时间序列分析入门概述

合集下载

时间序列分析入门

时间序列分析入门

xt t t1 2t2 3t3
均值为零? 是否平稳? 方差为有限常数?
自协方差与t无关?
AR(1)平稳旳条件
xt t t1 2t2 3t3
• 均值
E(t ) 0 E(xt ) 0
成立
• 方差
Var( xt
)
2
(1
2
4
6
)
(1)t充分大时Var(
xt
)
1
2
2
自协方差函数
1
r0
1
2
(1 11)(1 1 12
1 )
2
r2 E[xt2 (1xt1 t 1t1)] 1r1
rk 1rk1 (k 2)
ARMA(1,1)旳自有关函数
k
(1 11 1 12
)(1 1 211
)
1 k 1
k 1 k2
ARMA(p,q)旳自有关函数与AR(p)一样,具有拖尾性
③ 滞后算子形式
xt 1xt1 2xt2 p xtp t 1t1 2t2 qtq
p (B)xt q (B)t
xt
1 p
(
B)
q
(
B)
t
t
1 q
(
B)
p
(
B)
xt
性质总结
模型
• 自有关 • 函数 • 偏自有
关函数
• 平稳旳 条件
• 可逆旳 条件
AR(p) 拖尾
MA(q) 截尾
ARMA(p,q) 拖尾
① 自回归模型旳定义
• 描述序列{xt}某一时刻t和前p个时刻序列 值之间旳相互关系 xt 1xt1 2 xt2 p xt p t 随机序列{εt}是白噪声且和前时刻序列xk (k<t )不有关,称为p阶自回归模型, 记为AR(p)

时间序列分析基础知识

时间序列分析基础知识

时间序列分析基础知识什么是时间序列分析时间序列是按照时间顺序排列的数据点序列,它在各个领域都有着广泛的应用,如经济学、气象学、金融学等。

时间序列分析就是利用统计技术对时间序列数据进行建模、预测和分析的过程。

通过时间序列分析,我们可以揭示数据中的潜在规律、趋势、周期性等重要信息。

时间序列数据的特点时间序列数据与横截面数据或面板数据有着明显的区别。

时间序列数据的主要特点包括趋势性、季节性、周期性和随机性。

趋势性:时间序列数据通常会呈现出长期的上升或下降趋势,反映了数据的总体变化方向。

季节性:某些时间序列数据会受到季节变化的影响,呈现出周期性的规律性变化。

周期性:除了季节性外,时间序列数据还可能存在其他周期性的变化,如经济周期等。

随机性:时间序列数据中随机噪声的存在使得数据并不完全规律可循,需要通过合适的模型来捕捉规律。

时间序列分析的基本步骤进行时间序列分析通常需要经历以下几个基本步骤:数据收集:首先需要采集相应领域的时间序列数据,保证数据的完整性和准确性。

数据预处理:对采集到的原始数据进行清洗、处理,包括去除异常值、填补缺失值等操作。

模型识别:根据时间序列数据的特点,选择合适的模型类型,如平稳模型、非平稳模型等。

参数估计:利用已选定的模型对数据进行参数估计,找出最符合实际情况的参数值。

模型检验:通过对模型残差和预测结果进行检验来验证模型是否合适,是否能够较好地拟合原始数据。

模型预测:基于已建立和验证的模型,对未来一段时间内的数据进行预测。

常用的时间序列分析方法统计方法统计方法是最早被应用于时间序列分析中的方法之一。

通过统计学原理对时间序列数据进行描述、估计和推断,常用的方法包括移动平均法、指数平滑法、自回归积分滑动平均模型(ARIMA)等。

机器学习方法随着人工智能和机器学习技术的发展,机器学习方法在时间序列分析中也得到了广泛应用。

包括支持向量机(SVM)、神经网络(NN)、随机森林(Random Forest)等算法被应用于时间序列预测与建模中。

时间序列分析基础

时间序列分析基础

时间序列分析基础时间序列分析是一种重要的统计分析方法,用于研究随时间变化的数据序列。

时间序列分析可以帮助我们理解数据的趋势、季节性变化和周期性波动,从而进行预测和决策。

本文将介绍时间序列分析的基础知识,包括时间序列的概念、特征、分解方法和常用模型等内容。

一、时间序列的概念时间序列是按照时间顺序排列的一系列数据点的集合。

在时间序列分析中,时间是一个重要的因素,数据点的取值取决于时间点的顺序。

时间序列可以是连续的,也可以是离散的,常见的时间序列包括股票价格、气温变化、销售额等。

二、时间序列的特征时间序列通常具有以下几种特征:1. 趋势性:时间序列数据在长期内呈现出的总体上升或下降的趋势。

2. 季节性:时间序列数据在短期内呈现出的周期性波动,通常与季节变化相关。

3. 周期性:时间序列数据在长期内呈现出的周期性波动,但不是固定的季节性。

4. 随机性:时间序列数据中除了趋势性、季节性和周期性外的随机波动。

三、时间序列的分解方法为了更好地理解时间序列数据的趋势、季节性和周期性,常常需要对时间序列进行分解。

常用的时间序列分解方法包括加法模型和乘法模型。

1. 加法模型:加法模型假设时间序列数据是由趋势性、季节性、周期性和随机性的总和构成的。

即 Y(t) = T(t) + S(t) + C(t) +ε(t),其中Y(t)为时间t的观测值,T(t)为趋势性分量,S(t)为季节性分量,C(t)为周期性分量,ε(t)为随机性分量。

2. 乘法模型:乘法模型假设时间序列数据是由趋势性、季节性、周期性和随机性的乘积构成的。

即 Y(t) = T(t) * S(t) * C(t) *ε(t)。

四、常用的时间序列模型时间序列分析中常用的模型包括移动平均模型(MA)、自回归模型(AR)、自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。

1. 移动平均模型(MA):MA模型假设时间序列数据是由随机误差项的线性组合构成的,表示为Y(t) = μ + ε(t) + θ1*ε(t-1) + θ2*ε(t-2) + ... + θq*ε(t-q)。

时间序列分析基础

时间序列分析基础

时间序列分析基础什么是时间序列分析时间序列分析是一种用于预测未来发展趋势的统计分析方法。

它通过对一系列按时间顺序排列的观测数据进行分析,以发现数据背后的规律和趋势。

时间序列分析可以应用于各个领域,如经济、金融、气象等,用于预测销售额、股票价格、天气变化等。

时间序列分析的基本步骤时间序列分析主要包括以下几个步骤:1.数据收集在进行时间序列分析之前,首先需要收集相应的时间序列数据。

这些数据可以是按照一定时间间隔收集的观测值,如每日销售额或每月股票价格。

2.数据预处理收集到的时间序列数据可能存在缺失值、异常值或噪声等问题,需要对数据进行预处理。

常见的预处理方法包括填充缺失值、平滑数据以减少噪声等。

3.数据可视化将预处理后的时间序列数据进行可视化是理解数据和发现趋势的重要手段。

可以绘制折线图、散点图、柱状图等图表来展示数据的变化情况。

4.模型选择选择适合的时间序列模型是进行预测的基础。

常用的时间序列模型有平稳时间序列模型、非平稳时间序列模型、自回归移动平均模型等。

根据数据的特性选择合适的模型。

5.参数估计与模型检验根据选定的时间序列模型,需要估计模型的参数,并对模型进行检验。

常见的参数估计方法包括最大似然估计法和最小二乘法。

模型检验可以通过残差分析和模型诊断统计检验来进行。

6.模型预测通过已训练好的时间序列模型,可以进行未来的预测。

预测结果可以通过可视化方法展示,并进行误差分析以评估模型的准确性。

时间序列分析的应用场景时间序列分析在实际应用中具有广泛的应用场景。

以下是几个常见的应用场景:1.经济预测时间序列分析可以用于预测经济指标,如国内生产总值、消费者物价指数等。

根据历史数据,可以构建经济模型来进行未来的预测,从而为政策制定和决策提供参考。

2.股票市场分析时间序列分析可以帮助分析股票市场的涨跌趋势和价格预测。

通过对历史股价数据的分析,可以发现规律并预测未来的股票价格,供投资者参考。

3.环境气象预报时间序列分析可以用于气象数据分析和天气预报。

时间序列分析

时间序列分析

时间序列分析时间序列分析是一种重要的统计学方法,用于研究随时间变化的数据。

它可以帮助我们了解数据的趋势、周期性和季节性,预测未来的变化趋势,并做出相应的决策。

本文将介绍时间序列分析的基本概念、常见的方法和应用领域。

一、时间序列的基本概念时间序列是按时间先后顺序排列的一组观察数据。

它可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售量。

时间序列的分析要求数据点之间存在一定的相关性和规律性。

二、时间序列的组成部分时间序列通常由三个主要组成部分构成:趋势、季节性和随机性。

趋势是时间序列在长期内呈现的整体变化趋势;季节性是时间序列在较短的时间内出现的重复周期性变化;随机性是时间序列中无法解释的随机波动。

三、时间序列分析的方法1. 描述性分析描述性分析是对时间序列数据进行可视化和概括的方法。

常用的方法包括绘制折线图、直方图和自相关图等,以帮助我们了解数据的分布和相关性。

2. 平稳性检验平稳性是时间序列分析的基本假设。

平稳序列的统计特性在时间上是不随时间变化的,包括均值、方差和自相关性等。

常见的平稳性检验方法有单位根检验和ADF检验。

3. 建立模型建立时间序列模型是对数据进行预测和分析的关键步骤。

常用的时间序列模型有ARIMA模型、AR模型和MA模型等。

通过对历史数据的拟合,我们可以得到模型的参数,从而进行未来值的预测。

4. 模型诊断与改进在建立模型之后,需要对其进行诊断和改进。

常见的诊断方法包括残差检验、模型稳定性检验和模型比较等。

根据诊断结果,我们可以对模型进行改进,提高预测的准确性。

四、时间序列分析的应用领域时间序列分析在许多领域都有广泛的应用,例如经济学、金融学、气象学和市场营销等。

在经济学中,时间序列分析可以用于预测经济增长趋势和通货膨胀率。

在金融学中,它可以帮助我们预测股票价格和利率走势。

在气象学中,时间序列分析可以用于预测天气变化和自然灾害。

在市场营销中,它可以帮助我们预测销售量和用户行为。

时间序列分析的基本概念与方法

时间序列分析的基本概念与方法

时间序列分析的基本概念与方法时间序列分析是一种常用的统计方法,用于研究时间上连续观测数据的模式和趋势。

它广泛应用于经济学、金融学、气象学、交通运输等众多领域。

本文将介绍时间序列分析的基本概念和常用方法,为读者提供初步了解和应用的指导。

一、基本概念时间序列是按一定时间间隔测量或观测的一组数据序列。

它的特点是数据点之间存在时间上的先后顺序,并且相对于统计的其他数据类型(如横截面数据)而言,时间序列数据还具有数据间存在相关性和趋势性的特征。

常见的时间序列分析概念包括:1. 趋势:时间序列在长期内的整体变化趋势,可以是增长、下降或平稳。

2. 季节性:时间序列在固定时间周期内的重复模式,通常是指一年内的周期性变化。

3. 循环性:时间序列在较长时间内的周期性变化,不以固定时间周期为基础。

4. 随机性:时间序列中无法通过趋势、季节性和循环性解释的随机波动成分。

二、方法介绍时间序列分析的方法主要包括描述性分析、平稳性检验、模型拟合和预测等。

1. 描述性分析描述性分析是对时间序列数据进行统计性描述的方法,常用的统计指标包括均值、方差、标准差、最大值、最小值等。

通过描述性分析,可以初步了解时间序列数据的分布特征和基本统计性质。

2. 平稳性检验平稳性是进行时间序列分析的重要假设,它要求时间序列在长期内的统计性质保持不变。

平稳性检验可以通过观察时间序列的图形、自相关函数和单位根检验等方法进行。

如果时间序列不满足平稳性要求,则需要进行差分处理或其他转换方法,使其达到平稳性条件。

3. 模型拟合时间序列分析中常用的模型包括自回归移动平均模型(ARIMA模型),指数平滑模型、季节性模型等。

模型拟合要求选择适当的模型,并利用最大似然估计等方法,对模型参数进行估计和拟合。

拟合后的模型可以用于描述时间序列的趋势、季节性和随机波动。

4. 预测时间序列预测是时间序列分析的重要应用之一,它利用历史数据的模式和规律,对未来一段时间内的数据进行预测。

时间序列分析的基础知识

时间序列分析的基础知识

时间序列分析的基础知识时间序列分析是一种重要的统计分析方法,用于研究时间序列数据的规律性和趋势变化。

时间序列数据是按照时间顺序排列的一系列数据观测值,例如股票价格、气温、销售额等。

通过时间序列分析,可以揭示数据中的周期性、趋势性和随机性,从而进行预测和决策。

本文将介绍时间序列分析的基础知识,包括时间序列的特点、常见模型和分析方法。

一、时间序列的特点时间序列数据具有以下几个特点:1. 时间依赖性:时间序列数据中的每个观测值都与前面或后面的观测值相关联,存在一定的时间依赖性。

2. 趋势性:时间序列数据通常会呈现出长期的趋势变化,反映了数据的整体发展方向。

3. 季节性:某些时间序列数据会呈现出周期性的季节变化,例如销售额在节假日前后会有明显波动。

4. 随机性:除了趋势性和季节性外,时间序列数据还包含一定程度的随机波动,反映了数据的不确定性。

二、常见的时间序列模型在时间序列分析中,常用的模型包括:1. 自回归模型(AR):自回归模型假设当前观测值与前几个观测值相关,用于描述数据的自相关性。

2. 移动平均模型(MA):移动平均模型假设当前观测值与前几个观测值的误差相关,用于描述数据的随机性。

3. 自回归移动平均模型(ARMA):ARMA模型将AR模型和MA模型结合起来,综合考虑数据的自相关性和随机性。

4. 差分自回归移动平均模型(ARIMA):ARIMA模型在ARMA模型的基础上引入差分操作,用于处理非平稳时间序列数据。

5. 季节性自回归移动平均模型(SARIMA):SARIMA模型在ARIMA模型的基础上考虑季节性因素,适用于具有季节性变化的数据。

三、时间序列分析的方法进行时间序列分析时,通常包括以下几个步骤:1. 数据预处理:对时间序列数据进行平稳性检验、季节性调整和缺失值处理,确保数据的可靠性和准确性。

2. 模型识别:根据时间序列数据的特点选择合适的模型,如AR、MA、ARMA、ARIMA或SARIMA模型。

统计学中时间序列分析的基础知识

统计学中时间序列分析的基础知识
平均预测误差是预测误差的平均数,由于正负误差相互抵消,平均误差很小,因 此平均误差不是预测精度的常用测度 平均绝对误差 平均绝对误差是避免正负预测误差相互抵消的预测精度的测量
MAE是预测误差绝对值的平均数 均方误差
均方误差是计算预测误差平方的平均数 MSE是预测误差平方和的平均数
平均绝对百分数误差 平均绝对百分数误差计算每一个预测的百分数误差 MAPE是百分数预测误差的绝对值的平均数
统计学中时间序列分析的基础知识
时间序列
时间序列分析的目的是在历史资料或时间序列中发现规律性的模式,然后将这个模 式外推未来 预测方法
定量方法 被预测变量过去的信息可以使用 使用的信息可以量化 过去的模式将会持续到未来的假定合理
定性方法 定性方法通常利用专家判断,当被预测变量的历史数据不适合或者难以获得 时,可以使用定性方法
非线性趋势回归 二次趋势方程 T=b0+b1*t+b2*t² 指数趋势方程 T=b0*(bt)^t
时间序列分解法
用时间序列分解法可以将一个时间序列分隔或分解出季节、趋势和不规则成分 加分法模型:趋势成分+季节成分+不规则或误差成分 乘法分解模型:趋势值*季节值*t期的不规则值
计算季节指数 先计算移动平均数,从数据中剔除组合在一起的季节和不规则影响,留给我们的 时间序列只包含趋势和移动平均没有剔除的随机波动
季节模式是指在超过一年的周期内,由于季节的影响,时间序列呈现重复模 式 趋势与季节模式 时间序列同时包含趋势模式和季节模式 循环模式 如果时间序列图显示出持续时间超过一年的在趋势线上下交替的点序列,则 存在循环模式 时间序列的循环成分归因于多年的经济周期
预测精度
预测误差=实际值-预测值 平均预测误差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自相关函数的估计
T
ˆx
(xt x)(xtk x)
t 1
T
(xt x)2
rˆk rˆ0
t 1
x
1 T
T t 1
xt
平稳序列的判断
ρk
ρk
1
1
0
k
平稳序列的自相关函数
迅速下降到零
0
k
非平稳序列的自相关函数
缓慢下降
一类特殊的平稳序列 ——白噪声序列
• 随 均机值序为列零{,xt方}对差任为何有x限t和常xt都数不相关,且
0 1 平滑常数
本期预测值是前期实际值和预测值的加权和
二. 随机时间序列模型及其性质
• 随机时间序列 • 平稳时间序列 • 随机时间序列模型
1. 随机时间序列
• 随机过程与随机序列 • 时间序列的性质
(1) 随机过程与随机序列
设T为某个时间集,对t T,取xt为随机变量,
对于该随机变量的全体xt ,t T
① 自回归模型的定义
• 描述序列{xt}某一时刻t和前p个时刻序列 值之间的相互关系 xt 1xt1 2 xt2 p xt p t 随机序列{εt}是白噪声且和前时刻序列xk (k<t )不相关,称为p阶自回归模型, 记为AR(p)
② (一阶)自回归序列平稳的条件
xt xt1 t xt1 xt2 t1
tN
作用:消除干扰,显示序列的趋势性变化;并通 过加权因子的选取,增加新数据的权重,使趋势 预测更准确
(3) 二次滑动平均模型
yˆˆt
yˆt
yˆt1 N
yˆtN 1
tN
对经过一次滑动平均产生的序列再进行滑动平均
(4) 指数平滑模型
yˆt yˆt1 ( yt1 yˆt1) yˆt yt1 (1 ) yˆt1
,与t无关
满足这两个
(2) 1时,Var(xt )为有限常数 条件成立
AR(1)平稳的条件
• 自协方差
rt,tk Cov(xt , xtk )
E(xt xtk )
2 k (1 2 4 6 )
t充分大时,rt ,t k
2 k 1 2
k Var(xt )
仅与k有关,与t无关
xt t t1 2t2 3t3
均值为零? 是否平稳? 方差为有限常数?
自协方差与t无关?
AR(1)平稳的条件
xt t t1 2t2 3t3
• 均值
E(t ) 0 E(xt ) 0
成立
• 方差
Var( xt
)
2
(1
2
4
6
)
(1)t充分大时Var(
xt
)
1
2
2
• 滑动平均模型 • 加权滑动平均模型 • 二次滑动平均模型 • 指数平滑模型
(1) 滑动平均模型
yˆt
yt
yt1 N
ytN 1
tN
作用:消除干扰,显示序列的趋势性变化,并用 于预测趋势
(2) 加权滑动平均模型
yˆtw
a0 yt
a1 yt1
N
a y N 1 tN 1
N 1
ai
其中 i0 1 N
时间序列分析入门
主要内容
• 确定性时间序列模型 • 随机时间序列模型及其性质 • 时间序列模型的估计和预测
一. 确定性时间序列模型
• 时间序列:各种社会、经济、自然现象 的数量指标按照时间次序排列起来的统 计数据
• 时间序列分析模型:解释时间序列自身 的变化规律和相互联系的数学表达式
确定性时间序列模型
结论: 1 时,一阶自回归序列渐进平稳
③ AR(p)的自相关函数
• 自协方差函数
rk E(xt xtk )
Ext (1xtk1 2 xtk2 p xtk p tk ) Ext1xtk1 Ext2 xtk2 Ext xp tk p 1 rk1 2rk2 prk p
rt,t Var(xt )
时间序列的统计性质
• 自相关函数
t,s
rt , s rtt rss
t,s s,t
tห้องสมุดไป่ตู้t 1
2. 平稳时间序列
• 所谓平稳时间序列是指时间序列
{xt, t=0,±1,±2,···}
对任意整数t,
Ex2 ,且满足以下条件: t
1) 对任意t,均值恒为常数 Ext (与t无关的常数)
Ext 0
r0
2 x
rk 0(k 0)
• 正态白噪声序列:白噪声序列,且服从 正态分布
3. 随机时间序列模型
• 自回归模型(AR) • 移动平均模型(MA) • 自回归—移动平均模型(ARMA)
(1) 自回归模型及其性质
• 定义 • 平稳条件 • 自相关函数 • 偏自相关函数 • 滞后算子形式
2)
Varxt
2 (与t无关的有限常数) x
3) 对任意整数t和k, r t,t+k只和k有关rt,tk rk
• 随机序列的特征量随时间而变化,称为非平 稳序列
xt t
xt t
平稳序列的特性
• 方差
rt ,t
r0
E[( xt
)
2
]
2 x
• 自相关函数:
k
rk
2 x
rk r0
0 1, k k , k 1
例:求AR(1)的自相关函数
xt xt1 t
k k1 k1 k2
k k
例: AR(2)的自相关函数
xt 1xt1 2 xt2 t
k 1k1 2 k2
取k=1
1 10 2 1
1
1 12
取k=2 取k=3
• 当取T为连续集,如T (,)或T [0,)
等,则称xt 为随机过程 • 当取T为离散集,如T , 2,1,0,1,2,或 T 1,2,等,则称xt 为随机序列
随机序列的现实
• 对于一个随机序列,一般只能通过记录 或统计得到一个它的样本序列x1,x2,···, xn, 称它为随机序列{xt}的一个现实
两边同除以r0 • 自相关函数
k
rk r0
1k1 2 k2 p k p
AR(p)的自相关函数
k
rk r0
1k1 2 k2
p k p
k k , 0 1
耶尔-瓦克尔(Yule-Walker)方程
1 1 2 1 p p1 2 11 2 p p2
p 1 p1 2 p2 p
• 随机序列的现实是一族非随机的普通数 列
(2) 时间序列的统计性质(特征量)
• 均值函数:某个时刻t的性质
E(xt ) t xpt (x)dx
pt (x)是xt 的概率密度函数
时间序列的统计性质
• 自协方差函数:两个时刻t和s的统计性质
rt,s Cov(xt , xs ) E(xt Ext )(xs Exs ) rt,s rs,t
相关文档
最新文档