2016-2017学年新人教A版 必修3高中数学 2.2.1用样本的频率分布估计总体分布教案 (1)(精品)
【公开课课件】必修3:2.2.1用样本的频率分布估计总体分布课件(共40张PPT)

思考2:对于样本数据:3.1,2.5,2.0, 0.8,1.5,1.0,4.3,2.7,3.1,3.5, 用茎叶图如何表示?
茎叶 08 10 5 2057 3115 43
画茎叶图的步骤:
第一步,将每个数据分为“茎”(高位) 和“叶”(低位)两部分;
第二步,将最小的茎和最大的茎之间的 数按大小次序排成一列,写在左(右) 侧; 第三步,将各个数据的叶按大小次序写 在茎右(左)侧.
3.(导学案P79针对训练2)
4.(导学案P79例3)
课堂小结
1.编制频率分布直方图的步骤: ①找最大值与最小值。 ②决定组距与组数 ③决定分点 ④登记频数,计算频率,列表,画直方图
2.频率分布折线图与总体密度曲线 3.绘制茎叶图的步骤
〈一〉频率分布的概念:
频率分布是指一个样本数据在各个小范围内所占比例 的大小。一般用频率分布直方图反映样本的频率分布.
〈二〉画频率分布直方图其一般步骤为
(1)计算一组数据中最大值与最小值的差,即求极差 (2)决定组距与组数 (3)将数据分组 (4)列频率分布表 (5)画频率分布直方图
第一步: 求极差: (数据组中最大值与最小值的差距) 最大值4.3 最小值0.2 所以极差 4.3-0.2 = 4.1
0.020 0.016 0.012
0.008 0.004
o
90 100 110 120 130 140 150 次数
4 .投掷一枚均匀骰子44次的记录是:
32415134565 42531341451 63312426346 61622526543
现对这些数据进行整理,试画出频数分布条形图.
第一步:写出样本可能出现的一切数值,即: 1,2,3,4,5,6 共6个数.(数据分组) 组距=1
人教高中数学必修三2.2.1用样本的频率分布估计总体分布课件

频率散布直方图以面积的情势反应了数据落在 各个小组的频率的大小.
作业
1、课时训练 P73 2、探究咱班学生的身高
散布情况 3、探究频率散布折线图和
总密度曲线
频率 组距 0.5 0.4 0.3 0.2 0.1
宽度:组距
高度:
频率 组距
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
画频率散布直方图
频率/组距
注意:
① 这里的纵坐标不是频率, 而是频率/组距;
0.50 0.40
0.50 ② 某个区间上的频率用
0.44
这个区间矩形的面积表示;
2.2.1用样本的频率散布 估计总体散布
学习目标
1、理解并学会画频率散布表; 2、掌握频率散布直方图的画法,
并能理解在频率散布直方图 中用面积表示频率。
一、复习回顾
1.我们已经学习了哪些抽样的方法?
简单随机抽样
系统抽样
分层抽样
随机抽样是收集数据的方法,如何通过 样本数据所包含的信息,估计总体的基 本特征,即用样本估计总体,是我们需 要进一步学习的内容.
二、样本估计总体的方法
一般分成两种: ①用样本的频率散布估计总体的散布. ②用样本的数字特征(如平均数、标准差 等)估计总体的数字特征.
• 我国是世界上严重缺水的国家之一。
如何划在本市试
行居民生活用水定额管理,即确定一个居民月用 水量标准a , 用水量不超过a的部分按平价收费,超 过a的部分按议价收费。
思考:由上表,大家可以得到什么信息?
三、样本分析
一般通过表、图、计算来分析 数据,帮助我们找出样本数据中的 规律,使数据所包含的信息转化成 直观的容易理解的情势。
人教a版必修三:《2.2.1用样本的频率分布估计总体分布(2)》ppt课件(33页)

明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.1(二)
探究点二:茎叶图
思考3 一般地,画出一组样本数据的茎叶图的步骤如何?
答 第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;
第二步,将最小的茎和最大的茎之间的数按大小次序排成一列,写在左(右)侧; 第三步,将各个数据的叶按次序写在茎右(左)侧.
第二章 统 计
§2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布(二)
本节知识目录
2.2.1(二)
用样本
明目标、知重点
的频率
分布估
填要点、记疑点 探究点一 探要点、究所然 探究点二 当堂测、查疑缺 频率分布折线图、总体 密度曲线的概念 茎叶图
计总体
分布
(二)
明目标、知重点
填要点、记疑点
中称这条光滑曲线为总体密度曲线.那么下图中阴影部分的面积有何实际意义?
答 图中阴影部分的面积,就是总体在区间(a,b)内的取值的百分比.
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.1(二)
探究点一:频率分布折线图、总体密度曲线的概念
思考 5
对于一个总体,如果存在总体密度曲线,能否通过样本数据准确地画出总
明目标、知重点 填要点、记疑点
主目录
B.x甲>x乙;甲比乙成绩稳定 D.x甲<x乙;甲比乙成绩稳定
探要点、究所然 当堂测、查疑缺
探要点、究所然
2.2.1(二)
探究点二:茎叶图
解析 从茎叶图可知,甲五次成绩中一次茎为8,一次茎为9,而乙五次成绩中,茎 8和茎9各两次,故可知x甲<x乙,乙比甲成绩稳定.
人教版高中数学必修三第二章第2节 2.2.1用样本的频率分布估计总体分布 课件(共14张PPT)

(假设通过抽样),我们获得了100位居民某年的月平均用水量(单位:t)
问题1:面对这些比较多、比较乱、没有规律的数据,你能想到用什么方法把它 们进行归纳、分类,使它们更简洁呢? 问题2:如果希望88%的居民按平价收费,日常生活不受影响,那么标准a定为多 少比较合理呢 ?
学习环节2:自主阅读课本P65-P67完成以下问题
茎叶图 (一种被用来表示数据的图)
例: 甲乙两人比赛得分记录如下: 甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39 乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39 用茎叶图表示两人成绩,说明哪一个成绩好.
2、为了了解高一学生的体能情况,某校抽取部分学生进行一分 钟跳绳次数次测试,将所得数据整理后,画出频率分布直方 图(如图),图中从左到右各小长方形面积之比为2:4:17: 15:9:3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少? 频率/组距
0.036
0.032
(2)若次数在110以上(含110次) 0.028
2.2.1用样本的频率分布估计总体分布
学习环节1:问题来源
现实生活中我们会遇到许多统计数据的问题,如NBA的一 场球赛的数据统计,关于国计民生的经济数据统计等,如 何对数据进行统计才能让我们从数据中知道所其所包含的 信息呢?这节课我们来学习一些简单的统计方法
我国是世界上严重缺水的国家之一,城市缺水问题较为突 出,某市政府为了节约生活用水,计划在本市试行居民生 活用水定额管理,即确定一个居民月用水量标准a,用水 量不超过a的部分按平价收费,超出a的部分按议价收费
(1)计算极差:一组数据中最大值与最小值的差
人教A版必修3《2.2.1用样本的频率分布估计总体分布》优化训练ppt课件

(1)列出样本频率分布表; (2)画出频率分布直方图. 解:(1)在样本数据中,最大值是 518,最小值是 483,极 差为 35.
35 3 若取组距为 4,则 4 =84,要分为 9 组,组数合适,故取
组距为 4,分 9 组,分点比数据多一位小数,故把第一组起点
稍微小一点,故分组如下:
[482.5,486.5],[486.5,490.5],„,[514.5,518.5].
(2)频率分布直方图,如图 D13.
图 D13
【变式与拓展】
2.为了让学生了解环保知识,增强环保意识,某中学举行
了一次“环保知识竞赛”,共有 900 名学生参加了这次竞赛.为 了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为 整数,满分为 100 分)进行统计.请你根据尚未完成并有局部污损 的频率分布表和频率分布直方图(如图 2-2-3),解答下列问题: (1)填充频率分布表的空格(将答案直接填在表格内);
列表如下: 分组 [482.5,486.5) [486.5,490.5) [490.5,494.5) [494.5,498.5) [498.5,502.5) [502.5,506.5) [506.5,510.5) [510.5,514.5) [514.5,518.5] 合计 频数累计 正 正正正 正正正正 正正 正正 正正正 正 频数 8 3 17 20 14 10 19 6 3 100 频率 0.08 0.03 0.17 0.20 0.14 0.10 0.19 0.06 0.03 1.00
当数据由整数部分和小数部分组成时,可以把整数部分作为
________ ,小数部分作为________. 茎 叶
练习 2:为了了解某校教师使用多媒体进行教学的情况,
2.2.1用样本的频率分布估计总体分布

总体密度曲线
反映了总体在各个范围内取值的百分比,精确地 反映了总体的分布规律。是研究总体分布的工具. 用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布直方图就会无限接 近总体密度曲线,就越精确地反映了总体的分布 规律,即越精确地反映了总体在各个范围内取值 百分比。
定额管理,即确定一个居民月用水量标准a, 用水量不超过a的部分按平价收费,超出a的 部分按议价收费.那么①标准a定为多少比较合 理呢? ②为了较合理地确定这个标准,你认 为需要做哪些工作?
通过抽样,我们获得了100位居民某年的月平均 用 水量(单位: t) ,如下表:
思考:由上表,大家可以得到什么信息?
2019/4/10
二、画频率分布直方图的步骤
1.求极差(即一组数据中最大值与最小值的差)
4.3 - 0.2 = 4.1
极差 4.1 2.决定组距与组数: = 组距= = 0.5 8 组数
当数据在100个以内时,常分8-12组.
3.将数据分组
[0,0.5 ),[0.5,1 ),…,[4,4.5]
4.列频率分布表
月均用水量 /t 4.5
归纳: 作频率分布直方图的方法为:
把横轴分成若干段,每一段对应一个组 的组距,以此线段为底作矩形,高等于 该组的频率/组距, 这样得到一系列矩形, 每一个矩形的面积恰好是该组上的频率, 这些矩形构成了频率分布直方图.
三、频率分布直方图再认识 1、小长方形
频率
的面积总和=?
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
2019/4/10
当总体中的个体数很多时(如抽样调查全国城市 居民月均用水量) ,随着样本容量的增加,作图时 所分的组数增多,组距减少,你能想象出相应的 频率分布折线图会发生什么变化吗?
人教A版高中数学必修三2.2.1.2《用样本的频率分布估计总体分布(二)》课件(新人教A必修3)
►A man is not old as long as he is seeking something. A man is not old until regrets take the place of dreams. 只要一个人还有追求,他就没有老。直到后悔取代了梦想,一个人才算老。
组数=Βιβλιοθήκη 极差 组距4.1 0.5
8.2
第三步: 将数据分组 ( 给出组的界限)
第四步: 列频率分布表. (包括分组、频数、频率、频率/组距)
第五步: 画频率分布直方图(在频率分布表的基础上绘制,横
坐标为样本数据尺寸,纵坐标为频率/组距.)
(一)频率分布折线图:
画好频率分布图后,我们把频率分布直方图 中各小长方形上端连接起来,得到的图形.
画出频率分布折线图. 频率/组距 (取组距中点, 并连线 )
0.6
0.5
0.5
0.44
0.4
0.3
0.3
0.3
0.2
0.16
0.1 0.08
0.1 0.08 0.04
0
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
总体密度曲线:
在样本频率分布直方图中,当样本容量增加,作图时 所分的组数增加,组距减少,相应的频率折线图会越 来越接近于一条光滑曲线,统计中称这条光滑曲线为 总体密度曲线. 它能够精确地反映了总体在各个范围 内取值的百分比,它能给我们提供更加精细的信息.
甲
乙
8 4, 6, 3 3, 6, 8 3, 8, 9
高中数学人教A版必修三2.2.1《用样本的频率分布估计总体分布》(2课时)课件
中
一天生
产该
产品数
量在
0.025 0.020
55,75 的人数是 .
0.015 0.010
0.005
0 45 55 65 75 85 95
产品数量
图3
茎叶图
频率分布表、频率分布直方图和折线图的主要作用是表示样 本数据的分布情况,此外,我们还可以用茎叶图来表示样本数据的 分布情况.
一般地,画出一组样本数据的茎叶图的步骤如何?
2.2 用样本估计总体
2.2.1 频率分布折线图与茎叶图
(第2课时)
本课主要学习频率分布折线图与茎叶图的相关内容, 具体包括频率分布折线图、总体密度分布曲线以及茎叶图 的概念及画法。
本课开始简单回顾了上一节所学的频数分布直方图的 制作步骤。接着以两个组距不同的频率分布直方图对比作 为课前导入,提出问题让学生回答。这里便引入频率分布 折线图和总体密度曲线的概念,紧着通过例题和习题进行 巩固。 第二部分介绍茎叶图的概念及绘制方法,并用案例 详细解释,并指出了茎叶图的优点和适用范围。
30
80
40
30
(1)列出频率分布表; (2)画出频率分布直方图; (3)估计电子元件寿命在100h~400h以内的频率; (4)估计电子元件寿命在400h以上的频率;
(1)列出频率分布表;
寿命 100~200
200~300 300~400 400~500 500~600
合计
频数 20 30 80 40
实例1
某篮球运动员在某赛季各场比赛的得分情况如下:12, 15,24,25,31,31,36,36,37,39,44,49,50
茎叶图:
1
25
2
45
茎:十
2.2.1 用样本的频率分布估计总体分布 课件(人教A版必修3) (1)
)
【做一做 2-2】 在画频率分布直方图时, 某组的频数为 10, 样本容量为 50, 总体容量为 600, 则该组的频率是( A.
1 5
) C.
1 10
B.
1 6 10 1
D.不确定
解析: 该组的频率是50 = 5. 答案: A
3.频率分布折线图和总体密度曲线 ( 1) 类似于频数分布折线图, 连接频率分布直方图中各个小长方形上端的中 点, 就得到频率分布折线图. 一般地, 当总体中的个体数较多时, 抽样时样本容量就不能太小.例如, 如果 要抽样调查一个省乃至全国的居民的月均用水量, 那么样本容量就应比调查一 个城市的时候大.可以想像, 随着样本容量的增加, 作图时所分的组数增加, 组距 减小, 相应的频率折线图会越来越接近于一条光滑曲线, 统计中称这条光滑曲线 为总体密度曲线.
频率分布折线图反映了数据的变化趋势.总体密度曲线反映了总体在各个范围 内取值的百分比, 它能给我们提供更加精细的信息.
( 2) 估计方法: 实际上, 尽管有些总体密度曲线是客观存在的, 但是在实际应 用中我们并不知道它的具体表达形式, 需要用样本来估计.由于样本是随机的, 不同的样本得到的频率分布折线图不同; 即使对于同一个样本, 不同的分组情况 得到的频率分布折线图也不同.频率分布折线图是随样本容量和分组情况的变 化而变化的, 因此不能用样本的频率分布折线图得到准确的总体密度曲线.
2.2
用样本估计总体
2.2.1
用样本的频率分布估计总体分布
1.了解分析数据的方法,知道估计总体频率分布的方法. 2.了解频率分布折线图和总体密度曲线,会画频率分布直方图和茎叶图. 3.理解频率分布直方图和茎叶图及其应用.
1.分析数据的方法 ( 1) 借助于图形. 用图将各个数据画出来, 作图可以达到两个目的, 一是从数据中提取信息; 二是利用图形传递信息. ( 2) 借助于表格. 用紧凑的表格改变数据的构成方式, 为我们提供解释数据的新方式.
人教a版必修三:《2.2.1用样本的频率分布估计总体分布(1)》ppt课件(38页)
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.1(一)
探究点二:频率分布直方图
跟踪训练 2 下表给出了某校 500 名 12 岁男孩中用随机抽样得出的 120 人的身高(单位:cm).
区间界限 人数 区间界限 人数
[122,126) [126,130) [130,134) [134,138) [138,142) 5 8 10 22 33
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.1(一)
探究点一:频率分布表
分组 [150.5,153.5) [153.5,156.5) [156.5,159.5) [159.5,162.5) [162.5,165.5) [165.5,168.5) [168.5,171.5) [171.5,174.5)
主目录
频率 0.025 0.075 0.15 0.225 0.35 0.075 0.075 0.025 1
探要点、究所然 当堂测、查疑缺
探要点、究所然
2.2.1(一)
探究点二:频率分布直方图
(2)频率分布直方图如图所示.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
明目标、知重点 填要点、记疑点
频数 5 8 10 22 33 20 11 6 5 120
主目录
频率 0.04 0.07 0.08 0.18 0.28 0.17 0.09 0.05 0.04 1
探要点、究所然 当堂测、查疑缺
探要点、究所然
2.2.1(一)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1用样本的频率分布估计总体分布(2课时)(新授课)
一、教学目标:
知识与能力:
(1)通过实例体会分布的意义和作用。
(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
(3)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。
过程与方法:通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。
情感态度与价值观:通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。
二、教学重点与难点
重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
难点:能通过样本的频率分布估计总体的分布。
三、教学过程:
(一)创设情境,引入课题
在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50
乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33
请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?
如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容
——用样本的频率分布估计总体分布(板出课题)。
(二)研探新知
阅读课本67页探究(让学生展开讨论)
为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等。
因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况。
分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息。
表格则是通过改变数据的构成形式,为我们提供解释数据的新方式。
下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律。
可以让我们更清楚的看到整个样本数据的频率分布情况。
1、频率分布的概念:
频率分布是指一个样本数据在各个小范围内所占比例的大小。
一般用频率分布直方图反映样本的频率分布。
其一般步骤为:
(1)计算一组数据中最大值与最小值的差,即求极差
(2)决定组距与组数
(3)将数据分组
(4)列频率分布表
(5)画频率分布直方图
以课本P67制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图。
(让学生自己动手作图)
频率分布直方图的特征:
(1)、从频率分布直方图可以清楚的看出数据分布的总体趋势。
(2)、从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了。
探究:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。
不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?
思考:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,(见课本P68)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)
2、频率分布折线图、总体密度曲线
频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。
总体密度曲线:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线。
它能够精确地反映了总体在各个范围内取值
的百分比,它能给我们提供更加精细的信息。
思考:
(1).对于任何一个总体,它的密度曲线是不是一定存在?为什么?
(2).对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?
实际上,尽管有些总体密度曲线是饿、客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.
3、茎叶图
(1).茎叶图的概念:
当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。
(见课本P61例子)
(2).茎叶图的特征:
a、用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数
据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。
b、茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个
以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。
(三)典例精析
例1:下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm)
区间界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)人数5810223320
区间界限[146,150)[150,154)[154,158)
人数1165
(1)列出样本频率分布表﹔
(2)一画出频率分布直方图;
(3)估计身高小于134cm的人数占总人数的百分比.。
分析:根据样本频率分布表、频率分布直方图的一般步骤解题。
解:(1)样本频率分布表如下:
(2)其频率分布直方图如下:
(3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.
分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158)50.04合计1201
122 126 130 134 138 142 146 150 158 154 身高(cm )
o
0.01 0.02 0.03 0.04 0.05 0.06
0.07
频率/组距
例2:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳
绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12. (1) 第二小组的频率是多少?样本
容量是多少?
(2) 若次数在110以上(含110次)
为达标,试估计该学校全体高一学生的达标率是多少?
(3) 在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。
解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,
因此第二小组的频率为:
4
0.0824171593
=+++++
又因为频率=
第二小组频数
样本容量
所以 12
1500.08
=
==第二小组频数样本容量第二小组频率
(2)由图可估计该学校高一学生的达标率约为
171593
100%88%24171593
+++⨯=+++++
(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,
前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内。
(四)课堂练习:P73 练习 1. 2. 3 (五)课堂小结
1、总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布。
2、总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;
90
100 110 120 130 140 150 次数
o
0.004 0.008 0.012 0.016 0.020 0.024 0.028 频率/组距
0.032 0.036
当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。
(六)布置作业:P84 习题2.2 A组 1、 2
四、课后反思。