梯度粒子群算法及应用

合集下载

粒子群算法原理及应用

粒子群算法原理及应用

粒子群算法原理及应用随着人工智能技术的发展,各种算法被广泛应用在数据分析、预测以及优化等方面。

其中,粒子群算法(Particle Swarm Optimization,PSO)作为一种高效的全局优化算法,在实际应用中表现出色,受到了越来越多的关注与重视。

本文将围绕粒子群算法的原理与应用进行阐述。

一、粒子群算法的原理粒子群算法是一种基于群体智能的优化算法,借鉴了鸟群或鱼群等生物群体行为的思想。

它是一种随机化搜索算法,通过模拟大量粒子在问题空间中的随机移动,不断探索解空间,从而寻找全局最优解。

具体来说,粒子群算法是基于一个粒子群的模型,其中每个粒子代表一个搜索空间内的解。

每一个粒子都有一个自身的位置和速度,而粒子的位置和速度可以通过如下公式进行更新:$v_{i,j}=wv_{i,j}+c1r1(p_{ij}-x_{ij})+c2r2(g_{ij}-x_{ij})$$x_{i,j}=x_{i,j}+v_{i,j}$其中,$v_{i,j}$表示第$i$个粒子在第$j$个搜索空间维度上的速度,$w$表示惯性权重,$c1$和$c2$分别是自己的历史最佳位置$p_{ij}$和全局最佳位置$g_{ij}$对粒子位置的影响因子,$r1$和$r2$是0~1的随机数,$x_{i,j}$是粒子的位置。

通过更新速度和位置,粒子可以向更优秀的位置移动,从而不断逼近全局最优解。

这种不断更新、迭代搜索的过程可以实现全局搜索和多目标优化等问题领域的优化求解。

二、粒子群算法的应用粒子群算法最主要的应用领域是全局优化问题,如函数优化、数据拟合、最小二乘等问题的求解。

此外,粒子群算法还被广泛应用在神经网络训练、图像处理、机器学习等领域。

(一)函数优化函数优化问题是粒子群算法最基本的应用领域之一。

例如,在参数优化问题中,可以将参数空间定义为搜索空间,通过粒子群算法不断寻找全局最优解来优化模型参数。

在现实中,这种方法已被广泛应用于金融风险分析、选股等领域。

粒子群算法的研究现状及其应用

粒子群算法的研究现状及其应用

智能控制技术课程论文中文题目: 粒子群算法的研究现状及其应用姓名学号:指导教师:年级与专业:所在学院:XXXX年XX月XX日1 研究的背景优化问题是一个古老的问题,可以将其定义为:在满足一定约束条件下,寻找一组参数值,使系统的某些性能指标达到最大值或最小值。

在我们的日常生活中,我们常常需要解决优化问题,在一定的范围内使我们追求的目标得到最大化。

为了解决我们遇到的最优化问题,科学家,们进行了不懈的努力,发展了诸如牛顿法、共轭梯度法等诸多优化算法,大大推动了优化问题的发展,但由于这些算法的低运行效率,使得在计算复杂度、收敛性等方面都无法满足实际的生产需要。

对此,受达尔文进化论的影响,一批新的智能优化算法相继被提出。

粒子群算法(PSO )就是其中的一项优化技术。

1995 年Eberhart 博士和Kennedy 博士[1]-[3]通过研究鸟群捕食的行为后,提出了粒子群算法。

设想有一群鸟在随机搜索食物,而在这个区域里只有一块食物,所有的鸟都不知道食物在哪里。

那么找到食物最简单有效的办法就是鸟群协同搜寻,鸟群中的每只鸟负责离其最近的周围区域。

粒子群算法是一种基于群体的优化工具,尤其适用于复杂和非线性问题。

系统初始化为一组随机解,通过迭代搜寻最优值,通过采用种群的方式组织搜索,同时搜索空间内的多个区域,所以特别适合大规模并行计算,具有较高的效率和简单、易操作的特性。

目前使用的粒子群算法的数学描述[3]为:设粒子的寻优空间是m 维的,粒子的数目为ps ,算法的最大寻优次数为Iter 。

第i 个粒子的飞行速度为T i i1i2im v [v v ]= ,,,v ,位置为T i i1i2im x [x x x ]= ,,,,粒子的个体极值T i i1i2im Pbest [,]P = ,P ,P ,全局极值为T i i1i2im Gbest [,]g = ,g ,g 。

粒子群算法的寻优过程主要由粒子的速度更新和位置更新两部分组成,其更新方式如下:i+11122v ()()i i i i i v c r Pbest x c r Gbest x =+−+−;i+1i+1i x x v =+,式中:12c c ,为学习因子,一般取2;12r r ,是均与分布着[0,1]上的随机数。

粒子群优化算法理论及应用ppt课件

粒子群优化算法理论及应用ppt课件
国内期刊如《计算机学报》、《电子学报》、《物理
学报》、《分析化学》等
15
PSO的研究与应用现状概述
截至2010年3月
• 在《科学引文索引扩展版SCI Expanded》的“Science
Citation Index Expanded (SCI-EXPANDED)--1999-present” 数据库中以“General Search,TOPIC,Title only”为检索 方式,以“Particle Swarm Optimization”为检索词,进行 检索,可以检索到1075篇相关文章;
进化计算是模拟自然界生物进化过程与机理求解优化 问题的人工智能技术,其形式是迭代算法,从选定的初始群 体(一组初始解)出发,对群体中的每个个体进行评价,并 利用进化产生机制产生后代个体,通过不断迭代,直至搜索 到优化问题的最优解或者满意解。
6
开始
群体初始化

对群体中的每个个体进行评价


利用进化产生机制产生后代个体
11
PSO算法起源
• 模拟鸟类飞行的Boid模型
群体行为可以用几条简单行为规则在计算机
中建模,Reynolds使用以下规则作为行为规则:

向背离最近同伴的方向移动;

向目的移动;

向群体的中心移动。
12
PSO算法起源
• 假设在一个区域里只有一块食物,一群鸟进行随机
搜索,所有鸟都不知道食物具体在哪里,但知道它 们当前位置离食物还有多远,那么一种简单有效的 觅食策略是搜索目前离食物最近的鸟的周围区域。
过程中,个体适应度和群体中所有个体的平均适应度不断得到
改进,最终可以得到具有较高适应度的个体,对应于问题的最

粒子群算法多维度应用实例

粒子群算法多维度应用实例

粒子群算法多维度应用实例1. 引言1.1 粒子群算法的介绍粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能思想的优化算法,由Kennedy和Eberhart于1995年提出。

该算法模拟了鸟群觅食时的行为,在搜索空间中寻找最优解。

粒子群算法通过维护一群粒子,每个粒子代表一个解,根据个体经验和群体协作不断调整其位置和速度,最终找到最优解。

在粒子群算法中,每个粒子的位置代表一个候选解,速度代表搜索方向和速度。

每个粒子根据自身的历史最优位置和群体中最优位置,不断调整自己的位置和速度,以逼近最优解。

粒子群算法具有简单易实现、收敛速度快等优点,适用于解决多种复杂优化问题。

粒子群算法在各领域的应用越来越广泛,如工程领域的优化设计、金融领域的投资组合优化、医学领域的疾病诊断等。

其优良的全局搜索能力和高效的优化性能使得粒子群算法成为解决多维度优化问题的重要工具之一。

通过不断改进算法参数和策略,粒子群算法在多维度优化问题中展现出了强大的潜力和应用前景。

1.2 多维度应用的重要性多维度应用的重要性体现在以下几个方面:多维度问题往往存在多个冲突的目标,需要在不同目标之间进行权衡,在复杂的大系统中寻找最优解。

多维度问题通常有大量的变量和约束条件,传统的优化方法可能难以有效处理。

而粒子群算法能够有效地处理大规模的优化问题,为多维度问题的解决提供了一种有效的途径。

在实际工程和金融领域中,多维度问题的解决对提高效率和降低成本具有重要意义,因此粒子群算法在这些领域的应用具有重要的实际价值。

2. 正文2.1 多维度优化问题介绍多维度优化问题是指在多个维度或变量下进行优化的问题,通常需要在多个相互关联的约束条件下找到最优解。

在实际问题中,有许多涉及多个不同维度的优化问题,如工程设计、金融风险管理、生产计划等。

这些问题往往受到多个因素的影响,需要综合考虑各个维度的影响因素,以求得最优解。

多维度优化问题的复杂性主要体现在以下几个方面:1. 变量之间的相互影响:在多维度优化问题中,各个变量之间往往是相互关联的,改变一个变量可能会对其他变量产生影响,因此需要考虑这种相互关联性。

粒子群算法及其应用

粒子群算法及其应用

粒子群算法是一种基于计算机的优化算法,它可以用来解决复杂的优化问题,如最优化,最小化或最大化目标函数。

它是一种基于群体智能的算法,它的概念来自于生物学中的群体行为,如鸟群的飞行,蚁群的聚集等。

粒子群算法是一种迭代搜索算法,它通过不断更新粒子的位置来搜索最优解。

粒子群算法的基本思想是,在搜索空间中模拟一群粒子,每个粒子有一个位置和一个速度,它们遵循一定的算法进行移动,移动的目的是最大限度地改善粒子的位置,以达到最优解。

算法的每一步都是基于粒子的位置和速度计算出新的粒子位置,并将其计算结果与原来的粒子位置进行比较,如果新位置更优,则更新粒子的位置,如果不是,则保持原位置。

每次迭代后,粒子群算法都会更新粒子的位置,以达到最优解。

粒子群算法在优化问题中有着广泛的应用,它可以用来解决最小化或最大化目标函数的问题,也可以用来求解约束优化问题。

它的优势在于它可以快速地搜索最优解,而且它可以处理复杂的优化问题,比如多维度和非凸优化问题。

粒子群算法在实际应用中也有很多。

例如,它可以用来解决机器学习中的优化问题,比如神经网络的训练,支持向量机的训练,以及模式识别问题。

它也可以用来解决工程设计中的优化问题,如机械设计,汽车设计,航空航天设计等。

此外,它还可以用来解决经济学中的优化问题,比如资源分配,货币政策等。

粒子群算法是一种有效的优化算法,它可以有效地解决复杂的优化问题,并且具有良好的收敛性。

由于它的优势,粒子群算法在实际应用中被广泛应用,它可以用来解决机器学习,工程设计和经济学中的优化问题。

粒子群算法以及应用原理

粒子群算法以及应用原理

粒子群算法介绍优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法 . 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.粒子群优化(Partical Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolu2tionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随当前搜索到的最优值来寻找全局最优 .粒子群算法1. 引言粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。

源于对鸟群捕食的行为研究PSO同遗传算法类似,是一种基于叠代的优化工具。

粒子群算法的应用

粒子群算法的应用

粒子群算法的应用粒子群算法的应用粒子群算法(Particle Swarm Optimization,PSO)是一种搜索优化算法,是仿照群体中被自然环境影响及一种简单的社会行为算法,由Kennedy和Eberhart于1995年提出,它是一种新的粗粒度并具有全局搜索能力的优化方法,能够自动地搜索全局最优解,是一种近似贪心算法,其基本特征在于:每个粒子在迭代的过程中,会受到两种不同的搜索能力的影响,即私人最佳位置和全群最佳位置,每一次迭代粒子会向当前最优位置移动,直至逐渐的趋于局部最优解,从而获得全局最优解。

粒子群算法的应用被广泛地用于优化多元函数,有关优化问题的经典应用是最小二乘法及最小平方误差的最优拟合,此外还可以求解约束优化问题及旅行商问题。

粒子群算法的主要应用有:一、优化机器学习问题:粒子群算法可以用于机器学习任务中的参数优化,经常使用于参数自适应机器学习算法,用于调整算法参数以达到最优的模型结果。

二、最优路径规划问题:粒子群算法能够搜索最优的路径及路径规划,用于寻找最优路径及路径规划等任务,可以有效改善现有的路径规划算法。

三、工程优化问题:粒子群算法可以被应用于优化各种工程模型,包括结构优化、热力学优化、建筑物优化等。

四、复杂系统建模:粒子群算法可以用于建模复杂系统,能够有效地优化复杂系统的模型。

五、天文物理学建模:粒子群算法能够有效地应用于天文物理学建模问题,如发现物理学上的结构和特性,解释天文现象等问题。

六、图像处理问题:粒子群算法可以用于图像处理任务中的参数优化,可以有效的解决图像处理的问题。

粒子群算法在优化问题中表现出了良好的性能,具有良好的全局搜索能力,能够自动地搜索全局最优解,能够有效解决多维优化问题,并且具有简单易操作、快速收敛等特点。

粒子群算法及应用

粒子群算法及应用

粒子群算法及应用粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,源于对鸟群集群行为的观察和模拟。

粒子群算法通过模拟鸟群中个体间的协作与信息传递,以寻找最优解。

在实际应用中,粒子群算法已被广泛应用于函数优化、组合优化、图像处理、各类工程设计等领域。

粒子群算法的基本原理是模拟鸟群中每只鸟(粒子)的行为。

每个粒子表示问题的一个候选解,在解空间中最优解。

算法从一个随机初始解的种子集合出发,通过迭代更新粒子位置和速度,直到满足终止条件。

每个粒子维护自身的历史最优解和全局最优解,通过个体经验和邻域协作来引导过程。

粒子在解空间中自由移动,并通过其中一种适应度函数评价解的质量,并更新自身位置和速度。

整个过程中,粒子会不断地向全局最优解靠拢,从而找出最优解。

粒子群算法广泛应用于函数优化问题。

对于复杂的多峰函数,粒子群算法能够通过群体间的信息共享来克服局部最优解,找到全局最优解。

此外,粒子群算法还可以解决许多实际问题,如资源调度、网络路由、机器学习等。

例如,在图像处理中,可以使用粒子群算法进行图像分割、图像识别和图像增强等任务,通过优化算法自动化地寻找最优解。

除了以上应用,粒子群算法还可以用于各种优化问题的求解。

例如,粒子群算法在组合优化问题中的应用表现得较为出色。

在组合优化问题中,需要从大量的解空间中找到最佳的组合方案。

通过粒子群算法的迭代和全局协作,可以有效地找到最优解。

另外,粒子群算法还可以用于工程设计中的自动优化。

在工程设计过程中,需要考虑多个目标和多个约束条件,粒子群算法可以通过多目标优化或多约束优化来处理复杂的工程设计问题。

总之,粒子群算法作为一种群体智能算法,在函数优化、组合优化、图像处理和工程设计等领域都得到了广泛的应用。

其优势在于全局寻优能力和自适应性,能够找到复杂问题的最优解。

随着对算法的研究和改进,粒子群算法有望在更多领域得到应用和推广。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 绪论最优化问题是在满足一定约束条件下,寻找一组参数值,以使某些最优性度量得到满足,即使系统的某些性能指标达到最大或者最小。

它广泛存在于农业、国防、工程、交通、金融、化工、能源、通信、材料等许多领域。

最优化技术在上述领域的应用已经产生了巨大的经济效益和社会效益。

国内外的实践表明,在同样条件下,经过优化技术的处理,对系统效率的提高、能耗的降低、资源的合理利用及经济效益提高均有显著的效果,而且随着处理对象规模的增大,这种效果也更加显著。

传统的优化方法根据问题的性质不同,通常将问题划分为线性规划问题、非线性规划问题、整数规划问题和多目标规划问题。

相应的有一些成熟的常规算法,如应用于线性规划问题的单纯形法,应用于非线性规划的牛顿法、共轭梯度法等,应用于整数规划的分枝定界法、动态规划法等。

目前,基于严格机理模型的开放式方程建模与优化已成为国际上公认的主流技术方向。

许多工程公司和各大科研机构纷纷投入大量的人力物力对系统的建模与优化进行深入细致的研究,希望取得突破性的进展。

然而,基于严格机理模型所得到的优化命题往往具有方程数多、变量维数高、非线性强等特点,这使得相关变量的存储、计算及求解都相当困难。

在国民经济的各个领域中都存在着相当多的涉及因素多、规模大、难度高和影响广的优化命题,如流程工业系统优化、运输中的最优调度、生产流程的最优排产、资源的最优分配、农作物的合理布局、工程的最优设计以及国土的最优开发等等,所有这些问题的解决也必须有一个强有力的优化工具来进行求解。

而前述传统的优化算法面对这样的大型问题已无能为力,无论是在计算速度、收敛性、初值敏感性等方面都远不能满足要求。

人们从生命现象中得到启示,发明了许多智能的优化方法来解决上述复杂优化问题。

例如遗传算法(Genetic Algorithm)参考了生物种群通过遗传和自然选择不断进化的功能、人工免疫系统(Artificail Immune Systems)模拟了生物免疫系统的学习和认知功能、蚁群优化(Ant colony Optimization)算法模仿了蚂蚁群体在路径选择和信息传递方面的行为,粒子群优化(Particle swarm optimization)算法模拟了鸟群和鱼群觅食迁徙中个体与群体协调一致的机理,群落选址算法(colony Location Algorithm)模拟了植物群落的形成机制等,这类借鉴模拟了生命系统的行为、功能和特性的科学计算方法称之为人工生命计算(Artifieial Life Computation)。

人工生命计算是生命科学、信息科学和运筹学的交叉研究学科,是进化计算的一个新的分支,是由具有生命特性的多智能体以特定计算目标为依据,有序组合起来所形成的计算方法。

按照此定义,人工神经网络(Artificial Neural Network),文化算法(Cultural Algorithm)、人工生命算法(Artifieial Life Algorithm)、捕食搜索策略(Predatory Search Strategy)等都可以被归纳为人工生命计算。

粒子群优化(PSO)算法是其中较新的一种人工生命计算方法。

它同遗传算法类似,是一种基于迭代的优化工具。

系统初始化为一组随机解,通过迭代搜索最优值。

同遗传算法等其他人工生命计算方法相比,粒子群优化算法概念简单、容易实现,没有很多参数需要调节。

目前粒子群算法越来越引起人们的关注,已成为国际上一个新的研究热点。

粒子群优化算法的研究还处于初级阶段,还有很多领域需要研究。

在这篇文章中,首先提出了标准的粒子群算法,标准的粒子群算法由于其简单和解决问题的有效能力而被应用到很多的领域。

但在实际应用当中,也表现出了一些不尽人意的问题。

这些问题中最主要的是它容易产生早熟收敛、局部寻优能力较差等。

实际上这些缺点也是几乎所有随机算法的弊病。

本文将梯度信息引入标准PSO算法,并在群体最优信息陷入停滞时将群体进行部分初始化来保持群体的活性,防止群体陷入局优,构造出带有梯度加速的PSO算法。

带有梯度加速优化算法却具有很强的局部搜索能力,一种带有梯度加速的PSO算法是对标准PSO算法进行改进。

并通过实验讨论了改进算法的适用范围。

实验表明,对于单峰函数和多峰函数,带有梯度加速的PSO都能够取得更好的优化效果。

2 粒子群优化算法及其理论基础2.1概述长久以来,人们向往着设计的人工系统像自然系统那样健壮,高效灵活,具有适应性、自组织和再生能力。

近几十年来,一些新颖的优化算法,如人工神经网络、遗传算法及蚁群算法、粒子群算法等通过模拟或揭示某些自然现象或过程而得到发展,其思想和内容涉及数学、生物进化、人工智能、神经科学和量子统计学等方面,为解决复杂工程问题提供了新的思路和手段.这些算法独特的优点和机制,引起了国内外学者的广泛重视并掀起了该领域的研究热潮,且在许多领域得到了成功应用。

在优化领域,由于这些算法构造的直观性与自然机理,被称作为智能优化算法。

在这些智能优化方法中,有一类是模拟某些群体的智能行为,虽然群体中的个体仅具有简单的智能,但通过个体与个体和个体与环境的信息交流以及个体的简单行为,从而使群体表现出复杂的自组织、分布式控制、可扩展、健壮的智能体,实现对空间的高效搜索。

也就是说,群体智能可以在适当的进化机制引导下通过个体交互以某种突现形式发挥作用,这是个体的智能难以做到的。

在群体智能优化算法的框架下,大量基于不同物理背景的算法纷纷被提出,如,遗传算法,粒子群算法等,并进行了广泛的应用尝试。

粒子群算法(Particle Swarm Optimization.简称PSO),是一种基于群体智能的进化计算方法.是由PSO由Kennedy和Eberhart博士于1995年提出。

PSO的基本概念源于对鸟群捕食行为的研究:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有鸟都不知道食物在哪里。

但是他们知道当前的位置离食物还有多远。

那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域.PSO从这种模型中得到启示并用于解决优化问题.在PSO中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为“粒子”,即问题的解空间对应于搜索空间粒子群。

所有的粒子都有一个由被优化的问题(如,函数)决定的适应值,每个粒子还有一个速度决定他们飞翔的方向和距离。

然后粒子群们就追随当前的最优粒子在解空间中搜索.PSO初始化为一群随机粒子也就是随机解,然后通过迭代找到最优解。

在每一次迭代中,粒子通过跟踪“两个极值”来更新自己。

第一个就粒子本身所找到的最优解,这个解称为个体极值,另一个极值是整个种群目前找到的最优解,这个极值是全局极值。

另外也可以不用整个种群而是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。

PSO一经提出,立刻引起了进化计算领域学者们的广泛关注,形成一个研究热点,目前己广泛应用于函数优化、神经网络训练、模式分类、模糊控制等领域,取得了较好的效果。

2.2原始粒子群优化算法的基本概念为了更好地描述粒子群优化算法,在此作如下定义定义1 粒子类似于遗传算法中的染色体,PSO中粒子为基本的组成单位,代表解空间的一个候选解。

定义2种群粒子种群由n个粒子组成,代表n个候选解。

定义3粒子速度粒子速度表示粒子在单位迭代次数位置的变化即为代表解变量的粒子在d维空间的位移。

定义4适应度函数一般由适应度函数由优化目标决定,用于评价粒子的搜索性能,指导粒子种群的搜索过程。

算法迭代停止时适应度函数最优的解变量即为优化搜索的最优解。

定义5个体极值个体极值是单个粒子从搜索初始到当前迭代对应的适应度最优的解。

定义6 全局极值全局极值是整个粒子种群从搜索开始到当前迭代对应的适应度最优的解。

2.3粒子群优化算法的一般数学模型粒子群算法的基本思想是:用随机解初始化一群随机粒子,然后通过迭代找到最优解。

在每一次迭代中,粒子通过跟踪两个“极值”来更新自己:第一个就是粒子本身所找到的最好解,即个体极值(Pbest),另一个极值是整个粒子群中所有粒子在历代搜索过程中所达到的最优解(Gbest),即全局极值,在找到这两个最好解后,接下来是PSO 中最重要的“加速”过程,每个粒子不断地改变其在解空间中的速度,以尽可能地朝Pbest 和Gbest 所指向的区域“飞”去。

基本的粒子群模型由一个m 维变量空间内n 个粒子(位置,速度)=(k i X ,k i V )组成的群体构成,表示为:()12,,...,,...,Tk k k k k i i i ij im X X X X X = (2.1) ()12,,...,,...,Tk k k k k i i i ij im V V V V V = (2.2) 式中 , i=1,2,…,n ,n 为粒子群中粒子的个数:j=1,2,…,m ,m 为解向量的维 数;k 是进化代数.粒子根据如下的式(2.3)和式(2.4)来更新自己的速度和位置.11122()()k k k k k k ij ij ij ij ij ij V V c rand pbest X c rand gbest X +=+-+- (2.3)11k k k ij ij ij X X V ++=+ (2.4)k ij V 、1k ij V +分别表示第i 个粒子在j 维方向上的当前速度和修正后的速度;k ijX 、1k ij X +分别为第i 个粒子在j 维方向上的当前坐标和修正后的坐标;c1, c2是加速系数,分别调节向全局最好粒子和个体最好粒子方向飞行的最大步长;1k ijpbest +是第i 个粒子在第j 维的个体极值点的位置,1k ij gbest +是到第k 代为止,所有粒子在第j 维的全局极值点的位置:rand1,和rand2为两个在[0, 1]范围内变化的随机函数。

2.4粒子群优化算法的设计步骤和算法流程设计步骤:(1) 确定问题的表示方案粒子群算法在求解问题时,其首要步骤是将问题的解从解空间映射到具有某种结构的表示空间,即用特定的编码表示问题的解,这和遗传算法是类似的。

粒子群算法的大部分研究均集中在数值优化领域中,其位置一速度计算模型使用于具有连续特征的问题函数,因此,目前算法大多采用实数向量的编码方式,以粒子的位置向量来表示问题的解。

(2) 确定优化问题的评价函数在求解问题时,必须根据问题的具体特征,选取适当的目标函数来计算适应值,适应值是唯一能够反映并引导优化过程不断进行的参量。

(3) 选择控制参数粒子群算法的控制参数通常包括粒子种群数量、算法执行的最大代数、惯性权重系数其他一些辅助控制参数,如粒子位置和速度的控制范围等。

(4) 选择粒子群模型目前,粒子群算法己经发展了多种位置一速度计算模型,如惯性权重PSO模型、二进制PSO模型等等,在求解不同类型优化问题时,不同PSO模型的优化性能也有差异。

相关文档
最新文档