示为:(x-x1)/a=(y-y1)/b=(z-z1)/c=t这里的t为参数。

2.3.常法式:直线的一般方程还可以表示为:Ax+By+Cz+D=0其中A,B,C为方向向量V的分量,而D为常数。

对于两个不平行的直线,我们可以通过将它们的方向向量进行叉乘来求得它们的交点。

除了参数方程和一般方程,还有其他表示直线的方法,比如点法式、斜截式等。

这些方法都根据直线上已知点和方向向量的不同形式而有所不同。

需要注意的是,在使用直线的方程时,我们需要根据实际情况选择最适合的表达形式。

有时候参数方程更方便,可以直接通过改变参数t来表示直线上的任意一点;而一般方程则适合于求直线与其他平面或直线的交点等问题。

高中数学2-3直线的参数方程

高中数学2-3直线的参数方程
-1
∵l1与l2垂直,∴2k+2=0,∴k=-1.
课前自主学习
课堂讲练互动
教材超级链接
点击2 参数方程与极坐标方程的综合问题
辽宁高考)已知 P 为半圆 【例2】 (2010·
x=cos C: y=sin
θ , (θ 为参 θ
数,0≤θ≤π )上的点, A 的坐标为(1,0),O 为坐标原点, 点 π 点 M 在射线 OP 上,线段 OM 与 C 的弧 AP 的长度均为 . 3
课前自主学习
课堂讲练互动
教材超级链接
(2)由于 AB 的中点为 M, → → 则AM=MB, → → → → ∴FM-FA=FB-FM, → → → =1(FA+FB), 即FM 2 → → → =1(FA+FB)=t1+t2e, 又FM 2 2 t1+t2 故点 M 对应的参数为 = 5, 2 t1+t2 ∴M(3,2),|FM|= 2 = 5.
为常数,t 为参数).
课前自主学习 课堂讲练互动
教材超级链接
π 【变式1】 直线 l 经过点 M0(1,5),倾斜角为 ,且交直线 x-y 3 -2=0 于 M 点,则|MM0 |=________. 1 x=1+2t, 解析 由题意可得直线 l 的参数方程为 y=5+ 3t 2 (t 为参数), 1 3 代入直线方程 x-y-2=0,得 1+ t-5+ t-2=0,解得 2 2
教材超级链接
2.在直线参数方程中,如果直线上的点 M1、M2 所对应的 参数值分别为 t1 和 t2,则线段 M1M2 的中点所对应的参 1 数值为 t 中 = ·(t1+t2). 2
【思维导图】
课前自主学习
课堂讲练互动
教材超级链接
题型一

福建省晋江市季延中学人教版高中数学选修4-4课件:2.3直线的参数方程

福建省晋江市季延中学人教版高中数学选修4-4课件:2.3直线的参数方程

13
代入方程得: 4 t'2- 4 t'+1+ 9 t'2+ 12 t'+4-9=0
13
13
13
13
t'2
8 13
t'
4
0;
t1'
t
' 2
8 13
,
t1't
' 2
4;
t1'
t
' 2
(t1' t2' )2
4t1't
' 2
4
17 .
例1
y
解:因为把点M的坐标代入
直线方程后,符合直线方程,
A
M(-1,2)
例2 过 M (2,1) 作直线 l, 交椭圆 x2 y2 1 于A,B 两点, 16 4
如果点 M为线段 AB 中点,求直线 l 的方程.
例2 过 M (2,1) 作直线 l, 交椭圆 x2 y2 1 于A,B 两点, 16 4
如果点 M为线段 AB 中点,求直线 l 的方程.
(册)
思考:


线
x y
1 2t 2 3t
与 圆x2
y2
9所 交 弦 长 。
分析:此处的t的系数平方和不等于1,且-
3<0因此t不具有参数方程标准式中t的几何意
义。要先化为标准式。
解:
x
1
y 2
2 ( 13t ) 13 3 ( 13t )
令t'=- 13t
13
方程可化为
x
1
y 2
2 t' 13 3 t'
例2 已知两点 A(1, 3), B(,1) 和直线 l : y x,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考:
o
x
x 100t , 2 ( g=9.8m/s ) 1 2 y 500 gt . 2
抛物线的参数方程
设M (x,y)为抛物线上除顶点外的任意一点, 以射线OM为终边的角记作。
y
M(x,y)

o x y H 因为点M (x,y)在的终边上,根据三角函数定义可得 tan . x
2 x 1 t 2 (t为参数) y 2t 0的 一 个 参 数 方 程 是 。 2
(2 )直线 x y 1
直线的参数方程中参数t的几何意义是: t 表示参数t 对应的点M到定点M 0的距离。当M 0 M 与e同向时,t取正 数;当M 0 M 与e异向时,t取负数;当点M与M 0重合时, t 0.
3 5 3 5 4 2
( 1 )如何写出直线 l的参数方程?

( 2 )如何求出交点 A,B所对应的参数 t1,t 2 ?

( 3 ) AB 、 MA MB 与t1,t 2有什么关系?
( 1 ) M 1 M 2 t1 t 2
t1 t 2 ( 2 )t 2
四、课堂小结
又设抛物线普通方程为y2 =2px.
x=2pt2 , 所以, (t为参数,t R)表示整条抛物线。 y 2pt.
抛物线的参数方程
抛物线y2 =2px(p>0)的参数方程为:
x=2pt2 , (t为参数,t R) y 2pt.
y
M(x,y)

o H x
1 其中参数t= ( 0),当 =0时,t=0. tan 几何意义为: 抛物线上除顶点外的任意一点与原点连线的斜率的倒数。
三、例题讲解
x y 1 0 2 解:由 得: x x 1 0 (*) 如果在学习直线的参数方程之前 ,你会怎样 2 y x 求解本题呢? 由韦达定理得: x1 x2 1 ,x1 x2 1
AB 1 k 2 ( x1 x 2 ) 2 4 x1 x 2 2 5 10
存在惟一实数 t R,使得 M 0 M t e
注:( 1 )直线的参数方程中哪 些是变量?哪些是常量 ? ( 2 )参数t的取值范围是什么? ( 3 )该参数方程形式上有 什么特点?
x 3 t sin200 B) ( 1 ) 直 线 ( t为 参 数 ) 的 倾 斜 角 是 ( 0 y t cos 20 A.200 B .700 C .1100 D.1600
根据直线的这个几何条件,你认为应 当怎样选择参数?
二、新为 0 ) 或向右(l的倾斜角为0 )的单位方向向量(单 位长度 与坐标轴的单位长度相 同)
设直线 l的倾斜角为 ,定点 M 0、动点 M的坐标 分别为 ( x0 , y0 )、 ( x, y )
(1)如何利用倾斜角 写出直线l的单位方向向量 e ?
( 2)如何用e和M 0的坐标表示直线上任意 一点M的坐标?
(1) e (cos , sin )
(2) M 0 M ( x, y ) ( x0 , y0 ) ( x x0 , y y0 )
又 M 0 M // e
x 即P(x,y)为抛物线上任意一点,则有t= . y
思考:P21
怎样根据抛物线的定义选取参数,建立抛物线x2=2py(p>0)的 参数方程?
一、课题引入 在平面直角坐标系中,确定一条直线 的几何条件是什么? 根据直线的几何条件,你认为用哪个 几何条件来建立参数方程比较好? 一个定点和倾斜角可惟一确定一条 直线
由(*)解 得 : x1 1 5 1 5 ,x2 2 2
3 5 3 5 y1 ,y2 2 2
记 直 线 与 抛 物 线 的 交坐 点标A(
1 5 3 5 1 5 3 5 , ),B( , ) 2 2 2 2
则 MA MB ( 1
1 5 2 3 5 2 1 5 2 3 5 2 ) (2 ) ( 1 ) (2 ) 2 2 2 2
四、课堂练习
P41习题2.3 1、 3
1、参数方程的概念:
探究P21
如图,一架救援飞机在离灾区地面500m高处以100m/s的速度 作水平直线飞行。为使投放救援物资准确落于灾区指定的地面 (不记空气阻力),飞行员应如何确定投放时机呢?
物资投出机舱后,它的运动由下列两种运动合成:
y 500
(1)沿ox作初速为100m/x的匀速直线运动; 对于一般的抛物线,怎样 (2)沿oy反方向作自由落体运动。 建立相应的参数方程呢? 解:物资出舱后,设在时刻 t,水平位移为x, 垂直高度为y,所以
本节课我们主要学习了 直线的参数方程的推导 及其简单应用, 学习后要把握以下几个 知识点:
( 1 )直线的参数方程与普 通方程 y y0 tan ( x x0 )的联系;
( 2 )直线的参数方程与向 量知识的联系;
( 3 )参数t的几何意义;
( 4 )应用:用参数 t表示点的坐标、直线上 两点间的距离、直 线被曲线所截得的弦的 长,与中点对应的参数 t.
2p x= , 2 tan 解出x,y得到抛物线(不包括顶点)的参数方程: ( 为参数) y 2p . 1 tan 如果设t= ,t (-,0) (0,+),则有 tan x=2pt2 , (t为参数) 思考:参数t的几何意义是什么? y 2pt . 当t 0时,参数方程表示的点正好就是抛物线的顶点(0,0)。
相关文档
最新文档