MATLAB中的阈值获取和阈值去噪(超级有用)

合集下载

在Matlab中进行噪声抑制和降噪处理的方法

在Matlab中进行噪声抑制和降噪处理的方法

在Matlab中进行噪声抑制和降噪处理的方法引言:噪声是信号处理中的一个常见问题,它可以由多种因素引起,如传感器本身的噪声、电磁干扰等。

噪声的存在会影响到信号的质量和准确性,因此在许多应用中,我们需要进行噪声抑制和降噪处理。

对于Matlab来说,它提供了多种方法和工具来实现这一目标。

本文将介绍在Matlab中进行噪声抑制和降噪处理的方法。

一、频域滤波方法在Matlab中,频域滤波方法是一种常见且有效的噪声抑制和降噪处理方法。

该方法的基本思想是将信号从时域转换到频域,在频域中对信号进行滤波,并将滤波后的信号再转换回时域。

Matlab提供了丰富的频域滤波函数和工具,如fft、ifft、fftshift等。

通过这些函数,我们可以实现低通滤波、高通滤波、带通滤波等各种滤波操作,从而有效抑制和降噪信号。

二、时域滤波方法时域滤波方法是另一种常用的噪声抑制和降噪处理方法。

该方法的基本思想是在时域中对信号进行滤波,直接对信号进行抽样和滤波处理。

与频域滤波不同的是,时域滤波方法更加直观和易于理解。

在Matlab中,我们可以使用filter函数和fir1函数实现时域滤波。

其中,filter函数可以对信号进行FIR滤波,而fir1函数可以设计并生成FIR滤波器。

三、小波变换方法小波变换是一种非常有用的信号处理方法,它可以将信号在时间和频率上进行局部分析。

在噪声抑制和降噪处理中,小波变换可以帮助我们将信号分解成不同的频率成分,并对噪声进行抑制。

在Matlab中,我们可以使用wavelet函数和wdenoise函数来实现小波变换。

通过这些函数,我们可以选择不同的小波基函数,并设置适当的阈值来实现噪声抑制和降噪处理。

四、自适应滤波方法自适应滤波是一种根据信号特性自动调整滤波器参数的滤波方法。

它可以自动识别和适应信号中的噪声,并对其进行抑制和降噪处理。

在Matlab中,自适应滤波可以通过nlms函数和rls函数来实现。

这些函数基于LMS算法和RLS算法,可以快速、准确地对信号进行自适应滤波。

如何使用MATLAB进行频域滤波与去噪

如何使用MATLAB进行频域滤波与去噪

如何使用MATLAB进行频域滤波与去噪使用MATLAB进行频域滤波与去噪引言:在数字信号处理领域,频域滤波与去噪是一项重要而常见的任务,在实际应用中有很多场景需要对信号进行去除噪声或者滤波处理。

MATLAB作为一种功能强大的科学计算软件,提供了丰富的工具和函数,可以帮助我们完成频域滤波与去噪的任务。

本文将介绍如何使用MATLAB进行频域滤波与去噪,并给出一些实用的例子。

一、频域滤波频域滤波是一种常用的信号处理方法,它通过将信号从时域转换到频域,对频域上的信号进行滤波处理,再将滤波后的信号转换回时域得到最终结果。

MATLAB提供了丰富的函数和工具箱,可以方便地进行频域滤波。

1. FFT(快速傅里叶变换)傅里叶变换是将信号从时域转换到频域的一种数学方法,而快速傅里叶变换(FFT)是对离散信号进行傅里叶变换的一种快速算法。

在MATLAB中,可以使用fft函数完成FFT变换,如下所示:```matlabY = fft(X);```其中,X为输入信号,Y为傅里叶变换后的结果。

通过FFT变换,我们可以将信号转换到频域进行进一步的处理。

2. 频域滤波器设计MATLAB提供了fir1、fir2、butter等函数用于设计常见的滤波器,根据滤波器的需求选择合适的函数进行滤波器设计。

以fir1函数为例,它可以设计出一种FIR (有限脉冲响应)滤波器,实现对频域信号的滤波。

下面是一个示例代码:```matlaborder = 32; % 滤波器阶数cutoff = 0.2; % 截止频率b = fir1(order, cutoff); % FIR滤波器设计```在上述代码中,我们指定了滤波器的阶数和截止频率,通过调用fir1函数进行滤波器设计,并得到滤波器的系数b。

将滤波器系数应用到信号上,可以实现对信号的频域滤波。

3. 频域滤波器应用设计好滤波器后,我们可以将滤波器应用到信号上,实现频域滤波。

MATLAB 提供了fftfilt函数用于对信号进行频域滤波,如下所示:```matlabY = fftfilt(b, X);```其中,b为滤波器系数,X为输入信号,Y为滤波后的结果。

MATLAB中地阈值获取和阈值去噪(超级有用)

MATLAB中地阈值获取和阈值去噪(超级有用)

1.阈值获取MATLAB中实现阈值获取的函数有ddencmp、thselect、wbmpen和wwdcbm,下面对它们的用法进行简单的说明。

(1)ddencmp的调用格式有以下三种:(1)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2,X)(2)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wp',X)(3)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wv',X)函数ddencmp用于获取信号在消噪或压缩过程中的默认阈值。

输入参数X为一维或二维信号;IN1取值为'den'或'cmp','den'表示进行去噪,'cmp'表示进行压缩;IN2取值为'wv'或'wp',wv表示选择小波,wp表示选择小波包。

返回值THR是返回的阈值;SORH是软阈值或硬阈值选择参数;KEEPAPP表示保存低频信号;CRIT是熵名(只在选择小波包时使用)。

(2)函数thselect的调用格式如下:THR=thselect(X,TPTR);THR=thselect(X,TPTR)根据字符串TPTR定义的阈值选择规则来选择信号X的自适应阈值。

自适应阈值的选择规则包括以下四种:*TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。

*TPTR='heursure',使用启发式阈值选择。

*TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).*TPTR='minimaxi',用极大极小原理选择阈值。

阈值选择规则基于模型 y = f(t) + e,e是高斯白噪声N(0,1)。

(3)函数wbmpen的调用格式如下:THR=wbmpen(C,L,SIGMA,ALPHA);THR=wbmpen(C,L,SIGMA,ALPHA)返回去噪的全局阈值THR。

matlab数据选取阈值

matlab数据选取阈值

matlab数据选取阈值
摘要:
1.引言
2.Matlab 数据选取阈值方法
a.基于最大值和最小值的方法
b.基于均值和标准差的方法
c.基于经验法则的方法
d.基于自定义函数的方法
3.各种方法的优缺点分析
4.结论
正文:
Matlab 作为一款功能强大的数学软件,在数据处理方面有着广泛的应用。

在数据处理过程中,选取合适的阈值对结果具有重要的影响。

本文将介绍几种在Matlab 中选取阈值的方法。

1.基于最大值和最小值的方法
该方法是最简单的阈值选取方法,通过找到数据中的最大值和最小值,将数据分成两部分。

优点是简单易行,适用于数据量较小的情况。

缺点是对于具有多个峰值的数据,该方法可能无法准确划分。

2.基于均值和标准差的方法
该方法通过计算数据的均值和标准差,将数据分成两部分。

当数据分布近似于正态分布时,该方法效果较好。

优点是适用于大部分数据分布情况,缺点
是对异常值较敏感。

3.基于经验法则的方法
经验法则根据数据中的大部分数据点来确定阈值。

常用的经验法则有三种:Q1 和Q3 方法、IQR(四分位距)方法和Median 方法。

这些方法的优点是适用于各种数据分布情况,缺点是对于极端值较多的数据,阈值可能不太准确。

4.基于自定义函数的方法
该方法是通过编写自定义函数来选取阈值。

例如,可以编写一个函数,根据数据的形状、波动程度等因素来确定阈值。

这种方法的优点是可以针对具体数据集进行优化,缺点是需要一定的编程基础。

总之,在Matlab 中选取阈值的方法有多种,各有优缺点。

matlab 小波阈值去噪 -回复

matlab 小波阈值去噪 -回复

matlab 小波阈值去噪-回复Matlab小波阈值去噪是一种常用的信号处理技术,可以有效地去除信号中的噪声,提高信号的质量和可靠性。

本文将介绍小波阈值去噪的基本原理、步骤和实际应用。

第一部分:小波变换的基本原理小波分析是一种基于时间-频率局部化的信号分析方法。

它通过使用一组特定的基函数(即小波函数),将信号分解成不同频率和时间的组合,从而提供了更丰富的信号信息。

小波变换包括两个主要步骤:分解(Decomposition)和重建(Reconstruction)。

在分解阶段,信号被分解成一系列的低频和高频分量,每个分量对应不同尺度和频率的信息。

在重建阶段,通过合并这些分量,可以还原出原始信号。

第二部分:小波阈值去噪的基本原理小波阈值去噪是基于小波变换的一种方法,它的基本原理是对信号的小波系数进行阈值处理。

由于噪声通常具有较高的频率成分和较小的幅度,而信号则具有较低的频率成分和较大的幅度,因此可以通过设定一个合适的阈值,将小于该阈值的小波系数置为零,然后进行逆变换,以实现去噪的效果。

第三部分:小波阈值去噪的步骤小波阈值去噪的具体步骤如下:步骤一:选择合适的小波函数根据信号的特性,选择适合的小波函数。

常用的小波函数有Daubechies小波、Symlet小波和Haar小波等。

步骤二:进行小波分解将待处理的信号进行小波分解,得到各个尺度的小波系数。

步骤三:确定阈值根据经验或统计方法,确定一个适当的阈值。

常用的阈值选择方法有固定阈值和自适应阈值。

固定阈值方法中,常用的有绝对阈值和相对阈值。

绝对阈值方法认为小于某个固定阈值的小波系数都是噪声,可以直接置零。

相对阈值方法则是基于信号的统计特性,将小波系数除以标准差,并乘以一个系数作为阈值。

自适应阈值方法中,常用的有Soft Thresholding和Hard Thresholding。

Soft Thresholding将小于阈值的小波系数进行缩放;Hard Thresholding则是将小于阈值的小波系数直接置零。

matlab中的去噪函数

matlab中的去噪函数

matlab中的去噪函数
MATLAB中有多种用于去噪的函数和工具,其中一些常用的包括:
1. `medfilt1`,这个函数用于对一维信号进行中值滤波,可以
有效地去除椒盐噪声和其他类型的噪声。

2. `medfilt2`,类似于`medfilt1`,这个函数用于对二维图像
进行中值滤波,对于去除图像中的斑点噪声和其他类型的噪声效果
很好。

3. `wiener2`,这个函数实现了维纳滤波器,可以用于图像的
去噪。

维纳滤波器是一种自适应滤波器,可以根据图像的局部特性
进行滤波,适用于各种类型的噪声。

4. `imfilter`,这个函数可以实现各种类型的滤波操作,包括
高斯滤波、均值滤波等,可以根据具体的需求选择合适的滤波器进
行去噪处理。

5. `denoiseWavelet`,MATLAB中还提供了基于小波变换的去
噪函数,可以通过小波阈值处理来去除信号中的噪声成分。

除了以上提到的函数,MATLAB还提供了一些图像处理工具箱,
其中包含了更多高级的去噪算法和工具,比如基于深度学习的去噪
方法、非局部均值去噪(NL-means denoising)等。

这些工具可以
根据具体的应用场景和需求选择合适的去噪方法进行处理。

总的来说,MATLAB提供了丰富的去噪函数和工具,可以根据具
体的信号或图像特性选择合适的方法进行去噪处理。

在实际应用中,需要根据噪声类型、信噪比以及对信号质量的要求来选择合适的去
噪方法。

小波阈值去噪及MATLAB仿真

小波阈值去噪及MATLAB仿真

摘要小波分析理论是一种新兴的信号处理理论,它在时间上和频率上都有很好的局部性,这使得小波分析非常适合于时—频分析,借助时—频局部分析特性,小波分析理论已经成为信号去噪中的一种重要的工具。

利用小波方法去噪,是小波分析应用于实际的重要方面。

小波去噪的关键是如何选择阈值和如何利用阈值来处理小波系数,通过对小波阈值化去噪的原理介绍,运用MATLAB 中的小波工具箱,对一个含噪信号进行阈值去噪,实例验证理论的实际效果,证实了理论的可靠性。

本文设计了几种小波去噪方法,其中的阈值去噪的方法是一种实现简单、效果较好的小波去噪方法。

关键词:小波变换;去噪;阈值-I-AbstractWavelet analysis theory is a new theory of signal process and it has good localization in both frequency and time do-mains.It makes the wavelet analysis suitable for time-frequency analysis.Wavelet analysis has played a particularly impor-tant role in denoising,due to the fact that it has the property of time- frequency analysis. Using wavelet methods in de-noising, is an important aspect in the application of wavelet analysis. The key of wavelet de-noising is how to choose a threshold and how to use thresholds to deal with wavelet coefficients. It confirms the reliability of the theory through the wavelet threshold de-noising principle, the use of the wavelet toolbox in MATLAB, carrying on threshold de-noising for a signal with noise and actual results of the example confirmation theory.In this paper,the method of Wavelet Analysis is analyzed.and the method of threshold denoising is a good method of easy realization and effective to reduce the noise.Keywords:Wavelet analysis;denoising;threshold-II-目录摘要 (I)Abstract ........................................................................................................................ I I第1章绪论 (1)1.1 研究背景和意义 (1)1.2 国内外研究历史和现状 (2)1.3 本文研究内容 (4)第2章小波变换的基本理论 (5)2.1 傅立叶变换 (5)2.2 加窗傅立叶变换 (6)2.3 小波变换 (7)2.3.1 连续小波变换 (8)2.3.2 离散小波变换 (9)2.4 多分辨分析 (12)本章小结 (13)第3章经典噪声类型及去噪方法 (14)3.1 经典噪声类型 (14)3.2 常用滤波器 (17)3.2.1 线性滤波器 (18)3.2.2 均值滤波器 (18)3.2.3 顺序统计滤波器 (19)3.2.4 其他滤波器 (19)3.3 经典去噪方法 (20)3.4 Matlab工具 (21)3.4.1 Matlab 发展历程 (21)3.4.2 Matlab 简介 (21)本章小结 (22)第四章小波阈值去噪及MATLAB仿真 (23)4.1 小波阈值去噪概述 (23)4.1.1 小波阈值去噪方法 (24)4.1.2 图像质量评价标准 (24)4.2 基于MATLAB的小波去噪函数简介 (25)4.3小波去噪对比试验 (27)本章小结 (34)结论 (35)-III-致谢 (36)附录1 译文 (38)附录2 英文参考资料 (39)-IV-第1章绪论1.1 研究背景和意义随着计算机技术的飞速发展,数字图像处理技术获得了飞速的发展。

如何在MATLAB中进行信号降噪与滤波处理

如何在MATLAB中进行信号降噪与滤波处理

如何在MATLAB中进行信号降噪与滤波处理信号降噪与滤波是信号处理领域中的重要课题,其中MATLAB作为一种强大的工具被广泛应用。

本文将介绍如何在MATLAB中进行信号降噪与滤波处理,并探讨其中的常用方法和技巧。

一、信号降噪的意义信号降噪是指通过一系列处理方法,将受到噪声污染的信号恢复到原始信号的过程。

在实际应用中,信号通常受到各种噪声干扰,如背景噪声、器件噪声等。

降噪处理可以提升信号的质量,提高信息的提取能力,对于提高系统的性能具有重要意义。

二、MATLAB中的信号降噪方法在MATLAB中,有很多常用的信号降噪方法,如均值滤波、中值滤波、小波降噪等。

1. 均值滤波均值滤波是一种简单而有效的滤波方法。

它通过取周围像素的平均值来抑制噪声。

在MATLAB中,可以使用`imfilter`函数来实现均值滤波。

下面是一个示例代码:```matlabimg = imread('image.jpg'); % 读入图像noise_img = imnoise(img,'salt & pepper',0.02); % 生成椒盐噪声图像filter_img = imfilter(noise_img, ones(3,3)/9); % 进行均值滤波imshow(filter_img); % 显示结果图像```2. 中值滤波中值滤波是一种非线性滤波方法,它通过取周围像素的中值来抑制噪声。

与均值滤波相比,中值滤波能更好地保留图像的边缘和细节。

在MATLAB中,可以使用`medfilt2`函数来实现中值滤波。

下面是一个示例代码:```matlabimg = imread('image.jpg'); % 读入图像noise_img = imnoise(img,'salt & pepper',0.02); % 生成椒盐噪声图像filter_img = medfilt2(noise_img, [3,3]); % 进行中值滤波imshow(filter_img); % 显示结果图像```3. 小波降噪小波降噪是一种基于小波分析的信号降噪方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.阈值获取MATLAB中实现阈值获取的函数有ddencmp、thselect、wbmpen和wwdcbm,下面对它们的用法进行简单的说明。

(1)ddencmp的调用格式有以下三种:(1)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2,X)(2)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wp',X)(3)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wv',X)函数ddencmp用于获取信号在消噪或压缩过程中的默认阈值。

输入参数X为一维或二维信号;IN1取值为'den'或'cmp','den'表示进行去噪,'cmp'表示进行压缩;IN2取值为'wv'或'wp',wv表示选择小波,wp表示选择小波包。

返回值THR是返回的阈值;SORH是软阈值或硬阈值选择参数;KEEPAPP表示保存低频信号;CRIT是熵名(只在选择小波包时使用)。

(2)函数thselect的调用格式如下:THR=thselect(X,TPTR);THR=thselect(X,TPTR)根据字符串TPTR定义的阈值选择规则来选择信号X的自适应阈值。

自适应阈值的选择规则包括以下四种:*TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。

*TPTR='heursure',使用启发式阈值选择。

*TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).*TPTR='minimaxi',用极大极小原理选择阈值。

阈值选择规则基于模型 y = f(t) + e,e是高斯白噪声N(0,1)。

(3)函数wbmpen的调用格式如下:THR=wbmpen(C,L,SIGMA,ALPHA);THR=wbmpen(C,L,SIGMA,ALPHA)返回去噪的全局阈值THR。

THR 通过给定的一种小波系数选择规则计算得到,小波系数选择规则使用Birge-Massart的处罚算法。

{C,L]是进行去噪的信号或图像的小波分解结构;SIGMA是零均值的高斯白噪声的标准偏差;ALPHA是用于处罚的调整参数,它必须是一个大于1的实数,一般去ALPHA=2。

设t*使crit(t)=-sum(c(k)^2,k<=t) + 2 * SIGMA^2 * t*(ALPHA+log(n/t))的最小值,其中c(k)是按绝对值从大到小排列的小波包系数,n是系数的个数,则THR=|c(t*)|。

wbmpen(C,L,SIGMA,ALPHA,ARG)计算阈值并画出三条曲线。

2 * SIGMA^2 * t*(ALPHA+log(n/t))sum(c(k)^2, k<=t)crit(t)(4)wdcbm的调用格式有以下两种:(1)[THR,NKEEP]=wdcbm(C,L,ALPHA);(2)[THR,NKEEP]=wdcbm(C,L,ALPHA,M);函数wdcbm是使用Birge-Massart算法获取一维小波变换的阈值。

返回值THR是与尺度无关的阈值,NKEEP是系数的个数。

[C,L]是要进行压缩或消噪的信号在j=length(L)-2层的分解结构;LAPHA和M必须是大于1的实数;THR是关于j的向量,THR(i)是第i层的阈值;NKEEP也是关于j的向量,NKEEP(i)是第i层的系数个数。

一般压缩时ALPHA取1.5,去噪时ALPHA取3.2.信号的阈值去噪MATLAB中实现信号的阈值去噪的函数有wden、wdencmp、wthresh、wthcoef、wpthcoef以及wpdencmp。

下面对它们的用法作简单的介绍。

(5)函数wden的调用格式有以下两种:[XD,CXD,LXD]=wden(X,TPTR,SORH,SCAL,N,'wname')[XD,CXD,LXD]=wden(C,L,TPTR,SORH,SCAL,N,'wname')函数wden用于一维信号的自动消噪。

X为原始信号,[C,L]为信号的小波分解,N为小波分解的层数。

THR为阈值选择规则:*TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。

*TPTR='heursure',使用启发式阈值选择。

*TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).*TPTR='minimaxi',用极大极小原理选择阈值。

SORH是软阈值或硬阈值的选择(分别对应's'和'h')。

SCAL指所使用的阈值是否需要重新调整,包含下面三种:*SCAL='one'不调整;*SCAL='sln'根据第一层的系数进行噪声层的估计来调整阈值。

*SCAL='mln'根据不同的噪声估计来调整阈值。

XD为消噪后的信号,[CXD,LXD]为消噪后信号的小波分解结构。

格式(1)返回对信号X经过N层分解后的小波系数进行阈值处理后的消噪信号XD和信号XD的小波分解结构[CXD,LXD]。

格式(2)返回参数与格式(1)相同,但其结构是由直接对信号的小波分解结构[C,L]进行阈值处理得到的。

(6)函数wdencmp的调用格式有以下三种:(1)[XC,CXC,LXC,PERF0,PERFL2]=wdencmp('gbl',X,'wname',N,TH TR,SORH,KEEPAPP);(2)[XC,CXC,LXC,PERF0,PERFL2]=wdencmp('lvd',X,'wname',N,TH TR,SORH);(3)[XC,CXC,LXC,PERF0,PERFL2]=wdencmp('lvd',C,L,'wname',N, THTR,SORH);函数wdencmp用于一维或二维信号的消噪或压缩。

wname是所用的小波函数,gbl(global的缩写)表示每一层都采用同一个阈值进行处理,lvd表示每层采用不同的阈值进行处理,N表示小波分解的层数,THR为阈值向量,对于格式(2)和(3)每层都要求有一个阈值,因此阈值向量THR的长度为N,SORH表示选择软阈值或硬阈值(分别取值为's'和'h'),参数KEEPAPP取值为1时,则低频系数不进行阈值量化,反之,低频系数要进行阈值量化。

XC是要进行消噪或压缩的信号,[CXC,LXC]是XC的小波分解结构,PERF0和PERFL2是恢复或压缩L^2的范数百分比。

如果[C,L]是X的小波分解结构,则PERFL2=100*(CXC向量的范数/C向量的范数)^2;如果X是一维信号,小波wname是一个正交小波,则PERFL2=100||XC||^2/||X||^2。

(7)函数wthresh的调用格式如下:Y=wthresh(X,SORH,T)Y=wthresh(X,SORH,T) 返回输入向量或矩阵X经过软阈值(如果SORH='s')或硬阈值(如果SORH='h')处理后的信号。

T是阈值。

Y=wthresh(X,'s',T)返回的是Y=SIG(X)*(|X|-T)+,即把信号的绝对值与阈值进行比较,小于或等于阈值的点变为零,大于阈值的点为该点值与阈值的差值。

Y=wthresh(X,'h',T)返回的是Y=X*1(|X|>T),即把信号的绝对值和阈值进行比较,小于或等于阈值的点变为零,大于阈值的点保持不变。

一般来说,用硬阈值处理后的信号比用软阈值处理后的信号更粗糙。

(8)函数wthcoef的调用格式下面四种:(1)NC=wthcoef('d',C,L,N,P)(2)NC=wthcoef('d',C,L,N)(3)NC=wthcoef('a',C,L)(4)NC=wthcoef('t',C,L,N,T,SORH)函数wthcoef用于一维信号小波系数的阈值处理。

格式(1)返回小波分解结构[C,L]经向量N和P定义的压缩率处理后的新的小波分解向量NC,[NC,L]构成一个新的小波分解结构。

N包含被压缩的细节向量,P是把较小系数置0的百分比信息的向量。

N和P的长度必须相同,向量N必须满足1<=N(i)<=length(L)-2。

格式(2)返回小波分解结构[C,L]经过向量N中指定的细节系数置0后的小波分解向量NC。

格式(3)返回小波分解结构[C,L]经过近似系数置0后的小波分解向量NC。

格式(4)返回小波分解结构[C,L]经过将向量N作阈值处理后的小波分解向量NC。

如果SORH=’s‘,则为软阈值;如果SORH='h'则为硬阈值。

N包含细节的尺度向量,T是N相对应的阈值向量。

N 和T的长度必须相等。

(9)函数wpdencmp的调用格式有以下两种:[XD,TREED,PERF0,PERFL2]=wpdencmp(X,SORH,N,'wname',CRIT,PAR, KEEPAPP)[XD,TREED,PERF0,PERFL2]=wpdencmp(TREE,SORH,CRIT,PAR,KEEPAPP )函数wpdencmp用于使用小波包变换进行信号的压缩或去噪。

格式(1)返回输入信号X(一维或二维)的去噪或压缩后的信号XD。

输出参数TREED是XD的最佳小波包分解树;PERFL2和PERF0是恢复和压缩L2的能量百分比。

PERFL2=100*(X的小波包系数范数/X的小波包系数)^2;如果X是一维信号,小波wname是一个正交小波,则PERFL2=100*||XD||^2/||X||^2。

SORH的取值为's'或'h',表示的是软阈值或硬阈值。

输入参数N是小波包的分解层数,wname是包含小波名的字符串。

函数使用由字符串CRIT定义的熵和阈值参数PAR实现最佳分解。

如果KEEPAPP=1,则近似信号的小波系数不进行阈值量化;否则,进行阈值量化。

格式(2)与格式(1)的输出参数相同,输入选项也相同,只是它从信号的小波包分解树TREE进行去噪或压缩。

(1)Thselect函数:选取用于小波消噪处理的阈值调用方式Thr=thselect(x,tptr);根据信号x和阈值选择标准tptr来确定一个消噪处理过程中所采用的自适应阈值。

相关文档
最新文档