167;4-2布洛赫Bloch定理
布洛赫定理

布洛赫定理(一) Bloch 定理:势场()U r →具有晶格周期性时,即()U r →=()n U r R →→+ (1) 电子的波函数满足薛定谔方程的解具有以下性质:()n r R ψ→→+=ni k R e→→·()r ψ→(2)根据()n r R ψ→→+=ni k R e→→·()r ψ→,电子的波函数()r ψ→满足:()r ψ→=ni k R e→→·()u r →其中,()u r →为与势能同周期的周期性函数,()u r →=()n u r R →→+n R →为势场的周期(二)Bloch 定理的证明: (1) 证明H ∧具有周期性。
(2) 引入平移对称算符()n T R ∧→,证明平移对称算符与哈密顿算符H ∧对易,两者具有相同的本证函数。
(3) 由平移对称的本征值方程导出··ni k R n r R e r ψψ→→→→→⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,根据证明(2)知r ψ→⎛⎫ ⎪⎝⎭也是哈密顿算符H ∧的本征函数,综合上述要点便可证明Bloch 定理的第一条性质。
证明:(1)H r ∧→⎛⎫ ⎪⎝⎭=—22()2r m →∇ +()U r → 在直角坐标系中:2()r →∇=222222x y z ∂∂∂++∂∂∂=222222112233()()()x n a y n a z n a →→→∂∂∂++∂+∂+∂+ =2()n r R →→∇+其中112233n R n a n a n a →→→→=++为势能的一个周期或者若干个周期。
∴()n H r R ∧→→+=—22()2n r R m →→∇+ +()n U r R →→+=—22()2r m→∇ +()U r → ∴()n H r R ∧→→+=()H r ∧→引入平移对称算符(简称平移算符)()n T R ∧→:()n T R ∧→·()f r →=()n f r R →→+()f r →为任意函数2()n T R ∧→·()f r →=()n T R ∧→·()n f r R →→+=(2)n f r R →→+ ()ln T R ∧→·()f r →=()n f r l R →→+=()n T lR ∧→·()f r →由上式知:()ln T R ∧→=()n T lR ∧→将平移算符作用到定态薛定谔方程中:()n T R ∧→·()H r ∧→·()r ψ→=()n H r R ∧→→+·()n r R ψ→→+=()H r ∧→·()n T R ∧→·()r ψ→∴()n T R ∧→·()H r ∧→=()H r ∧→·()n T R ∧→∴平移算符与哈密顿算符是对易的。
布洛赫定理

2 2 2m U r r E r
其中,U(r) = U(r +Rl)为周期性势场, Rl=l1a1+l2a2+l3a3为格矢, 方程的解应具有下列形式:
k r eikruk r
—— Bloch函数 (Bloch wave function)
2 2 2m U r r E r 其中: U (r Rn ) U (r )
这个方程是整个能带论研究的出发点。 求解这个运动方程,讨论其解的物理意义, 确定晶体中电子的运动规律是本章的主题。
从以上讨论中,可以看到能带论是在三个近似下完成的:
当我开始思考这个问题时,感觉到问题的关键 是解释电子将如何“偷偷地潜行”于金属中的所有 离子之间。……. 经过简明而直观的傅立叶分析, 令我高兴地发现,这种不同于自由电子平面波的波 仅仅借助于一种周期性调制就可以获得。
——F Bloch 一. Bloch定理 • 能带理论的基础 • 针对周期性结构
的解可以表示为: k (r) f (r)uk (r) 其中 uk (r Rn ) uk (r ) 势场的周期性也使与电子相关的所有可测量,包括电子几率
(r)
2
也必定是周期性的,这就给未知函数 f ( r ) 附加了下述
条件: 对于所有
f ( r Rn ) f ( r )
2
2
• 描写晶体(周期性势场)中的单电子运动 考虑一理想完整晶体,所有的原子实都周期性地静 止排列在其平衡位置上,每一个电子都处在除其自身外 其他电子的平均势场和原子实的势场中运动。按照周期 场近似,电子所感受到的势场具有周期性。这样的模型 称为周期场模型。
简述布洛赫定理的内容

简述布洛赫定理的内容
布洛赫定理是固体物理学中的一项重要定理,它描述了晶体中电子的行为。
该定理是由瑞士物理学家费米和德国物理学家布洛赫在1929年分别提出的。
一、晶体结构和周期性势场
晶体是由原子或分子按照一定规律排列而成的固体。
晶格是指构成晶体的原子或分子在空间中排列成的有序周期性结构。
周期性势场是指在空间中呈现出周期性变化的势场。
二、电子在周期性势场中的运动
当电子遇到一个周期性势场时,它会受到一个平稳而有规律的力,这个力会使电子做简谐振动。
在这种情况下,电子行为类似于弹簧振动器。
三、布洛赫定理和能带结构
布洛赫定理描述了晶格对电子运动的影响。
它指出,在一个周期性势场中,电子波函数可以表示为平面波与一个具有与晶格相同周期的函
数之积。
这个函数被称为布洛赫函数。
通过布洛赫函数,我们可以推导出能带结构。
能带结构描述了材料中
电子的能量和动量之间的关系。
在能带结构中,能量被分成了不同的
区域,每个区域被称为一个能带。
在一个能带内,电子具有相似的能
量和动量。
四、布洛赫定理的应用
布洛赫定理在固体物理学中有着广泛的应用。
它可以用来研究半导体、金属和绝缘体等材料中电子行为的特性。
在半导体领域,布洛赫定理
可以用来解释p-n结和场效应晶体管等器件的工作原理。
总之,布洛赫定理是固体物理学中非常重要的一项定理。
它描述了晶
格对电子运动的影响,并推导出了能带结构。
通过这个定理,我们可
以更好地理解材料中电子行为的特性,并将其应用于实际设备设计中。
布洛赫定理知识点

布洛赫定理知识点布洛赫定理是固体物理学中的一个重要概念,它描述了晶体中电子的行为和能量分布。
通过理解和掌握布洛赫定理,可以深入了解固体物理学的许多基本原理和现象。
本文将主要介绍布洛赫定理的概念、应用以及相关知识点。
一、布洛赫定理的概念布洛赫定理是由瑞士物理学家布洛赫(Bloch)于1928年提出的。
它是描述周期性势场中粒子(如电子)行为的一种数学模型。
根据布洛赫定理,晶体中的物理特性可以由一个周期函数和平面波函数的乘积来描述。
具体而言,布洛赫定理给出了如下形式的波函数表示:ψ(r) = u(r)* exp(ik•r)其中,ψ(r)表示晶体中的波函数,u(r)是一个周期函数,k是布拉格波矢,r是晶格中的位置矢量。
根据布洛赫定理,晶体中的波函数具有周期性,即在晶体中的任意位置矢量r上,波函数的模长和相位都具有相同的周期性。
这种周期性使得我们能够用一个有限大小的晶胞作为模型来描述整个晶体的物理特性。
二、布洛赫定理的应用布洛赫定理在固体物理学中有广泛的应用。
下面将介绍一些常见的应用。
1. 能带理论布洛赫定理为解释固体中能带结构提供了重要工具。
能带结构是指能量与波矢之间的关系。
根据布洛赫定理,电子的波函数可以表示为周期函数和平面波函数的乘积,从而可以得到电子的能量本征值和能带结构。
2. 色散关系布洛赫定理可以用来描述晶体中的电子色散关系。
色散关系是能量与波矢之间的关系,描述了晶体中电子的传输性质。
布洛赫定理给出了电子波函数的表示形式,可以通过对波函数进行求解,得到电子能量与波矢的关系。
3. 赝势方法布洛赫定理在赝势方法中也有重要应用。
赝势方法是一种计算固体物理性质的近似方法,通过引入赝势将全电子问题简化为少电子问题。
布洛赫定理提供了计算周期势场中电子行为的数学模型,使得赝势方法在实际计算中得到了广泛应用。
三、布洛赫定理的相关知识点除了上述介绍的应用外,布洛赫定理还涉及一些其他重要的知识点。
1. 布洛赫矢量布洛赫矢量是用来描述布洛赫定理中波函数的平移对称性的参数。
布洛赫定理

得到:λ
1
=e
2πi
l1 N1
, λ2 = e
2πi
l2 N2
, λ3 = e
2πi
l3 N3
− − − l1 , l2 , l3
v l1 v l3 v l2 v b1 + b3 + b3 引入: k = N1 N2 N3
v v v b1 , b2 , b3
5 则平移算符的本征值可以表示为:
λ1 = e
vv ik ⋅a1
, λ2 = e
v v ik2 ⋅a2
, λ3 = e
v v ik3 ⋅a3
v v v v T ( Rm )ψ (r ) = ψ (r + Rm ) v m3 v m1 v m2 v = T1 (a1 )T2 (a2 )T3 (a3 )ψ (r ) v v v ik ⋅ Rm m1 m2 m3 = λ1 λ2 λ3 = e ψ (r )
6 则可以推导出:
7 从而得到:
v v r v v ik • Rn ψ r + Rn = e ψ (r )
(结
论
1布洛赫定理是一个普遍适用的结论。 2它在周期性势场的数学求解中可以使问题简化。 3在量子力学,激光物理中具有广泛的应用。 4在晶体物理学中具有非常直观的应用。
平移算符性质:
Tα Tβ = Tβ Tα
——各平移算符对易。
2 平移算符和哈密顿量对易
h2 v v v v 2 Tα Hf ( r ) = − ∇ r + V ( r ) f ( r + aα ) 2m v v v = Hf ( r + aα ) = HTα f ( r )
Tα H − HTα = 0
《布洛赫定理》课件

证明中的难点和关键点
难点分析
在证明过程中,如何正确运用相关数学公式和定理,以及如何处理复杂的逻辑 推理是主要的难点。
关键点总结
首先,准确理解和运用相关数学工具和概念是至关重要的;其次,构建清晰、 严密的证明逻辑是关键;最后,对定理的深入理解和分析也是不可或缺的。
04
定理的应用
在物理中的应用
量子力学
布洛赫定理在量子力学中有着广泛的应用,它为描 述粒子的波函数提供了重要的数学工具。
固体物理学
在固体物理学中,布洛赫定理常被用于研究晶体的 电子结构和性质,特别是在能带理论中。
粒子物理学
在粒子物理学中,布洛赫定理用于描述粒子的传播 和散射现象,特应用
80%
算法设计
布洛赫定理在算法设计中有着重 要的应用,特别是在动态规划和 图算法中。
100%
数据结构
通过应用布洛赫定理,可以设计 出更高效的数据结构,例如哈希 表和二叉搜索树等。
80%
计算复杂性
布洛赫定理在计算复杂性理论中 也有所应用,它有助于理解不同 算法的时间复杂度和空间复杂度 。
在其他领域的应用
经济学
布洛赫定理在经济学的某些领 域也有所应用,例如在博弈论 和决策理论中。
在实践中,布洛赫定理被广泛应用于组合数学、图论、计算机科 学等多个领域。例如,在计算机科学中,布洛赫定理可以用于解 决图形的布局和优化问题,以及网络设计和路由问题等。此外, 布洛赫定理在物理学、化学和工程学等领域也有广泛的应用。
03
定理的证明
证明的思路和步骤
思路概述
首先,明确定理的定义和要求,然后 通过数学推导和逻辑推理,逐步构建 证明的框架。
对物理学的贡献
布洛赫定理在物理学领域也有着 广泛的应用,它为研究物质波、 量子力学和相对论等领域提供了 重要的理论支持。
布洛赫定理讲解

K'K '
e dx=L i(K’Gn K )x L
K‘ Gn ,K
得到(4)式
K'
2 K '2 2m
E
C
(
K
'
)
L
K,K
+
'
n0
VnC(K ' )
K'
L K’Gn ,K =0
利用δ函数的性质,得(4)式
2K 2
2m
EC(K )
VnC(K Gn )=0
n0
该方程实际上是
动量表象中的薛定谔方程,称作中
E
说明:
V0=
1 a
a
V (x)dx=V (x)
0
cons
0
∴
V ( x)=
i 2 nx
Vne a
n0
= VneiGn x
(1)
n0
2.将待求的波函数ψ(r)向动量本征态
――平面波eik•x展开
(k, x)= C(k ' )eik‘x
(2)
K'
求和是对所有满足波恩-卡曼边界条件的波矢k’进
ˆ H
(k,r)=E(k)(k,r)
(k Gn' , x) 与 (k, x) 等价
^
^
H (k, r)=H (k Gh, r)=E(k Gh ) (k, r)
∴ E(k)=E(k+Gn) 可见,在波矢空间,布洛赫电子态具有倒格子
周期性,为了使波矢K和状态一一对应,通常限 制k在第一B.Z.内变化。
2. 布洛赫定理的另一种表示。
证明:
∵ (k ,x)=u(k,x)eikx
u(k,x)=u(k ,x+na)
布洛赫定理及它的指导意义

JISHOU UNIVERSITY《固体物理》期末考核报告布洛赫定理及它的指导意义布洛赫波因其提出者美籍瑞士裔物理学家菲利克斯·布洛赫(Felix Bloch )而得名。
布洛赫波由一个平面波和一个周期函数u (r )(布洛赫波包)相乘得到。
其中u (r )与势场具有相同周期性。
布洛赫波的具体形式为:式中k 为波矢。
上式表达的波函数称为布洛赫函数。
当势场具有晶格周期性时,其中的粒子所满足的波动方程的解ψ存在性质:这一结论称为布洛赫定理(Bloch's theorem ),其中为晶格周期矢量。
可以看出,具有上式性质的波函数可以写成布洛赫函数的形式。
平面波波矢k(又称“布洛赫波矢”,它与约化普朗克常数的乘积即为粒子的晶体动量)表征不同原胞间电子波函数的位相变化,其大小只在一个倒易点阵矢量之内才与波函数满足一一对应关系,所以通常只考虑第一布里渊区内的波矢。
对一个给定的波矢和势场分布,电子运动的薛定谔方程具有一系列解,称为电子的能带,常用波函数的下标n以区别。
这些能带的能量在k的各个单值区分界处存在有限大小的空隙,称为能隙。
在第一布里渊区中所有能量本征态的集合构成了电子的能带结构。
在单电子近似的框架内,周期性势场中电子运动的宏观性质都可以根据能带结构及相应的波函数计算出。
上述结果的一个推论为:在确定的完整晶体结构中,布洛赫波矢k是一个守恒量(以倒易点阵矢量为模),即电子波的群速度为守恒量。
换言之,在完整晶体中,电子运动可以不被格点散射地传播(所以该模型又称为近自由电子近似),晶态导体的电阻仅仅来自那些破坏了势场周期性的晶体缺陷。
从薛定谔方程出发可以证明,哈密顿算符(Hamiltonian)与平移算符(translation)的作用次序满足交换律,所以周期势场中粒子的本征波函数总是可以写成布洛赫函数的形式。
更广义地说,本征函数满足的算符作用对称关系是群论中表示理论的一个特例。
布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体的导电性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(George William Hill,1877年),加斯东·弗洛凯(Gaston Floquet,1883年)和亚历山大·李雅普诺夫(Alexander Lyapunov,1892年)等独立地提出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VnC(k ' )ei(K' Gh )x
K'
=E C(K ' )eik 'x
(3)
K'
将此式两边乘e-ik.x,然后对整个晶体积 分。并利用平面波的正交归一性
e dx=L i ( K‘ K )x l
K'K '
e dx=L i(K’Gn K )x L
K‘ Gn ,K
得到
K'
2K '2 2m
E
C
(
K
'
)
L
K,k
+
'
n0
VnC(K ' )
K'
L K’Gn ,K =0
利用δ函数的性质,得(4)式
2K 2
2m
EC(K )
VnC(K Gn )=0
n0
该方程实际上是
动量表象中的薛定谔方程,称作中
心方程。
K态与其相差不是一个倒格矢 的态之间无耦合
方程(4)说明,与K态系数C(K)的值有 关的态是与K态相差任意倒格矢Gn 的态 的系数C(K-Gn)…….与K相差不是一个
∴ E(k)=E(k+Gn)
可见,在波矢空间,布洛赫电子态具有倒格子
周期性,为了使波矢K和状态一一对应,通常限 制k在第一B.Z.内变化。
第一B.Z.内的波矢又叫简约波矢。
(2)E(k)=E(-k) 即能带具有k=0的中心反演对称性。
(3)E(k)具有与正晶格相同的对 称性。
倒格矢的态不进入方程(4)。
该结论也应适用于波函数 (k,x)。
因此波函数
(k, x)= C(k ' )eik‘x K'
应当可写成
(k, x)= C(k Gn )ei(kGn )x
Gn
=eiKx C(K Gn )eiGnx
Gn
与Bloch定理比较 (k ,x)=u(k,x)eikx
(k ,x)=u(k,x)eikx 其中
u(k,x)=u(k ,x+na) 晶体中的电子波又称为Bloch波。
讨论:
1.电子出现的几率具有正晶格的周期性。
∣(k ,x)∣2=∣u(k,x)∣2 ∣(k ,x+na)∣2=∣u(k ,x+na)∣2 ∵ u(k,x)= u(k ,x+na)
∴∣(k ,x)∣2=∣(k ,x+na)∣2
(B)
比较(A)(B)二式,左右分别相等
∴ (k ,x+na)=(k ,x)eikna
以上证明各步均可逆,故Bloch定理的两种表示 等价。
3.函数(k ,x)本身并不具有正 晶格的周期性。
(k ,x+na)=u(k,x+na)eik(x+na) = u(k,x+na)eikx× eikna = u(k,x)eikx× eikna = (k ,x)eikna 而一般情况下 ∵ k不是倒格矢 eikna≠1
§4-2布洛赫(Bloch)定理
求晶体中的电子态,要解定态薛定谔方程
2 2 (k,r)+E -V(r) (k,r)=0
2m
其中势能函数V(r)具有晶格周期性,即
V(r)=V(r+Rn) =V(r+n1a1+n2a2+n3a3)
一.布洛赫定理
晶体中的电子波函数是按照晶格周期 性进行的调幅平面波.
即(以一维为例)
三. 布洛赫定理的一些重要推论
(1)K态和K+Gh态是相同的状态,这就是说: (A)(K+Gh,r)= (K,r) (B)E(K+Gh)=E(K)
下面分别证明之。
∵ (k ,x)=
C(K
G )ei( K Gn )x n
Gn
求和遍取所有允许的倒格矢
(k Gn' , x)=
C(K
Gn'
G )ei( K Gn' Gn )x n
2. 布洛赫定理的另一种表示 (k ,x+na)=(k ,x)eikna
证明:
∵ (k ,x)=u(k,x)eikx
u(k,x)=u(k ,x+na)
得:u(k,x)=(k,x)e-ikx
(A)
u(k ,x+na)=(k ,x+na)e-ik(x+na)
= e-ikx [e-ikna (k ,x+na)]
Vn=
1 a
a
i 2 nx
V ( x)e a dx
0
说明:
V0=
1 a
a
V (x)dx=V (x)
0
cons
0
∴
V ( x)=
i 2 nx
Vne a
n0
V ( x)= VneiGn x
(1)
n0
2.将待求的波函数ψ(r)向动量本征
态――平面波eik•x展开
(k, x)= C(k ' )eik‘x
需证明
u(K,x)= C(K Gn )eiGnx
Gn
=u(K,x+na)
∵Gh·Rn=2m, 一维情况Rn=na, Ghna=2m
eiGnna 1
u(K,x)= C(K Gn )eiGnx eiGnna
Gn
= C(K Gn )eiGn (xna) u(K, x na)
Gn
于是布洛赫定理得证。
∴ (k ,x+na)≠ (k ,x)
(k ,x+na)≠ (k ,x) ∣(k ,x)∣2=∣(k ,x+na)∣2
讨论:波函数的物理意义
二.Bloch 定理的证明
1. 由于势能函数V(x)具有晶格周期性,适
当选取势能零点,它可以作如下的付里叶级
数展开:
V ( x)=
i 2 nx
Vne a
n
(2)
K'
求和是对所有满足波恩-卡曼边界条件的波 矢k’进行的。(讨论)
将(1)式和(2)式
V ( x)= VneiGn x
n0
(k, x)= C(k ' )eik‘x K'
代入薛定谔方程
2 2 (k,x)+E -V(x) (k, x)=0
2m
得:
K'
2 K '2C(k') 2m
eik 'x+
Gn
令G‘n-Gn=Gn’’,则
=
C(K
G )e '' i(K Gn'' )x n
(k, x)
G''n
因为求和也是遍取所有允许的倒格矢
即相差任意倒格矢的状态等价。
由薛定谔方程
ˆ H
(k,r)=E(k)(k,r)
(k Gn' , x) 与 (k, x) 等价
^
^
H (k, r)=H (k Gh, r)=E(k Gh ) (k, r)