动态规划理论(精华)

合集下载

动态规划

动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。

第6章动态规划

第6章动态规划

第6章 动态规划动态规划(Dynamic Programming )是解决多阶段决策过程最优化的一种有用的数学方法。

它是由美国学者Richard .Bellman 在1951年提出的,1957年他的专著《动态规划》一书问世,标志着运筹学的一个重要分支-动态规划的诞生.动态规划也是一种将多变量问题转化为单变量问题的一种方法。

在动态规划中,把困难的多阶段决策问题变换成一系列相互联系的比较容易的单阶段问题一个个地求解。

动态规划是考察解决问题的一种途径 ,而不是一种特殊的算法,不像线性规划那样有统一的数学模型和算法(如单纯形法).事实上,在运用其解决问题的过程中还需要运用其它的优化算法。

因此,动态规划不像其它方法局限于解决某一类问题,它可以解决各类多阶段决策问题。

动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。

在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。

许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。

特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。

动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。

本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。

6.1动态规划的基本理论6.1.1多阶段决策过程的数学描述有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。

任何一个阶段(stage ,即决策点)都是由输入(input )、决策(decision )、状态转移律(transformation function )和输出(output )构成的,如图6-1(a )所示.其中输入和输出也称为状态(state ),输入称为输入状态,输出称为输出状态。

动态规划.pdf

动态规划.pdf

第三章:动态规划3.1 动态规划的基本概念一、动态决策问题:决策过程具有阶段性和时序性(与时间有关)的决策问题。

即决策过程可划分为明显的阶段。

二、什么叫动态规划(D.P.–Dynamic Program):多阶段决策问题最优化的一种方法。

广泛应用于工业技术、生产管理、企业管理、经济、军事等领域。

三、动态规划(D.P.)的起源:1951年,(美)数学家R.Bellman等提出最优化原理,从而建立动态规划,名著《动态规划》于1957年出版。

四、动态决策问题分类:1、按数据给出的形式分为:•离散型动态决策问题。

•连续型动态决策问题。

2、按决策过程演变的性质分为:•确定型动态决策问题。

•随机型动态决策问题。

五1、阶段(stage)n :作出决策的若干轮次。

n = 1、2、3、4、5。

2、状态(state)S n :每一阶段的出发位置。

构成状态集,记为S nS 1={A},S 2={B 1,B 2,B 3},S 3={C 1,C 2,C 3},S 4={D 1,D 2,D 3},S 5={E 1,E 2}。

阶段的起点。

3、决策(decision)X n :从一个阶段某状态演变到下一个阶段某状态的选择。

构成决策集,记为D n (S n )。

阶段的终点。

D 1(S 1)={X 1(A)}={B 1,B 2,B 3}= S 2,D 2(S 2)={X 2(B 1),X 2(B 2),X 2(B 3)}={C 1,C 2,C 3}=S 3,D 3(S 3)={X 3(C 1),X 3(C 2),X 3(C 3)}={D 1,D 2,D 3}=S 4,D 4(S 4)={X 4(D 1),X 4(D 2),X 4(D 3)}={E 1,E 2}=S 5D 5(S 5)={X 5(E 1),X 5(E 2)}={F;F}={F}。

4、策略(policy):全过程中各个阶段的决策Xn 组成的有序总体{Xn }。

如 A àB2àC1àD1àE2àF5、子策略(sub-policy):剩下的n个阶段构成n子过程,相应的决策系列叫n子策略。

动态规划的基本思想

动态规划的基本思想

动态规划的基本思想动态规划是一种常见的解决问题的算法思想,它通过将复杂的问题分解成一个个子问题,逐步求解并记录下每个子问题的解,最终得到原问题的解。

这种思想在很多领域都有广泛的应用,例如计算机科学、经济学、物理学等。

一、动态规划的定义与特点动态规划是一种分治法的改进方法,它主要用于解决具有重叠子问题和最优子结构性质的问题。

它的基本思想可以概括为“记住中间结果,以便在需要的时候直接使用”。

动态规划算法的特点包括:1. 问题可以分解为若干个重叠的子问题;2. 子问题的解可以通过已知的子问题解来求解,且子问题的解可以重复使用;3. 需要使用一个数据结构(通常是一个矩阵)来存储子问题的解,以便在需要时直接取出。

二、动态规划的基本步骤动态规划算法通常可以分为以下几个基本步骤:1. 确定问题的状态:将原问题转化为一个或多个子问题,并定义清楚每个子问题的状态是什么。

2. 定义问题的状态转移方程:找出子问题之间的关系,即如何通过已知的子问题解来解决当前问题。

3. 设置边界条件:确定最简单的子问题的解,即边界条件。

4. 计算子问题的解并记录:按顺序计算子问题的解,并将每个子问题的解记录下来,以便在需要时直接使用。

5. 由子问题的解得到原问题的解:根据子问题的解和状态转移方程,计算得到原问题的解。

三、动态规划的实例分析为了更好地理解动态规划的基本思想,我们以求解斐波那契数列为例进行分析。

问题描述:斐波那契数列是一个经典的数学问题,它由以下递推关系定义:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。

解决思路:根据递推关系,可以将问题分解为求解F(n-1)和F(n-2)两个子问题,并将子问题的解累加得到原问题的解。

根据以上思路,可以得到以下的动态规划算法实现:1. 确定问题的状态:将第n个斐波那契数定义为一个状态,记为F(n)。

2. 定义问题的状态转移方程:由递推关系F(n) = F(n-1) + F(n-2)可得,F(n)的值等于前两个斐波那契数之和。

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。

动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。

它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。

1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。

2.定义状态:确定存储子问题解的状态变量和状态方程。

3.确定边界条件:确定初始子问题的解,也称为边界状态。

4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。

5.求解最优解:通过遍历状态变量找到最优解。

1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。

可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。

2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。

给定一个序列,找到其中最长的递增子序列。

可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。

3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。

给定一系列矩阵,求解它们相乘的最小计算次数。

可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。

4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。

可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。

动态规划的基本原理和基本概念

动态规划的基本原理和基本概念

)
=
max/
min
n

d
j
(S
j
,
x
j

)
j=k

7)指标递推方程(动态规划的基本方程):
fk (Sk ) = max/ min{dk (Sk , xk ) + fk+1(Sk+1)}, k = 1,2,..., n

f
n+1
(Sn+1
)
=
0
例 投资金额分配问题.某公司有4百万元资金需要投资,有三个投资 项目可以选择。经市场调查预测,如果向项目 i 投资 j 百万元,则每年
所得到的利润(万元/年)因投资额的不同而有差异,如下表所示。问
应如何投资才能使总的利润最大?
投资额
利润
0
1
2
3
4
项目
项目1
0
16 25 30 32
项目2
0
12 17 21 22
项目3
0
10 14 16 17
解:令每给一个项目考虑投资多少资金为一个决策阶段,则该投资
决策问题可分为三个阶段.决策顺序为:
最优 决策
0 1 1
2 2,3
目标 值
0 12 22
27 31
项目1(阶段1):
状态 0 4 0+31
决策
1
2
3
16+27 25+22* 30+12
4 32+0
最优 决策
2
目标 值
47
S1
x1 S2
x2
S3
x3
47 4
31 4

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。

本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。

二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。

其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。

具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。

这种分解可以通过递归的方式进行。

2. 定义状态:确定每个子问题的独立变量,即问题的状态。

状态具有明确的定义和可计算的表达式。

3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。

这个方程可以是简单的递推关系式、递归方程或其他形式的方程。

4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。

三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。

假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。

目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。

这个问题可以通过动态规划算法来求解。

具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。

(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。

(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。

(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。

2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。

动态规划原理

动态规划原理

动态规划原理
动态规划是一种解决复杂问题的算法思想。

它通过将问题分解成较小的子问题,并通过寻找子问题的最优解来解决整体问题。

动态规划的核心思想是将整体问题拆分成多个重叠子问题,在解决子问题的过程中记录下每个子问题的解。

这样一来,当我们需要求解更大规模的子问题时,可以直接利用已经计算出的子问题解,避免重复计算,提高算法效率。

其中,动态规划的关键步骤包括定义状态、设计状态转移方程和确定边界条件。

首先,我们需要确定问题的状态。

状态可以理解为问题的属性,它描述了问题在不同阶段、不同状态下的特征。

在动态规划中,我们将问题的状态表示成一个或多个变量,用于描述问题的特征。

接着,我们需要设计状态转移方程。

状态转移方程描述了子问题之间的联系和转移规律。

它通过将问题的解与子问题的解联系起来,建立起子问题与整体问题的关系。

通过推导状态转移方程,我们可以由已知的子问题解计算出更大规模的问题解。

最后,我们需要确定边界条件。

边界条件表示问题的终止条件,它是最小规模子问题的解。

边界条件是问题求解的起点,也是递归求解过程的出口。

通过依次求解子问题,并利用已经计算过的子问题解,动态规
划可以高效地解决复杂问题,并得到全局最优解。

因此,它在解决优化问题、序列问题、最短路径问题等方面有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态规划理论一.动态规划的逆向思维法动态规划是一种思维方法,没有统一的、具体的模式。

动态规划可以从多方面去考察,不同的方面对动态规划有不同的表述。

我们不打算强加一种统一的表述,而是从多个角度对动态规划的思维方法进行讨论,希望大家在思维具体问题时,也能够从多个角度展开,这样收获会更大。

逆向思维法是指从问题目标状态出发倒推回初始状态或边界状态的思维方法。

如果原问题可以分解成几个本质相同、规模较小的问题,很自然就会联想到从逆向思维的角度寻求问题的解决。

你也许会想,这种将大问题分解成小问题的思维不就是分治法吗?动态规划是不是分而治之呢?其实,虽然我们在运用动态规划的逆向思维法和分治法分析问题时,都使用了这种将问题实例归纳为更小的、相似的子问题,并通过求解子问题产生一个全局最优值的思路,但动态规划不是分治法:关键在于分解出来的各个子问题的性质不同。

分治法要求各个子问题是独立的(即不包含公共的子问题),因此一旦递归地求出各个子问题的解后,便可自下而上地将子问题的解合并成原问题的解。

如果各子问题是不独立的,那么分治法就要做许多不必要的工作,重复地解公共的子问题。

动态规划与分治法的不同之处在于动态规划允许这些子问题不独立(即各子问题可包含公共的子问题),它对每个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算。

这就是动态规划高效的一个原因。

动态规划的逆向思维法的要点可归纳为以下三个步骤:(1)分析最优值的结构,刻画其结构特征;(2)递归地定义最优值;0(3)按自底向上或自顶向下记忆化的方式计算最优值。

【例题1】背包问题描述:有一个负重能力为m的背包和n种物品,第i种物品的价值为v,重量为w。

在不超过背包负重能力的前提下选择若干个物品装入背包,使这些的物品的价值之和最大。

每种物品可以不选,也可以选择多个。

假设每种物品都有足够的数量。

分析:从算法的角度看,解决背包问题一种最简单的方法是枚举所有可能的物品的组合方案并计算这个组合方案的价值之和,从中找出价值之和最大的方案。

显然,这种靠穷举所有可能方案的方法不是一种有效的算法。

但是这个问题可以使用动态规划加以解决。

下面我们用动态规划的逆向思维法来分析这个问题。

(1)背包问题最优值的结构动态规划的逆向思维法的第一步是刻画一个最优值的结构,如果我们能分析出一个问题的最优值包含其子问题的最优值,问题的这种性质称为最优子结构。

一个问题的最优子结构性质是该问题可以使用动态规划的显著特征。

对一个负重能力为m的背包,如果我们选择装入一个第 i 种物品,那么原背包问题就转化为负重能力为 m-w 的子背包问题。

原背包问题的最优值包含这个子背包问题的最优值。

若我们用背包的负重能力来划分状态,令状态变量s[k]表示负重能力为k的背包,那么s[m]的值只取决于s[k](k≤m)的值。

因此背包问题具有最优子结构。

(2)递归地定义最优值动态规划的逆向思维法的第二步是根据各个子问题的最优值来递归地定义原问题的最优值。

对背包问题而言,有状态转移方程:/max{s[k-w]+v}(其中1≤i≤n,且k-w≥0)s[k]= 若k>0且存在1≤i≤n使k-w≥0,\ 0 否则。

有了计算各个子问题的最优值的递归式,我们就可以直接编写对应的程序。

下述的函数knapsack是输入背包的负重能力k,返回对应的子背包问题的最优值s[k]:function knapsack(k:integer):integer;beginknapsack:=0;for i:=1 to n doif k-w>=0 thenbegint:=knapsack(k-w)+v;if knapsack < t then knapsack:=t;end;end;上述递归算法在求解过程中反复出现了一个子问题,且对每次重复出现的子问题都要重新解一次,这需要多花费不少时间。

下面先考虑一个具体的背包问题。

例如,当 m=3,n=2,v[1]=1,w[1]=1,v[2]=2,w[2]=2,图1示出了由调用knapsack(3)所产生的递归树,每一个结点上标有参数k的值,请注意某些数出现了多次。

3/\2 1/\\1 0 0/图1例如,knapsack(1)被引用了两次:在计算knapsack(3)和knapsack(2)中分别被引用;而knapsack(0)更是被引用了三次。

如果knapsack(1)和knapsack(0)每次都要被重新计算,则增加的运行时间相当可观。

下面,我们来看看动态规划是如何解决这个问题的。

(3)按自顶向下记忆化或自底向上的方式求最优解一般地,如果一个解最优化问题的递归算法经常反复地解重复的子问题,而不是总在产生新的子问题时,我们说该最优化问题包含重迭子问题。

这类问题不宜用分治法求解,因为分治法递归的每一步要求产生相异的子问题。

在这种情况下,采用动态规划是很合适的,因为该方法对每一个子问题只解一次,然后把解存放在一个表中,以便在解同样的子问题时查阅,充分利用了重迭子问题。

一般来说,解决重迭子问题的方式有两种。

①自顶向下的记忆化方式该方式的程序流程基本按照原问题的递归定义,不同的是,它专门设置了一张表,以记忆在求解过程中得出的所有子问题的解。

一个记忆的递归算法为每个子问题的解在表中记录一个表项。

初始时每个表项都包含一个特殊值,以示该表项的解有待填入。

例如背包问题中:s=-1;(0≤i≤m)当在递归算法的执行中第一次遇到一个子问题时(即s=-1),计算其解并填入表中,以后每遇到该子问题,只要查看表中先前填入的值即可。

下面,我们按照自上而下的记忆化方式,写出求背包问题的递归算法。

函数memorized_knapsack输入背包的负重能力k,返回背包问题的解s[k]。

s表应设为全局变量,使得函数执行后,传出所有子问题的解s(0≤i≤m)。

function memorized_knapsack(k:integer):integer;beginif s[k]=-1 thenbegins[k]:=0;for i:=1 to n doif k-w>=0 thenbegint:=memorized_knapsack(k-W)+V;if s[k] < t then s[k]:=t;end;end;memorized_knapsack:=s[k];end;我们在主程序通过调用memorized_knapsack(m)即可获得背包问题的解。

显然这种自顶向下记忆化的算法效率比重复解重迭子问题的knapsack算法要强一些。

此外,在程序中加入判别哪些子问题需要求解的语句,只解那些肯定要解的子问题,从而节省了时间。

②自底向上的方式假设我们要解决在分析函数knapsack当中提出的那个具体的背包问题。

观察一下在调用memorized_knapsack(4)的过程中,s[k]被计算出来的顺序。

我们发现,首先是s[0]被计算出来,然后是s[1],s[2],最后s[3]被计算出来,这与调用的次序正好相反。

动态规划的执行方式是自底向上,所有的子问题计算一次,充分利用重迭子问题。

因此,我们很自然就想到与这种自底向上的执行方式相应的采用自底向上的方式递推所有子问题的最优值。

我们知道,计算负重能力为k的背包问题的解仅依赖于计算负重能力小于k的背包问题的解,因此填s表的方式与解决负重能力递增的背包问题相对应:最初设定负重能力为0的背包问题的解s[0]=0。

然后依次考虑负重能力为1,2,…,m的背包问题的解。

每填入一个s[k](0≤k≤m)时,充分利用所有重迭子问题的解:s[k-w](0≤i≤n,k-w≥0)下面是按照自底向上方式计算背包问题的算法流程。

过程knapsack_order输入背包的负重能力k,s表设为全局变量。

过程执行后所有子问题的解通过s表传给主程序。

procedure knapsack_order(k:integer);beginfor i:=1 to k do s:=0;for j:=1 to k dofor i:=1 to n doif j-w>=0 thenbegint:=s[j-w]+v;if s[j] < t then s[j]:=t;end;end;我们在主程序调用knapsack_order(m),过程执行后s[m]即为背包问题的解。

最后,我们分析一下背包问题的动态规划解法的复杂度。

所需的存储开销主要在s表上,其空间复杂度是O(m)。

而整个s表用两重循环求出,循环内语句的执行只需常数时间,因此,时间复杂度是O(m,n)。

自顶向下的记忆化是动态规划的一种变形。

动态规划的执行方式是自底向上,因此自底向上的计算方式是与动态规划的执行方式相一致的。

它无需递归代价,且维护记忆表的开销也要小些,因此其效率通常好于自顶向下的记忆法。

但是,在动态规划的执行过程中,并不是所有的子问题都要用到它。

对某个具体问题而言,可能有大部分子问题的最优值是不必计算的。

自底向上的计算方式无法判断那些子问题是需要求解的,所以它将一视同仁地处理所有的子问题,这就可能会把大量的时间都花在计算不必解决的子问题上;而自顶向下的记忆法可以判断那些子问题是需要求解的,只解那些肯定要解的子问题,在这个意义上,自顶向下的算法效率又好于自底向上。

所以到底那种方式效率更高,我们要具体问题具体分析。

最后,给出求解背包问题的程序如下:{//背包问题程序}program knapsack;constmaxn=100;maxm=1000;varm,n:integer;S:array[0..maxm] of integer;v,w:array[1..maxn] of integer;{//输入数据}procedure read_data;var i:integer;beginread(m,n);for i:=1 to n do read(v,w);end;{//采用自底向上的方式求解背包问题}procedure knapsack_order;var i,j,t:integer;beginfor i:=1 to m do s:=0;for j:=1 to m dofor i:=1 to n doif j-w>=0 thenbegint:=s[j-w]+v;if s[j] < t then s[j]:=t;end;end;{//主程序}beginread_data;knapsack_order;writeln(s[m]);end.二.动态规划的正向思维法正向思维法是指从初始状态或边界状态出发,利用某种规则不断到达新的状态,直到问题目标状态的方法。

动态规划的正向思维法,正是从已知最优值的初始状态或边界状态开始,按照一定的次序遍历整个状态空间,递推出每个状态所对应问题的最优值。

相关文档
最新文档