数学建模实验三 Lorenz模型与食饵模型
一类具有时滞与Lévy跳的随机捕食者-食饵模型

用连续的随机噪声来描述.因此,本文考虑下列具有时滞与 Lévy跳的随机捕食者 -食饵模型
dx1(tБайду номын сангаас =x1(t)[b1 -c11x1(t)-c12x2(t-τ12)-c13x3(t-τ13)]dt+β11x1(t)dW11(t)+
∫
β12x2 1(t)dW12(t)+
x1(t-)γ1(u)珟N(dt,du),
响,也要考虑随机因素对种内竞争系数的影响,即
·
-cii→ -cii+βi2Wi2(t)(i=1,2,3),
其中,β2ij >0表示白噪声的强度,i=1,2,3,j=1,2.Wij(t)(i=1,2,3,j=1,2)是完备的概率空间(Ω,F,P) 中相互独立的标准的布朗运动.此外种群也可能会受到一些突然的波动,例如:地震、海啸等,这些现象不能
食饵种群之间的种间竞争系数;c13和 c23是捕获系数;c31和 c32代表捕食者对食饵的转化率;以上参数均为正
常数.τij表示时滞,Wi1(t)(i=1,2,3)是白噪声,β2i1(i=1,2,3)是白噪声强度.然而模型(1)仅考虑了对参
数 bi的扰动,没有考虑对种内竞争系数的扰动.为此,本文不仅要考虑随机因素对自然增长率和死亡率的影
(山西大学 数学科学学院,山西 太原 030006)
摘要:研究了一类具有时滞与 Lévy跳的随机捕食者 -食饵模型.首先利用 Lyapunov方法和 Ito^公 式,给出了模型全局正解的存在唯一性.然后根据切比雪夫不等式和指数鞅不等式以及 Borel- Cantelli引理等,得到了解的随机最终有界性以及灭绝性.最后,运用数值模拟验证了理论结果. 关键词:Lévy跳;时滞;捕食者 -食饵模型;灭绝 中图分类号:O211.63 文献标志码:A 文章编号:1672-8513(2019)05-0470-05
几类捕食-食饵模型周期解的存在性与稳定性问题的开题报告

几类捕食-食饵模型周期解的存在性与稳定性问题的开题报告一、选题背景及意义捕食-食饵模型是生态学领域最为经典的研究领域之一,其研究对象是生态系统中的食饵和食肉动物之间的关系。
这种模型的建立可以有效的分析和预测生态系统中的变化,评估人类活动对生态系统的影响。
捕食-食饵模型的研究中存在周期解的存在性和稳定性问题,对此问题的解决可以有效地预测生态系统的变化,制定科学的保护策略,有助于保护地球生态环境,实现可持续发展。
二、选题内容和研究目的本文将以Ricker模型和Lotka-Volterra模型为基础,探讨捕食-食饵模型周期解的存在性和稳定性问题。
具体研究目的包括:1、判断模型的周期解是否存在。
2、分析周期解的稳定性,包括周期解的局部稳定性和全局稳定性。
3、探讨影响周期解稳定性的因素,如参数的变化对周期解的影响。
三、研究方法与预期结果本论文将采用数学建模和分析的方法研究该问题,并通过分析得到如下预期结果:1、在Ricker模型和Lotka-Volterra模型中,周期解的存在性与参数之间的关系。
2、利用线性稳定性分析周期解的局部稳定性。
3、通过Lyapunov函数法或直接算法讨论周期解的全局稳定性。
4、探讨环境变化对模型的周期解稳定性的影响,以及如何通过人类活动控制环境变化来实现捕食-食饵模型的可持续发展。
四、论文的创新点本文将从周期解的存在性和稳定性角度出发,研究捕食-食饵模型的演化及其稳定性。
创新点主要体现在以下几个方面:1、基于周期解探讨捕食-食饵模型的演化情况。
2、针对周期解的局部和全局稳定性分别进行讨论,比较两种模型间的区别。
3、探讨环境变化对模型的周期解稳定性的影响,提出有针对性的保护措施。
五、论文的结构文章的结构设计如下:第一章:绪论1.1 选题背景和意义1.2 选题内容和研究目的1.3 研究方法和预期结果1.4 论文创新点1.5 论文结构第二章:相关理论介绍2.1 捕食-食饵模型基本概念2.2 Ricker模型及其分析2.3 Lotka-Volterra模型及其分析第三章:周期解的存在性分析3.1 Ricker模型的周期解3.2 Lotka-Volterra模型的周期解第四章:周期解的稳定性分析4.1 Ricker模型周期解的局部稳定性4.2 Lotka-Volterra模型周期解的局部稳定性4.3 Ricker模型周期解的全局稳定性4.4 Lotka-Volterra模型周期解的全局稳定性第五章:环境变化对周期解稳定性的影响5.1 环境变化的影响机制分析5.2 人类活动对周期解的影响5.3 指导对策第六章:结论6.1 研究成果回顾6.2 不足之处与改进方向6.3 后续研究建议参考文献。
一类捕食者-食饵种群动力学模型及数值模拟的开题报告

一类捕食者-食饵种群动力学模型及数值模拟的开题报告一、研究背景食物链是自然界中广泛存在的生态现象,其中包括一类捕食者与一种或多种食饵之间的相互作用。
在生态学中,一类捕食者-食饵种群动力学模型是常见的研究对象,其关注点在于探究捕食者和食饵种群数量之间的互动过程,以及这种互动过程对生态系统的影响。
近年来,随着数值模拟技术的不断发展,研究者可以通过模拟程序模拟真实生态系统中的捕食者与食饵的数量变化,从而深入研究生态系统中的动态变化规律,梳理生态系统中的关键变量及相互关系。
二、研究内容本文拟以一类捕食者-食饵种群动力学模型为研究对象,通过数学模型与数值模拟相结合的方式,探究捕食者和食饵数量之间的相互作用,并分析它们对生态系统的影响。
具体来说,本文将研究以下几点内容:1.建立一类捕食者-食饵种群动力学模型,并探究其数量变化规律;2.采用数值模拟方法模拟不同捕食者和食饵初始数量时的数量变化过程,分析动态过程与变化规律;3.通过对动态过程的分析,研究捕食者和食饵数量之间的相互作用,并揭示它们对生态系统的影响机制。
三、研究方法1.建立数学模型:采用典型的捕食者-食饵模型,通过运用微积分和差分方程求解,建立二者之间的动态变化方程;2.数值模拟:采用数值计算方法求解数学模型,运用Python语言编写仿真程序,模拟不同条件下捕食者和食饵数量的变化过程;3.结果分析:对仿真结果进行分析,探究捕食者与食饵数量之间的相互作用,并揭示其对生态系统的影响机制。
四、预期效果与意义1.建立一类捕食者-食饵种群动力学模型,拓展捕食者-食饵模型的应用范围,为生态系统研究提供新的理论框架;2.运用数值模拟技术研究捕食者和食饵数量的动态变化和相互作用,获得更为精准的结果,进一步理解生态系统的演化机制;3.揭示生态系统中捕食者和食饵数量之间的相互作用和对生态系统的影响机制,为生态保护和可持续发展提供参考。
一类捕食者-食饵模型的敏感性分析和最优控制

一类捕食者-食饵模型的敏感性分析和最优控制一类捕食者-食饵模型的敏感性分析和最优控制捕食者-食饵模型是一种描述两种不同生物种群之间相互作用的数学模型,常用于生态系统和环境保护等领域的研究中。
其中,捕食者指的是靠捕食其他生物为生的动物,而食饵则是捕食者的猎物。
在这种模型中,捕食者的存在和数量会影响食饵的种群数量,而食饵数量的减少也会影响捕食者数量的大小。
本文将从敏感性分析和最优控制两个方面对一类捕食者-食饵模型进行研究。
一、敏感性分析在数学建模的过程中,敏感性分析是一个非常重要的环节,可以通过分析一些重要的参数的变化对模型结果的影响,来判断模型的准确性和可靠性。
对于一类捕食者-食饵模型而言,一些关键的参数包括捕食者的增长率、食饵自然死亡率和捕食率等。
以R x∈[0,1], Ry ∈[0,1] 为状态,t ∈[0, ∞) 为时间的Lotka- Voltera 模型为例,该模型的方程如下:dRx/dt= Rx(α-βRy)dRy/dt= Ry(δRx-γ)其中,Rx 和Ry 分别表示捕食者和食饵类群数量的变化,α是捕食者的出生率常数,β是捕食率常数,δ是食饵的增长率常数,γ是自然死亡率常数。
该模型可以用来描述食饵数量对捕食者数量的影响,以及捕食者的数量对食饵数量的影响。
通过敏感性分析,可以得出以下结论:1、捕食者增长率的变化对模型结果的影响较小,这是因为在该模型中,捕食者数量的增长主要依赖于食饵数量的增加,而不是捕食者自身的增长率。
因此,在此模型中,捕食者的增长率不是一个非常重要的参数。
2、食饵自然死亡率的变化对模型结果有较大的影响,当食饵自然死亡率增加时,食饵的数量减少,进而影响捕食者的数量,导致整个生态系统失衡。
3、捕食率的变化对模型结果也有较大的影响。
当捕食率增加时,捕食者数量迅速增加,会让食饵数量大幅度下降,使得捕食者数量接下来也会下降。
反之,当捕食率减小时,食饵数量随之增加,导致捕食者的数量增加。
捕食模型(生物数学)

捕食模型(生物数学)捕食模型(食饵捕食模型,生物数学重要模型)假设及建立模型:假设一个生态系统,其中含有两种生物 A 生物和B 生物,其中A 生物是捕食者,B 生物是被捕食者。
建立捕食数学模型1) 在观测数据(DATA1)无误差的情况下,确定模型中的参数,并分析误差。
2) 在观测资料有误差(时间变量不含有误差)的情况下,请分别利用观测数据DATA2和DATA3,确定参数在某种意义下的最优解,并与仿真结果比较,进而改进你们的数学模型。
3) 假设连观测资料的时间变量也含有误差,试利用数据DATA4,建立数学模型,确定参数在某种意义下的最优解。
通过对此生态系统的观测,可以得到相关的观测数据。
观测数据的格式依次为:观测时刻jt 、A 生物数目)(j t x 、B 生物数目)(j t y对于生态系统中的两种生物A 和B ,A 生物为捕食者,B 生物为被捕食者。
在某一段时期内,A 生物的数量与B 生物的数量之间存在一定的关系。
根据已知条件,可将(15)式改写为如下形式:12()dxx y dtαα=+ (1)34()dyy x dtαα=+ (2)0506()()x t y t αα=??=?其中()16k k α≤≤为模型的待定参数。
进行变换可得:3412()()y x dy dx x y αααα+=+ (3)3412()()dx x dy y y xαααα++=即(4)积分得:10203040ln ln )()(ln ln )()0y y y y x x x x αααα-+-+-+-=(可将上述表达式改写成n 元齐次线性方程组的形式,如下所示:m n A 0α?= (5)上述n 元齐次线性方程组有非零解的充分必要条件是系数矩阵的秩R(A)<="">我们首先用DATA1中的3组数据确定,,,,4321a a a a 程序clearA=zeros(3,4);A(1,1)=log(0.####82216 /60); A(1,2)= 60-0.####82216;A(1,3)=-log(11.750840650304518 /10); A(1,4)=10-11.750840650304518 ; A(2,1)=log(7.108705996120129/60);A(2,2)= 7.108705996120129-60; A(2,3)=-log(3.4####9176 /10); A(2,4)=10-3.4####9176; A(3,1)=log(0.425####24/60); A(3,2)= 0.425####24-60;A(3,3)=-log(20.80921881438798/10); A(3,4)=10-20.80921881438798 ;r=rank(A); % rank(A)=r<="" bdsfid="110" p="" r=""y="null(A," 时,该方程有无穷多个解,求它的一个基本解=""> 表1 )41(a '≤≤k k 的值'1a'2a'3a '4a-0.0478 -0.0042-0.99250.11253314140000222222(ln ln )ln ln y y y x x y x x αααααααααααα=+---++ (28)如设:31400000222(ln ln )y y x x αααβααα=+--,112αβα=-,422αβα=,332αβα=,1x =ln y ,2x =x ,3ln x x =,则(28)式可以写为如下形式;0112233y x x x ββββ=+++ (29)对于(29)式中因变量y 是自变量{}123x x x x =的线性函数。
《数学模型实验》

《数学模型实验》实验一 被食者——食者系统的数学模型一、 实验大纲通过建立被食者与食者系统的数学模型并进行模拟,将模拟结果与实际观察数据进行对照分析。
并通过计算机观察改变各种参数后所引起的数量的变化。
二、 实验指导1、建立被食者与食者系统的数学模型(1) 害虫麦蚜的数量动态模型:x dtdx )-(αλ= 其中α表示麦蚜遭天敌消灭的速率。
(2) 天敌数量动态模型:y dtdy )-(βμ-= (3) 初始条件:000(,)0(y y x x )==2、介绍微分方程的各种数值算法3、通过编程模拟被食者与食者在一段时间内的数量变化,并观察出变化规律4、改变模型中的各项参数,并观察变化规律。
三、 实验报告(见附表)实验二 安全过河问题一、 实验大纲通过建立安全过河的决策模型,进行计算编程求解。
二、 实验指导1、问题分析与建立模型(1) 将该问题可看作一个多步决策的过程。
设第k 次渡河前此岸的商人数为k x ,随从数为k y , ,2,1=k ,k x ,k y =0,1,2,3。
将二维向量),(k k k y x S =定义为状态,安全渡河条件的状态集合称为允许状态集合,记作S ,则:}2,1;3,2,1,0,30|),{(=====y x y x y x S 或(2) 又设第k 次渡船上的商人数为k u ,随从数为k v 。
将二维向量),(k k k v u d =定义为决策.相应的允许决策集合记作D ,则由小船的容量可知:}2,1|),({=+=v u v u D(3) 分析状态k S 随着决策k d 变化的规律:k k k k d S S )1(1-+=+2、算法分析将问题转化为求决策)2,1(n k D d k =∈,使状态S S k ∈按照转移律(5.3),由初始状态)3,3(1=S 经有限步(设为n 步)到达状态)0,0(1=+n S 。
3、探讨无解的情况及其满足的条件4、将问题推广至n人的情形三、实验报告(见附表)实验三 飞行管理问题一、 实验目的通过分析飞机空中飞行可能发生的各种问题与应对策略后,建立模型与计算机模拟,能更快速的科学的指导某区域中飞机的飞行航向。
捕食者有病的食饵—捕食者模型

捕食者有病的食饵—捕食者模型
杨建雅;张凤琴
【期刊名称】《生物数学学报》
【年(卷),期】2007(22)3
【摘要】建立了捕食者有病的食饵—捕食者模型;由Hurwitz判据、LaSalle不变性原理获得了平衡点稳定的条件;并给出了模型的撮动解.
【总页数】6页(P419-424)
【关键词】食饵-捕食者模型;传染病;渐近稳定性;平衡点;撮动解
【作者】杨建雅;张凤琴
【作者单位】运城学院应用数学系
【正文语种】中文
【中图分类】O175.1
【相关文献】
1.具有r+1类功能性反应函数的捕食者有病的食饵—捕食者SIS模型 [J], 王烈;陈斯养
2.具有庇护效应且捕食者有病的食饵-捕食者模型分析 [J], 胡永亮;冯宇星;;
3.具有庇护效应且捕食者有病的食饵-捕食者模型分析 [J], 胡永亮;冯宇星
4.β扰动的食饵有病的随机食饵与捕食者系统的渐近行为 [J], 刘振文;郑凯鸿
5.捕食者环境容纳量依赖于食饵的食饵-捕食者模型 [J], 刘汉武;张凤琴;李秋英因版权原因,仅展示原文概要,查看原文内容请购买。
一类捕食―食饵模型的性质-2019年精选文档

一类捕食―食饵模型的性质
文章研究如下捕食-食饵模型在Neumann条件下的一些性质,
这里,分别为食饵和捕食者种群数量,均为正常数,其中衡量了捕食者除食饵之外的其他食物来源,文[1]探讨了系统(1)的生态学行为.文[2]研究了具有避难所和修正Leslie-Gower项的捕食食饵系统,得到正平衡点存在及全局稳定的条件,探讨了避难所和常数k对系统的影响,特别是对系统持久性和种群数量的影响,得到了些新结论. 文[3]考虑了一个齐次Neumann边界条件下具避难所的捕食-食铒模型的平衡态问题,获得了该模型正平衡态解的进一步结果。
给出了正解的先验估计,并用能量方法得到其非常数正解的不存在性,利用拓扑度理论得出其非常数正解的存在性。
常数正解的渐进稳定性
令是齐次Neumann边界条件下算子在上的特征值,是关于在中的特征子空间.是的一组正交基,
,
则
下面我们用文[5]中的方法来讨论系统(1)在正常数平衡解处的稳定性.
定理若,则系统(1)的正常数平衡解是渐近稳定的.
证明:令其中
令,则系统(1)在处的线性化方程为.对任意的是算子的不变子空间,是算子在上的特征值当且仅当是的特征值.而的特征多项式其中
容易验证在条件成立时,对于任意的,都有所以是渐近稳定的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模实验三 Lorenz 模型与食饵模型一、实验目的1、学习用Mathematica 求常微分方程的解析解和数值解,并进行定性分析;2、学习用MATLAB 求常微分方程的解析解和数值解,并进行定性分析。
二、实验材料问题图是著名的洛仑兹混沌吸引子,洛仑兹吸引子已成为混沌理论的徽标,好比行星轨道图代表着哥白尼、开普勒理论一样。
洛仑兹是学数学出身的,1948年起在美国麻省理工学院(MIT )作动力气象学博士后工作,1963年他在《大气科学杂志》上发表的论文《确定性非周期流》是混沌研究史上光辉的著作。
以前科学家们不自觉地认为微分方程的解只有那么几类:1)发散轨道;2)不动点;3)极限环 ;4)极限环面。
除此以外,大概没有新的运动类型了,这是人们的一种主观猜测,谁也没有给出证明。
事实上这种想法是非常错误的。
1963年美国麻省理工学院气象科学家洛仑兹给出一个具体模型,就是著名的Lorenz 模型,清楚地展示了一种新型运动体制:混沌运动,轨道既不收敛到极限环上也不跑掉。
而今Lorenz 模型在科学与工程计算中经常运用的问题。
例如,数据加密中。
我们能否绘制出洛仑兹吸引子呢图 洛仑兹混沌吸引子假设狐狸和兔子共同生活在同一个有限区域内,有足够多的食物供兔子享用,而狐狸仅以兔子为食物.x 为兔子数量,y 表狐狸数量。
假定在没有狐狸的情况下,兔子增长率为400%。
如果没有兔子,狐狸将被饿死,死亡率为90%。
狐狸与兔子相互作用的关系是,狐狸的存在使兔子受到威胁,且狐狸越多兔子增长受到阻碍越大,设增长的减小与狐狸总数成正比,比例系数为。
而兔子的存在又为狐狸提供食物,设狐狸在单位时间的死亡率的减少与兔子的数量成正比,设比例系数为。
建立数学模型,并说明这个简单的生态系统是如何变化的。
预备知识1、求解常微分方程的Euler 折线法求初值问题⎩⎨⎧=='00)(),,(y x y y x f y () 在区间],[0n x x 上的数值解,并在区间插入了结点)()(110n n x x x x <<<<-Λ。
由导数的定义hx fhxfxfh)()(lim)(-+='→,即微商hxfhxfxf)()()(-+≈'。
(右端称为差商)从而可在每个结点上用差商来近似替代导数,将微分方程),(yxfy='转化为代数方程组(此处的代数方程组常称为差分方程)))(,()()(kkkk xyxfhxyhxy=-+,1,,1,0-=nkΛ加上初值条件则可确定一组解。
求解这一差分方程即可得到微分方程初值问题的数值解。
变形上述方程有))(,()()(kkkkxyxhfxyhxy+=+,1,,1,0-=nkΛ记hxxkk+=+1,kkyxy=)(,从而1)(+=+kkyhxy,则有⎪⎩⎪⎨⎧+=+==++,),(,,)(11kkkkkkyxhfyyhxxxyy1,,1,0-=nkΛ这就是求解微分方程初值问题的欧拉(Euler)折线法。
之所以称为欧拉折线法是因为:就几何角度而言,所求得的近似解是初值问题精确解的折线逼近,而且此折线的起点是初值条件所对应的点。
2、微分方程的Mathematica求解(1)求解命令有两个命令:DSolve[ ]与NDSolve。
命令格式分别为DSolve[方程,y,x]NDSolve[方程,y,{x,xl,x2}]。
其中方程必须为微分方程及相应初始条件,{x,xl,x2}说明要给出数值解的范围为区间[x1,x2]。
(2)使用的注意事项①方程中的函数应写成完整形式y[x],以表明y是x的函数;②方程应写成…==…的形式;③重复使用时,应随时清除要涉及变量的以前定义,方法是Clear[y];④使用NDSolve时,所加初始条件的个数应等于微分方程的阶数,同时方程中也不含其它参数,否则给不出正确结果。
(3)解的表示形式Mathematica给出的微分方程的解是以纯函数(或数学中的算子)定义的形式给出的,例如:DSolve[y'[x]+ 3*y[x]==2x,y,x]的结果是3、微分方程的MATLAB求解(1)求解析解命令dsolve;(2)求数值解命令ODE或Simulink。
建立模型问题(1)的洛仑兹吸引子可以用下面的微分方程得到,著名的Lorenz 模型的状态方程可表示为⎪⎩⎪⎨⎧-+-=+-=+-=)()()()()()()()()()()()(322133223211t x t x t x t x t x t x t x t x t x t x t x t x ρσσβ&&& 若令,,,3/82810===βρσ 且初值为ε===)0(0)0()0(321x x x ,, 为一个小常数,假设1010-=ε。
求微分方程的数值解,并绘制出时间曲线与相空间曲线。
问题(2)是著名的食饵模型,数学模型为⎩⎨⎧+-='-='xy y y xy x x 001.09.002.04 练习题1、求解微分方程22x xe xy y -=+'的通解。
求解的Mathematica 命令为:DSolve[y'[x]+2*x*y[x]== x*E^(-x^2),y,x] 或者DSolve[D[y[x],x]+2*x*y[x]== x*E^(-x^2),y,x]2、求微分方程0=-+'x e y y x 在初始条件e y x 21==下的特解。
应给出的命令为:DSolve[{x*y'[x]+ y[x]-E^x==0,y[1]==2E},y,x]3、求0cos 2)1(2=-+-x xy dxdy x 在初始条件1)0(=y 下的特解,并画出解的图形。
要求分别求解析解与数值解并作比较。
清除要涉及变量的命令为:Clear[x,y]求解析解的命令为:sc=DSolve[{(x^2-1)y'[x]+2x*y[x]-Cos[x]==0,y[0]==1},y,x]画解析解图像的命令为:y=y/.sc[[1]]g1=Plot[y[x],{x,0,1},PlotStyle->RGBColor[1,0,0]]注:也可将画图范围变为Plot[y[x],{x,0,4}]求数值解的命令为:sn=NDSolve[{(x^2-1)y'[x]+2x*y[x]-Cos[x]==0,y[0]==1}, y,{x,0,1}]画数值解图像的命令为:y=y/.sn[[1]]g2=Plot[y[x],{x,0,1}]比较解析解图像与数值解图像的命令为:Show[g1,g2]4、求微分方程组⎪⎩⎪⎨⎧=--=++03,5y x dtdy e y x dt dx t 在初始条件1)0(=x ,0)0(=y 下的解,并画出解函数)(x y y =的图形。
求解微分方程组的命令为:Clear[x,y,t]xy=DSolve[{x'[t]+5*x[t]+y[t==E^t,y'[t]-x[t]-3*y[t]==0,x[0]==1,y[0]==0},{x,y},t]画解的相位图的命令为:y=y/.xy[[1]];x=x/.xy[[1]];ParametricPlot[{x[t],y[t]},{t,0,3},PlotRange->{{-10,2},{0,5}}]注:图中反应出y 随x 的变化关系。
三、实验准备认真阅读实验目的与实验材料后要正确地解读实验,在此基础上制定实验计划(修改、补充或编写程序,提出实验思路,明确实验步骤),为上机实验做好准备。
四、实验思路提示实验步骤1、求解问题(2)中的食饵模型的微分方程组,并画出解的图形和相位图。
(1)以x=800,y=100为初始值,计算x (t ),y (t ),当t ∈[0,14]时的数据。
绘出解的图形,并分析捕食者和被捕食者的数量变化规律。
可以先用下面的命令求解析解:Clear[x,y,t]xy=DSolve[{x'[t]==4*x[t]*x[t]*y[t],y'[t]==*y[t]+*x[t]*y[t],x[0]==800,y[0]==100},{x,y},t]注:可以发现不能求出解析解。
修改代码如下,可以求数值解:Clear[x,y,t]xy=NDSolve[{x'[t]==4*x[t]*x[t]*y[t],y'[t]==*y[t]+*x[t]*y[t],x[0]==800,y[0]==100},{x,y},{t,0,14}]绘出解的图形:y=y/.xy[[1]];x=x/.xy[[1]];Plot[{x[t],y[t]},{t,0,14},PlotStyle->{RGBColor[0,0,1],RGBColor[1,0,0]}]图捕食者和被捕食者的数量变化(2)以x为横坐标,y为纵坐标绘制相位图。
根据图形分析被捕食者数量增加(减少)对捕食者数量的影响。
绘制相位图的命令:ParametricPlot[{x[t],y[t]},{t,0,14}]图相位图2、用MATLAB求解问题(1)中Lorenz 模型的微分方程。
(1)打开MATLAB的编辑器;(2)在编辑器中用下面的几个语句描述微分方程,并将其保存在的m文件中:f unction xdot = lorenzeq(t,x)xdot=[-8/3*x(1)+x(2)*x(3);-10*x(2)+10*x(3);-x(1)*x(2)+28*x(2)-x(3)];(3)新建命令文件:t_final=100; x0=[0;0;1e-10];[t,x]=ode45('lorenzeq',[0,t_final],x0);plot(t,x),figure; plot3(x(:,1),x(:,2),x(:,3)); axis([10 40 -20 20 -20 20]);绘制出时间曲线与相空间曲线,如下图所示。
图时间曲线与相空间曲线思考问题1、运用Mathematica求解Lorenz 模型的微分方程组,从而了解系统状态是如何变化的。
2、求解以下问题(广告的效用):某公司生产一种耐用消费品,产品一上市,该公司即开始做广告,一段时期的市场跟踪调查后,该公司发现:单位时间内购买人口百分比的相对增长率与当时还没有购买的百分比成正比,且估得此比例系数为。
(1)试模拟求解该问题,即购买人口的百分比与(做广告)时间的关系;(2)建立该问题的数学模型,并求其数值解与模拟结果作以比较;(3)厂家问:要做多少次广告(设上述单位时间指的是广告次数X可使市场购买率达到80 %。