一种随机粒子群算法及应用

合集下载

粒子群算法简介优缺点及其应用 PPT课件

粒子群算法简介优缺点及其应用 PPT课件

(3)加速常数c1和 c2:分别调节向Pbest和Gbest方向飞行的最大 步长,决定粒子个体经验和群体经验对粒子运行轨迹的影响,
反映粒子群之间的信息交流。
如果c1=0,则粒子只有群体经验,它的收敛速度较快,但容易 陷入局部最优;
2019/12/14
12
如果c2 = 0,则粒子没有群体共享信息,一个规模为M的群体等 价于运行了M个各行其是的粒子,得到解的几率非常小,因此 一般设置c1 = c2 。这样,个体经验和群体经验就有了相同重要 的影响力,使得最后的最优解更精确。
vmax是一个非常重要的参数,如果该值太大,则粒子们也许会 飞过优秀区域;另一方面如果该值太小,则粒子们可能无法对 局部最优区域以外的区域进行充分的探测。实际上,它们可能 会陷入局部最优,而无法移动足够远的距离跳出局部最优达到 空间中更佳的位置。
(5) rand1和rand2是介于[0,1]之间的随机数,增加了粒子飞行 的随机性。
2019/12/14
4
粒子在搜索空间中以一定的速度飞行,这个速度根据它本身的 飞行经验和同伴的飞行经验来动态调整。所有的粒子都有一个 被目标函数决定的适应值(fitness value),这个适应值用于评价 粒子的“好坏”程度。
每个粒子知道自己到目前为止发现的最好位置(particle best, 记为pbest)和当前的位置,pbest就是粒子本身找到的最优解, 这个可以看作是粒子自己的飞行经验。
(6)迭代终止条件:一般设为最大迭代次数Tmax、计算精度或最 优解的最大停滞步数△t。
2019/12/14
14
算法流程
开始 初始化粒子X、V 计算Pbest、Gbest 粒子位置、速度更新 计算适应函数值 更新Pbest、Gbest

粒子群算法的研究现状及其应用

粒子群算法的研究现状及其应用

智能控制技术课程论文中文题目: 粒子群算法的研究现状及其应用姓名学号:指导教师:年级与专业:所在学院:XXXX年XX月XX日1 研究的背景优化问题是一个古老的问题,可以将其定义为:在满足一定约束条件下,寻找一组参数值,使系统的某些性能指标达到最大值或最小值。

在我们的日常生活中,我们常常需要解决优化问题,在一定的范围内使我们追求的目标得到最大化。

为了解决我们遇到的最优化问题,科学家,们进行了不懈的努力,发展了诸如牛顿法、共轭梯度法等诸多优化算法,大大推动了优化问题的发展,但由于这些算法的低运行效率,使得在计算复杂度、收敛性等方面都无法满足实际的生产需要。

对此,受达尔文进化论的影响,一批新的智能优化算法相继被提出。

粒子群算法(PSO )就是其中的一项优化技术。

1995 年Eberhart 博士和Kennedy 博士[1]-[3]通过研究鸟群捕食的行为后,提出了粒子群算法。

设想有一群鸟在随机搜索食物,而在这个区域里只有一块食物,所有的鸟都不知道食物在哪里。

那么找到食物最简单有效的办法就是鸟群协同搜寻,鸟群中的每只鸟负责离其最近的周围区域。

粒子群算法是一种基于群体的优化工具,尤其适用于复杂和非线性问题。

系统初始化为一组随机解,通过迭代搜寻最优值,通过采用种群的方式组织搜索,同时搜索空间内的多个区域,所以特别适合大规模并行计算,具有较高的效率和简单、易操作的特性。

目前使用的粒子群算法的数学描述[3]为:设粒子的寻优空间是m 维的,粒子的数目为ps ,算法的最大寻优次数为Iter 。

第i 个粒子的飞行速度为T i i1i2im v [v v ]= ,,,v ,位置为T i i1i2im x [x x x ]= ,,,,粒子的个体极值T i i1i2im Pbest [,]P = ,P ,P ,全局极值为T i i1i2im Gbest [,]g = ,g ,g 。

粒子群算法的寻优过程主要由粒子的速度更新和位置更新两部分组成,其更新方式如下:i+11122v ()()i i i i i v c r Pbest x c r Gbest x =+−+−;i+1i+1i x x v =+,式中:12c c ,为学习因子,一般取2;12r r ,是均与分布着[0,1]上的随机数。

粒子群算法以及应用原理

粒子群算法以及应用原理

粒子群算法介绍优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法 . 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.粒子群优化(Partical Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolu2tionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随当前搜索到的最优值来寻找全局最优 .粒子群算法1. 引言粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。

源于对鸟群捕食的行为研究PSO同遗传算法类似,是一种基于叠代的优化工具。

一种改进粒子群算法在参数辨识中的应用

一种改进粒子群算法在参数辨识中的应用

( z):. Y )一Y( ) ∑[ ( k ]
() 4
随 机搜 索算 法最显 著 的特 点在 于 其算法 本 身 的
适应 值是评 定 粒 子 优 劣 的标 准 , 取式 ( ) 4 的倒 数作 为 适应 度 函数 。设 学 习 因子 c =1 4 6 ; 习 .9 2 学 因子 c 1 4 6 ; 性权 重 ' : . 2 8 最 大 迭代次 = .9 2 惯 b 07 9 ; 0 数 MaD x T=10 ;S 5 0 P O粒 子个 数 N= 0; 5 收敛误 差终
敛速度慢。该算法将粒子群 中适应度较高的粒子的平均位置, 展开一个 同步的随机搜 索过程并且 指 导 下一次 的最优 粒 子 , 出局 部最优 位置 。从搜 索结果 可 以看 出, 跳 改进 粒 子群克 服 了局 部早熟和
收敛速 度慢 的缺 点。 仿真 结果表 明 了该 算法 的有 效性。 关键 词 : 子群 ; 粒 两群 并列 随机粒 子群 ; 精英粒 子
就要 更新 A、 B两群 中的最优 粒 子位 置 。
图 2 标 准 P O和 R S 算 法 误差 收敛 曲线 S PO
同时 计算 最 优 粒 子 的连 续 P次适 应 度 的 变化 值, 如果 小于 △, 且 仍 然 没有 达 到 目标 误 差 , 可 而 有 能 已经 陷入 了局 部 最 小值 。这 时 , 要 把 最 优 粒子 需 的位 置在 范 围 r , 用 随机算 法 优 化 , 内 利 帮助 最 优粒 子跳 出局 部 最 优 值 。这 时 的 r 示 随机 搜 索 的半 表 径, 开始 应该 取 的较 小 , 当跳 出局 部 最 优 值 失 败 时 ,
Ke o d :S P r c w r pi ztn ; o beP r l a dm P rc w r pii — yw r sP O( at l S am O t a o ) D u l aM e R n o a i eS a O t z ie mi i l tl m m a

粒子群算法及应用

粒子群算法及应用

粒子群算法及应用粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,源于对鸟群集群行为的观察和模拟。

粒子群算法通过模拟鸟群中个体间的协作与信息传递,以寻找最优解。

在实际应用中,粒子群算法已被广泛应用于函数优化、组合优化、图像处理、各类工程设计等领域。

粒子群算法的基本原理是模拟鸟群中每只鸟(粒子)的行为。

每个粒子表示问题的一个候选解,在解空间中最优解。

算法从一个随机初始解的种子集合出发,通过迭代更新粒子位置和速度,直到满足终止条件。

每个粒子维护自身的历史最优解和全局最优解,通过个体经验和邻域协作来引导过程。

粒子在解空间中自由移动,并通过其中一种适应度函数评价解的质量,并更新自身位置和速度。

整个过程中,粒子会不断地向全局最优解靠拢,从而找出最优解。

粒子群算法广泛应用于函数优化问题。

对于复杂的多峰函数,粒子群算法能够通过群体间的信息共享来克服局部最优解,找到全局最优解。

此外,粒子群算法还可以解决许多实际问题,如资源调度、网络路由、机器学习等。

例如,在图像处理中,可以使用粒子群算法进行图像分割、图像识别和图像增强等任务,通过优化算法自动化地寻找最优解。

除了以上应用,粒子群算法还可以用于各种优化问题的求解。

例如,粒子群算法在组合优化问题中的应用表现得较为出色。

在组合优化问题中,需要从大量的解空间中找到最佳的组合方案。

通过粒子群算法的迭代和全局协作,可以有效地找到最优解。

另外,粒子群算法还可以用于工程设计中的自动优化。

在工程设计过程中,需要考虑多个目标和多个约束条件,粒子群算法可以通过多目标优化或多约束优化来处理复杂的工程设计问题。

总之,粒子群算法作为一种群体智能算法,在函数优化、组合优化、图像处理和工程设计等领域都得到了广泛的应用。

其优势在于全局寻优能力和自适应性,能够找到复杂问题的最优解。

随着对算法的研究和改进,粒子群算法有望在更多领域得到应用和推广。

粒子群优化算法及其在多目标优化中的应用

粒子群优化算法及其在多目标优化中的应用

粒子群优化算法及其在多目标优化中的应用一、什么是粒子群优化算法粒子群优化算法(Particle Swarm Optimization,PSO)是一种智能优化算法,源自对鸟群迁徙和鱼群捕食行为的研究。

通过模拟粒子受到群体协作和个体经验的影响,不断调整自身的位置和速度,最终找到最优解。

PSO算法具有简单、易于实现、收敛速度快等优点,因此在许多领域中得到了广泛应用,比如函数优化、神经网络训练、图像处理和机器学习等。

二、PSO在多目标优化中的应用1.多目标优化问题在现实中,多个优化目标相互制约,无法同时达到最优解,这就是多目标优化问题。

例如,企业在做决策时需要考虑成本、效益、风险等多个因素,决策的结果是一个多维变量向量。

多目标优化问题的解决方法有很多,其中之一就是使用PSO算法。

2.多目标PSO算法在传统的PSO算法中,只考虑单一目标函数,但是在多目标优化问题中,需要考虑多个目标函数,因此需要改进PSO算法。

多目标PSO算法(Multi-Objective Particle Swarm Optimization,MOPSO)是一种改进后的PSO算法。

其基本思想就是将多个目标函数同时考虑,同时维护多个粒子的状态,不断优化粒子在多个目标函数上的表现,从而找到一个可以在多个目标函数上达到较优的解。

3.多目标PSO算法的特点与传统的PSO算法相比,多目标PSO算法具有以下特点:(1)多目标PSO算法考虑了多个目标函数,解决了多目标优化问题。

(2)通过维护多个粒子状态,可以更好地维护搜索空间的多样性,保证算法的全局搜索能力。

(3)通过优化粒子在多个目标函数上的表现,可以寻找出在多目标情况下较优的解。

三、总结PSO算法作为一种智能优化算法,具备搜索速度快、易于实现等优点,因此在多个领域有广泛的应用。

在多目标优化问题中,多目标PSO算法可以通过同时考虑多个目标函数,更好地寻找在多目标情况下的最优解,具有很好的应用前景。

粒子群优化算法及其应用

粒子群优化算法及其应用
近几十年来面对信息时代海量数据的出现数据挖掘技术应运而生并得到迅猛发展其中关联规则挖掘作为数据挖掘的重要模式之一它所得到的知识能为支持决策提供依据有着极其重要的研究价值
华中科技大学 硕士学位论文 粒子群优化算法及其应用 姓名:王雁飞 申请学位级别:硕士 专业:软件工程 指导教师:陆永忠 20081024
1.2
1.2.1
课题研究现状
粒子群优化研究现状 粒子群优化算法是 1995 年由 Kennedy 和 Eberhart 源于对鸟群和鱼群捕食行为的
1
华 中 科 技 大 学 硕 士 学 位 论 文
简化社会模型的模拟而提出的一种基于群集智能的演化计算技术[1,2]。该算法具有并 行处理、鲁棒性好等特点,能以较大的概率找到问题的全局最优解,且计算效率比 传统随机方法高,其最大的优势在于实现容易、收敛速度快,而且有深刻的智能背 景,既适合科学研究,又适合工程应用。因此,PSO 一经提出立刻引起了演化计算 领域研究者的广泛关注,并在短短几年时间里涌现出大量的研究成果,在函数优化、 神经网络训练、模糊系统控制、分类、模式识别、信号处理、机器人技术等领域获 得了成功应用。 PSO 算法是基于群集智能理论的优化算法,通过群体中粒子间的合作与竞争产 生的群体智能指导优化搜索。与进化算法比较,粒子群优化算法不仅保留了基于种 群的全局搜索策略,而且又避免了复杂的遗传操作,它特有的记忆使其可以动态跟 踪当前的搜索情况调整其搜索策略。与进化算法比较,PSO 算法是一种更高效的并 行搜索算法,但其不足之处是在某些初始化条件下易陷入局部最优,且搜索精度比 遗传算法低[3]。 由于 PSO 算法概念简单,实现容易,短短几年时间,PSO 算法便获得了很大的 发展,但是,其数学基础不完善,实现技术不规范,在适应度函数选取、参数设置、 收敛理论等方面还存在许多需要深入研究的问题。文献[4-6]展开了一系列研究,取得 了一些建设性的成果,如关于算法收敛性的分析。围绕 PSO 的实现技术和数学理论 基础,以 Kennedy 和 Eberhart 为代表的许多专家学者一直在对 PSO 做深入的探索, 尤其在实现技术方面,提出了各种改进版本的 PSO。 对 PSO 参数的研究,研究最多的是关于惯性权重的取值问题。PSO 最初的算法 是没有惯性权重的, 自从 PSO 基本算法中对粒子的速度和位置更新引入惯性权重[7,8], 包括 Eberhart、Shi 等在内的许多学者对其取值方法和取值范围作了大量的研究[9-11]。 目前大致可分为固定惯性权重取值法、线性自适应惯性权重取值法、非线性惯性权 重取值法[12-14]等。 PSO 是一种随机优化技术,其实现技术与遗传算法(GA)非常相似,受 GA 的启 发,人们提出多种改进的 PSO 算法,如带交叉算子的 PSO、带变异算子的 PSO、带 选择算子的 PSO 等等。 文献[15]在粒子群每次迭代后, 通过交叉来生成更优秀的粒子,

粒子群算法多维度应用实例

粒子群算法多维度应用实例

粒子群算法多维度应用实例全文共四篇示例,供读者参考第一篇示例:粒子群算法(Particle Swarm Optimization,PSO)是一种启发式优化算法,模拟了鸟群、鱼群等群体协作的行为,通过不断调整粒子的位置和速度来搜索最优解。

近年来,粒子群算法在多个领域中得到了广泛应用,特别是在多维度应用方面,展现出了强大的优化性能和较好的收敛速度。

本文将介绍粒子群算法在多维度应用中的实例,并探讨其优势和局限性。

一、多维度优化问题概述二、粒子群算法原理及优化过程粒子群算法是由Kennedy和Eberhart于1995年提出的,其基本思想是模拟鸟群或鱼群等群体在搜索空间中寻找目标的行为。

在粒子群算法中,每个粒子表示一个潜在的解,其位置和速度都会根据其个体最优解和全局最优解而不断更新。

粒子群算法的优化过程如下:(1)初始化粒子群:随机生成一定数量的粒子,并为每个粒子设定初始位置和速度。

(2)评估粒子适应度:计算每个粒子的适应度值,即目标函数的值。

(3)更新粒子速度和位置:根据粒子历史最优解和全局最优解来更新粒子的速度和位置。

(4)重复步骤(2)和(3)直到满足停止条件:当满足一定停止条件时,算法停止,并输出全局最优解。

三、粒子群算法在多维度应用中的实例1. 工程设计优化在工程设计中,往往需要优化多个设计参数以满足多个性能指标。

飞机机翼的设计中需要考虑多个参数,如翼展、翼型、翼厚等。

通过粒子群算法可以有效地搜索这些参数的最优组合,从而使飞机性能达到最佳。

2. 机器学习参数优化在机器学习中,通常需要调整多个超参数(如学习率、正则化系数等)以优化模型的性能。

粒子群算法可以应用于优化这些超参数,从而提高机器学习模型的泛化能力和准确度。

3. 经济模型参数拟合在经济模型中,经常需要通过拟合参数来分析经济现象和预测未来走势。

粒子群算法可以用来调整模型参数,从而使模型更好地拟合实际数据,提高预测准确度。

1. 全局搜索能力强:粒子群算法具有很强的全局搜索能力,能够在高维度空间中搜索到全局最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n p i ai i e c . a do t z t ne f in y mi o f c Ke r s r d m a t l Wam p i z t n p r ce s r o t z t n s r it l g n p i z t n b o i y wo d : a o p r ce S r o t a i ; at l wa m p i a i ; wam el e t t a i ; i n c n i mi o i mi o n i o mi o
如此 ,完全可 以只借用量 子势阱 的搜索机制,而将 随
机变量 函数直接改为随机 变量本 身。这样 ,模型仍然
Ab t a t T r v ee f in y o a t l wa m p i z t n arn o p r ces r o t z t n ag r h i sr c : o i o et f ce c f r ces r o t mp h i p i mi i , d m at l wa m p i a i l o i m ao a i mi o t s
21 0 2年 第 2 l卷 第 2期
ht:ww . Sa r. t / wc —. gc p/ ・ o a
计 算 机 系 统 应 用
李 盼池 一 , ,王海英 ,杨

( 东北石油大学 石 油与天然气工程博 士后科研流动站,大庆 13 1) 6 3 8
2 ( 东北石油大学 计算机与信息技术学院,大庆 13 1) 638
p o o e nteb sso ay igtesac rc s f u nu p r ces r o t z t n loi m. h r p sd r p sdo ai f n lzn erhpo eso a tm at l wam pi ai r h T ep o oe h a h q i mi o g t
h ua t m a t es r o t t eq n u p ril wam p i z to dt ec mmo atces r o tmi t n ag rtm p i z to b l y c miai n a o n h n p ril wa m p i z i l o i a o h iot n mia in a ii t
ag r h h so l aa t r a d i e r h se n t sc n r l d b a d m a ib ev le I i mo e, e l o i m a n y a p me e, t r n ss a c tp l gh i o t l y a rn o v a l au . n t s t e oe r h d lt h
t r e o iin c n b c u aey ta k y t er a o a e d sg o h e c n o aa t r Th x e i na e ut f a g tp st a e a c r tl c e b h e n bl e in ft o t lp mee . ee p rme t l s lso o r d s r r r
it l g n p i z to ; lo i m e i n e l e to tmi i n ag rt d sg i a h n
粒子群优化 ( S ) P O 是由 E e at b r r 博士和 K n ey h en d 博士于 19 9 5年基于 鸟类 的觅食行 为提 出的一种全局
关键词 :随机粒子群优化 :粒子群优化 :群 智能优化 ;仿生智能优化 :算法设计

Ra ndo r il wa m m Pa tc eS r Optm ia i nAl o ihm nd I sAppl a i n i z to g r t a t i to c
LIPa - i , n Ch WANG Ha- n 2YAN G yu l Yi g 2
s n ad t s f n t n e te p i z t n a d cu tr go t z t n s o t a ep o o e lo i m p r r o t d t u ci x r meo t a i n l s i p i a i h w t r p s d ag r h i s e i a r e o mi o en mi o h t h t su o t


(ot o trl eer etr f ia dG s n ier g Not at erl m nv ri, qn 6 3 8 C ia P s D c aR sac C ne O ln a gn ei , r e t e U iesyDaig13 1, h ) - o h o E n hs P o u t n (c o l f o ue &Ifr t nT cn lg, r e t e oemUnvri, q g13 1. h a Sh o o C mptr nomai eh ooyNot a P t l o hs r u ies Da i 6 3的优化效率 ,在分析量子粒 子群优化算法 的基础上 ,提 出了一种随机粒 子群优化算
法 。该算法只有一个控制参 数,搜 索步长 由一个 随机变 量的取值动态 决定,通过合理设计控制参数的取值 ,实
现对 目标位置的跟踪 。标准 测试 函数极值优化和聚类优化 的实验 结果表 明,与量子粒子群和普通粒子群算法相 比,该算法在优化能力和优化效率两方面都有 改进 。
相关文档
最新文档