7.7一元一次不等式与一元一次方程、一次函数一中

合集下载

一次函数与不等式及应用

一次函数与不等式及应用

一次函数与一元一次不等式【要点梳理】要点一、一次函数与一元一次不等式由于任何一个一元一次不等式都可以转化为ax b +>0或ax b +<0或ax b +≥0或ax b +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数y ax b =+的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.要点诠释:求关于x 的一元一次不等式ax b +>0(a ≠0)的解集,从“数”的角度看,就是x 为何值时,函数y ax b =+的值大于0?从“形”的角度看,确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围.要点二、一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解.要点三、如何确定两个不等式的大小关系ax b cx d +>+(a ≠c ,且0ac ≠)的解集⇔y ax b =+的函数值大于y cx d =+的函数值时的自变量x 取值范围⇔直线y ax b =+在直线y cx d =+的上方对应的点的横坐标范围.【典型例题】类型一、一次函数与一元一次不等式1、如图,直线y kx b =+交坐标轴于A (-3,0)、B (0,5)两点,则不等式kx b --<0的解集为( )A .x >-3B .x <-3C .x >3D .x <3举一反三:【变式】如图,直线y kx b =+与坐标轴的两个交点分别为A (2,0)和B (0,-3),则不等式kx b ++3≥0的解集是( )A .x ≥0B .x ≤0C .x ≥2D .x ≤22、直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为( ).A .1->xB .1-<xC .2-<xD .无法确定举一反三:【变式】直线1l :1y k x b =+与直线2l :2y k x c =+在同一平面直角坐标系中的图象如图所示,则关于x 的不等式1k x b +<2k x c +的解集为( )A .x >1B .x <1C .x >-2D .x <- 23、画出函数21y x =+的图象,并利用图象求:(1)方程2x +1=0的解;(2)不等式2x +1≥0的解集;(3)当y ≤3时,x 的取值范围;(4)当-3≤y ≤3时,x 的取值范围.举一反三【变式】已知直线y=kx+b 经过点A (5,0),B (1,4).(1)求直线AB 的解析式;(2)若直线y=2x ﹣4与直线AB 相交于点C ,求点C 的坐标;(3)根据图象,写出关于x 的不等式2x ﹣4>kx+b 的解集. y=k 2-1-2y x y=k 1x+b O类型二、用一次函数的性质解决不等式的实际问题4、某超市预购进A 、B 两种品牌的T 恤共200件,已知两种T 恤的进价如表所示,设购进A 种T 恤x 件,且所购进的两种T 恤全部卖出,获得的总利润为W 元.品牌 进价/(元/件) 售价/(元/件)A 50 80B 40 65(1)求W 关于x 的函数关系式;(2)如果购进两种T 恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价﹣进价)【巩固练习】1.已知函数y=2x+6,要使y<0,那么x 应( )A.大于-3B.小于-3C.大于0D.小于02.如图,已知一次函数y=kx+b 的图象经过点A(5,0)与B(0,-4),那么关于x 的不等式kx+b<0的解集是( )A.x<5B.x>5C.x<-4D.x>-43.如图,直线1y =x+b 与2y =kx-1相交于点P,点P 的横坐标为—1,则关于x 的不等式x+b>kx-1的解集在数轴上表示正确的是( )4.已知一次函数y=ax+b 的图象与x 轴的交点为A(2,0),交y 轴于B(0,1),那么不等式ax+b<0的解集为( )A.x>1B.x<1C.x>2D.x<25.已知1y =x+2,2y =2x-3,则当1y <2y 时,x 的取值范围是( )A.x>5B.x>-5C.x<5D.x<-56.已知函数y=(2m-1)x 的图象上两点A(1x ,1y ),B(2x ,2y ),当1x <2x 时,有1y >2y ,那么m 的取值范围是( )A.21m <B.21m > C.m<2 D.m>0 7.一艘轮船以20km/h 的速度从甲港驶往160km 远的乙港,2h 后,一艘快艇以40km/h 的速度也从甲港驶往乙港轮船行驶的路程1s (km)和快艇行驶的路程2s (km)与时间t(h)的图像如图,则下列判断错误的是( )A.4h 前,1s >2sB.5h 前,1s <2sC.4h 前,1s <2sD.5h 后,1s <2s8.函数y=ax+b 的图象如图所示,则方程ax+b=0的解为 ,不等式0<ax+b ≤2的解集为 .9.一次函数y=2x-8与x 轴的交点坐标是 .当函数值大于0时,x 的取值范围是 ;当函数值小于0时,x 的取值范围是 .10.已知一次函数y=kx+b 的图像如图,当y>0时,x 的取值范围是11.如图,已知函数y=2x+b的图象与函数y=kx-3的图象交于点P,则不等式kx-3>2x+b的解集是 .12.如图,某航空公司托运行李的费用与托运行李的质量的关系为一次函数,由图可知行李的质量只要不超过千克,就可以免费托运.13.已知一次函数y=kx+b(k≠0)的图像如图,则当x 时,y>3;当x 时,y=0;当x 时,y<2.14. 如图,直线l1:y1=− x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)求两直线交点D的坐标;(2)求△ABD的面积;(3)根据图象直接写出y1>y2时自变量x的取值范围.15. 已知直线y=kx+5交x轴于A,交y轴于B且A坐标为(5,0),直线y=2x﹣4与x轴于D,与直线AB相交于点C.(1)求点C的坐标;(2)根据图象,写出关于x的不等式2x﹣4>kx+5的解集;(3)求△ADC的面积.16. 如图,函数y=2x和y=﹣x+4的图象相交于点A,(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥﹣x+4的解集.22. 如图,函数y=2x和y=ax+4的图象相交于点A(m,3)(1)求m,a的值;(2)根据图象,直接写出不等式2x>ax+4的解集.一次函数的应用【要点梳理】要点一、数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型.要点二、正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.要点诠释:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点.要点三、选择最简方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用. 【典型例题】类型一、简单的实际问题1、如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是()A.①② B.②③④ C.②③ D.①②③举一反三:【变式】小刚、小强两人进行百米赛跑,小刚比小强跑得快,如果两人同时跑,小刚肯定赢,现在小刚让小强先跑若干米,图中的射线a,b分别表示两人跑的路程与时间的关系,根据图象判断:小刚的速度比小强的速度每秒快()A.1米 B.1.5米 C.2米 D.2.5米2、小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变),图中折线ABCDE表示小丽和学校之间的距离y(米)与她离家时间x(分钟)之间的函数关系.(1)求小丽步行的速度及学校与公交站台乙之间的距离;(2)当8≤x≤15时,求y与x之间的函数关系式.类型二、方案选择问题3、某经营世界著名品牌的总公司,在我市有甲、乙两家分公司,这两家公司都销售香水和护肤品.总公司现香水70瓶,护肤品30瓶,分配给甲、乙两家分公司,其中40瓶给甲公司,60瓶给乙公司,且都能卖完,两公司的利润(元)如下表.(1)假设总公司分配给甲公司x瓶香水,求:甲、乙两家公司的总利润W与x之间的函数关系式;(2)在(1)的条件下,甲公司的利润会不会比乙公司的利润高?并说明理由;(3)若总公司要求总利润不低于17370元,请问有多少种不同的分配方案,并将各种方案设计出每瓶香水利润每瓶护肤品利润甲公司180 200乙公司160 150举一反三:【变式】健身运动已成为时尚,某公司计划组装A、B两种型号的健身器材共40套,捐赠给社区健身中心.组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A、B两种型号的健身器材时,共有多少种组装方案;(2)组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元.求总组装费用最少的组装方案,最少组装费用是多少?4、2011年秋冬北方严重干旱,凤凰社区人畜饮用水紧张,每天需从社区外调运饮用水120吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?(2)设从甲厂调运饮用水x吨,总运费为W元,试写出W关于与x的函数关系式,怎样安排调运方案才能是每天的总运费最省?举一反三:【变式】(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【巩固练习】一.选择题1. 在西部大开发中,为了改善生态环境,鄂西政府决定绿化荒地,计划第1年先植树1.5万亩,以后每年比上一年增加1万亩,结果植树总数是时间(年)的一次函数,则这个一次函数的图象是( )A .B .C .D .2. 弹簧的长度与所挂物体的质量的关系为一次函数,如图所示,由此图可知不挂物体时弹簧的长度为( )A .7cmB .8cmC .9cmD .10cm3. 如图,L 甲、L 乙分别是甲、乙两弹簧的长y cm 与所挂物体质量x kg 之间函数关系的图象,设甲弹簧每挂1kg 物体伸长的长度为k 甲cm ,乙弹簧每挂1kg 物体伸长的长度为k 乙 cm ,则k 甲与k 乙的关系是( )A .k 甲>k 乙B .k 甲=k 乙C .k 甲<k 乙D .不能确定二.填空题4. 如图,1l 反映了某公司的销售收入与销量的关系,2l 反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须_______.S (千t (时)0 1022 7.50.5 3 1.5 l B l A5. 小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示,相交于点P 的两条线段12l l 、分别表示小敏、小聪离B 地的距离()y km 与已用时间()x h 之间的关系,则小敏、小聪的速度分别是______________.三、解答题6、某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费 元;(2)当100x ≥时,求y 与x 之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?7、如图,,A B l l 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t 的关系。

一元一次不等式与一次函数

一元一次不等式与一次函数

一元一次不等式与一次函数【基础知识精讲】1.一元一次不等式与一次函数的关系。

两个一次函数有时根据需要,要比较其函数值的大小,这时问题就转化为一元一次不等式的问题。

另一方面,利用解不等式的方法也可以求出两个一次函数的值的大小。

事实上,不等式与函数和方程是紧密联系的一个整体。

2.一次函数的图象与一元一次不等式的关系。

一次函数y=kx+b(k≠0)的图像是一条直线,当kx+b>0时,表示图像在x轴上方的部分;当kx+b=0时,表示直线与x轴的交点;当kx+b<0时,表示图像在x轴下方的部分。

【考点聚焦】本章一元一次不等式与一次函数是中考热点,随着素质教育的逐步发展,突出了对创新意识的考查,加大了对“三个一次”(即一元一次方程,一次函数,一元一次不等式)综合应用考查及解决实际问题的考查。

题型有选择题、填空题及解决实际问题(多为压轴题)。

【典例精析】例1作出函数y=x-3的图象如图所示,并观察图象回答下列问题:(1)x取哪些值时,y>0;(2)x取哪些值时,y<0;(3)x取哪些值时,y>3。

思路点拨:首先要认清一次函数的图象是一条直线,两点确定一条直线,所以需要知图象上两点的坐标,可取(3,0)和(0,-3)。

解:由图象可知:(1)当x>3时,y>0;(2)当x<3时,y<0;(3)当x>6时,y>3。

评注:(1)两点确定一条直线。

(2)大于往右看,小于往左看。

【试解相关题】兄弟俩赛跑,哥哥先让弟弟跑9米,然后自己才开始跑。

已知弟弟每秒跑3米,哥哥每秒跑4米,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?思路点拨:此题两问均牵扯到不等式问题,但需先列函数关系式。

解:设当时间为x秒时,跑过的路为y米,则y哥哥=4x,y弟弟=3x+9如图所示,由图象知9秒前弟弟跑在哥哥前面;9秒后,哥哥跑在弟弟前面。

评注:通过以上两例,体会:刻画运动变化的规律需要用函数模型;刻画运动变化过程中的某一瞬间需要用方程模型。

专题07一元一次不等式一元一次不等式与一次函数(知识梳理)

专题07一元一次不等式一元一次不等式与一次函数(知识梳理)

专题07 一元一次不等式 一元一次不等式与一次函数(知识梳理) 要点一、一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x >是一个一元一次不等式.要点:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数;③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系:相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式.不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向.要点二、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:a x <(或a x >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ≠);(5)两边同除以未知数的系数,得到不等式的解集.要点:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用.(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变.要点三、一次函数与一元一次不等式由于任何一个一元一次不等式都可以转化为ax b +>0或ax b +<0或ax b +≥0或ax b +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数y ax b =+的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.要点:求关于x 的一元一次不等式ax b +>0(a ≠0)的解集,从“数”的角度看,就是x 为何值时,函数y ax b =+的值大于0?从“形”的角度看,确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围.要点四、一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解.要点五、如何确定两个不等式的大小关系ax b cx d +>+(a ≠c ,且0ac ≠)的解集⇔y ax b =+的函数值大于y cx d =+的函数值时的自变量x 取值范围⇔直线y ax b =+在直线y cx d =+的上方对应的点的横坐标范围.。

第3节 一次函数与方程(组)及一元一次不等式

第3节 一次函数与方程(组)及一元一次不等式

第三节一次函数与方程(组)及一元一次不等式二、核心纲要直线:y = kx+b(k≠0)与x轴交点的横坐标,就是一元一次方程kx+b = 0 (k≠0)的解.求直线y = kx+b与x轴交点时,可令y = 0,得到方程k + B = 0,解方程得x=bk-,直线y=kx+b交x轴于点(bk-,0),bk-就是直线y =kx+b与x轴交点的横坐标,可令y轴交点的横坐标.注:(1)从“数”看:kx+b=0(k≠0)的解⇔在一次函数y=kx+b(k≠0)中,令y=0时,x的值.(2)从“形”看:kx+b=0(k≠0)的解⇔一次函数y=kx+b(k≠0)的图像与x轴交点的横坐标.2.—次函数与一元一次不等式的关系(1) 任何一次一次不等式都可以转化为ax+b>0或ax + b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.(2) 函数图像的位置决定两个函数值的大小关系①函数y1的图像在函数y2的图像的上方⇔y1>y2,如下图所示;②函数y1的图像在函数y2的下方⇔y1<y2,如下图所示;③特别说明:函数y 的图像在x 轴上方⇔y >0;函数y 的图像在X 轴下方y <0.3.一次函数与二元一次方程(组)的关系(1)一次函数的解析式:y =kx +b (k ≠0)本身就是一个二元一次方程,直线y =kx +b (k ≠0)上有无数个点,每个点的横纵坐标都满足二元一次方程y =kx +b (k ≠0),因此二元一次方程的解也就有无数个. (2) —次函数:y = kx +b (k ≠0)① 从“数”看,它是一个二元一次方程; ② 从“形”看,它是一条直线。

4.两条直线的位置关系与二元一次方程组的解 (1) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有唯一的解⇔直线y =k 1x +b 1不平行于直线y =k 2x +b 2⇔k 1≠k 2.(2) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩无解⇔直线y =k 1x +b 1平行于直线y =k 2x +b 2⇔k 1=k 2,b 1≠b 2. (3) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有无数多个解⇔直线y =k 1x +b 1与y =k 2x +b 2重合⇔k 1=k 2,b 1=b 2.5.比较两个函数值大小的方法 (1) 画图像,求交点.(2) 过交点作平行于y 轴的直线. (3) 谁高谁大.6.数学思想数形结合和转化思想.本节重点讲解:一个定理,一个证明,两个思想.三、全能突破1.若直线y =(m -3)x +6与x 轴交于点(3,0),则m 的值为( ) A. 1 B. 2 C. 3 D. 42.如图19-3-1所示,一次函数y =kx +b 的图像经过A 、B 两点,则kx +b ≥0的解集是( ) A. x >0 B. x ≥—3 C. x >2 D. -3≤x ≤23.已知ax +b =0的解是2,则直线y =ax +b 与x 轴的交点坐标是______。

一元一次不等式、一元一次方程和一次函数的关系

一元一次不等式、一元一次方程和一次函数的关系

1、一元一次方程于一元一次不等式的关系: 当 函数值确定 时,求 与之对应的自变量
的值,就是解一元一次方程。从图象上看,这 相当于已知 横坐标 ,确定 纵坐标 的值。
2、一次函数与一元一次不等式的关系: (1)一元一次不等式ax+b>0或ax+b<0(a≠0) 是一次函数y=ax+b(a≠0)• 的函数值 y 不等于0 的情形. (2)直线y=ax+b上使函数值y>0(x轴上方的 图像)的x的取值范围是ax+b > 0的解集;使 函数值y<0(x轴下方的图像)的x的取值范围是 ax+b < 0的解集.
一根长20cm的弹簧,一端固定,另一端 挂物体。在弹簧伸长后的长度不超过 30cm的限度内,每挂1㎏质量的物体,弹 簧伸长0.5cm.如果所挂物体的质量为x㎏, 弹簧的长度是ycm。 (1)、求y与x之间的函数关系式, 并画出函数的图象。
(2)、求弹簧所挂物体的最大质量是 多少? (3)、能否用不等式求解问题(2)?
例1 如图是一个一次函数的图像,请根据图像回 答问题: (1)求出直线对应的一次函数的表达式 ; (2)当x=0时,y= ,当y=0时,x= ; 当y=4时,x= .
1 (3)一元一次方程 x 2 0 2 1 和一次函数 y x 2 2
有什么联系?
例2 画出函数y=-3x+12的图像,利用图像求: (1)不等式-3x+12>0的解集. (2)不等式-3x+12≤0的解集. (3)当2<y<16时,x的取值范围.收获和体会Fra bibliotek随堂演练
1、p32页练习。 2、在一次函数y=2x-3中,已知x=0 则y= ;若已知y=2则x= ; 3、当自变量x 时,函数 y=3x+2的值大于0;当x 时, 函数y=3x+2的值小于0。 4、已知函数y=-3x+6,当x y>0.当x 时,y≤-2。 时,

一次函数与一元一次方程、不等式

一次函数与一元一次方程、不等式
5、一个人在科学探索的道路上,走过弯 路,犯 过错误 ,并不 是坏事 ,更不 是什么 耻辱, 要在实 践中勇 于承认 和改正 错误。 ——爱 因斯坦 6、瓜是长大在营养肥料里的最甜,天才 是长在 恶性土 壤中的 最好。 ——培 根 7、发光并非太阳的专利,你也可以发光 。
8、人们常用“心有余而力不足”来为自 己不愿 努力而 开脱, 其实, 世上无 难事, 只怕有 心人, 积极的 思想几 乎能够 战胜世 间的一 切障碍 。 9、如果你希望成功,当以恒心为良友, 以经验 为参谋 ,以当 心为兄 弟,以 希望为 哨兵。 ——爱 迪生
1 知识小结
任何一元一次方程都可以转化为ax+b=0(a,b为常 数,a≠0)的形式,所以解一元一次方程可以转化为当某 个一次函数的函数值为0时,求相应的自变量的值.从图 象上看,相当于已知直线y=ax+b,确定它与x轴的交点 的横坐标.即“形”题用“数”解,“数”题用“形”解, 充分体现了数形结合的思想.
1 【2016·桂林】如图,直线y=ax+b过点A(0,2) 和点B(-3,0),则方程ax+b=0的解是( D ) A.x=2 B.x=0 C.x=-1 D.x=-3
2 【中考·合肥】已知方程 1 x+b=0的解是x=
2 -2,下列可能为直线y=
1 2
x+b的图象的是
( C)
3 如图,若一次函数y=-2x+b的图象交y轴于点
因为任何一个以x为未知数的一 元一次方程都可以变形为ax+b=0(a≠0)的形式,所以解 一元一次方程相当于在某个一次函数y=ax+b的函数值为 0时,求自变量x的值.
一次函数与一元一次方程的联系: 任何一个以x为未知数的一元一次方程都可以变
形为ax+b=0(a≠0,a,b为常数)的形式,所以解一 元一次方程可以转化为:求一次函数y=ax+b(a≠0, a,b为常数)的函数值为0时,自变量x的取值;反映 在图象上,就是直线y=ax+b与x轴的交点的横坐标.

一次函数与方程、不等式

一次函数与方程、不等式

第9讲一次函数与方程、不等式考点·方法·破译1.一次函数与一元一次方程的关系:任何一元一次方程都可以转化成kx+b=0(k、b 为常数,k≠0)的形式,可见一元一次方程是一次函数的一个特例.即在y=kx+b中,当y =0时则为一元一次方程.2.一次函数与二元一次方程(组)的关系:⑴任何二元一次方程ax+by=c(a、b、c为常数,且a≠0,b≠0)都可以化为y=a cxb b -+的形式,因而每个二元一次方程都对应一个一次函数;⑵从“数”的角度看,解方程组相当于求两个函数的函数值相等时自变量的取值,以及这个函数值是什么;从“形”的角度看,解方程组相当于确定两个函数图像交点的坐标.3.一次函数与一元一次不等式的关系:由于任何一元一次不等式都可以转化成ax+b >0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看成是当一次函数的函数值大于或小于0时,求相应自变量的取值范围.经典·考题·赏析【例1】直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()A.x>-1 B.x<-1 C.x<-2 D.无法确定【解法指导】由图象可知l1与l2的交点坐标为(-1,-2),即当x=-1时,两函数的函数值相等;当x>-1时,l2的位置比l1高,因而k2x>k1x+b;当当x<-1时,l1的位置比l2高,因而k2x<k1x+b.因此选A.【变式题组】01.(咸宁)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为________.第1题图第2题图第3题图第4题图02.(浙江金华)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a >0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.3 03.如图,已知一次函数y=2x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式2x+b>ax-3的解集是________.04.(武汉)如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,则不等式12x>kx+b>-2的解集为_________.【例2】若直线l1:y=x-2与直线l2:y=3-mx在同一平面直角坐标系的交点在第一象限,求m的取值范围.【解法指导】直线交点坐标在第一象限,即对应方程组的解满足00x y >⎧⎨>⎩,从而求出m 的取值范围.解:23y x y mn =-⎧⎨=-⎩,∴51321x m m y m ⎧=⎪⎪+⎨-⎪=⎪+⎩,∵00x y >⎧⎨>⎩,∴5013201mm m⎧>⎪⎪+⎨-⎪>⎪+⎩,即10320m m +>⎧⎨->⎩,∴-1<m <32.【变式题组】01. 如果直线y =kx +3与y =3x -2b 的交点在x 轴上,当k =2时,b 等于( )A .9B .-3C .32-D .94-02. 若直线122y x =-与直线14y x a =-+相较于x 轴上一点,则直线14y x a =-+不经过( )A .第四象限B .第三象限C .第二象限D .第一象限 03. 两条直线y 1=ax +b ,y 2=cx +5,学生甲解出它们的交点坐标为(3,-2),学生乙因抄错了c 而解出它们的交点坐标为(34,14),则这两条直线的解析式为____________. 04. 已知直线y =3x 和y =2x +k 的交点在第三象限,则k 的取值范围是________.【例3】(四川省初二数学联赛试题)在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点,设k 为整数,当直线y =x -2与y =kx +k 的交点为整点时,k 的取值可以取( )A .4个B .5个C .6个D .7个 【解法指导】两直线的交点为整点即对应方程组的解均为整数.解:由2y x y kx k =-⎧⎨=+⎩得21221k x kk y k +⎧=⎪⎪-⎨+⎪=-⎪-⎩,∵两直线交点为整数, ∴x 、y 均为整数,又当x 为整数时,y 为整数, ∴21k k +-为整数即可,2213311111k k k k k k k ++-+=-=-=------, ∵k -1是整数,∴k -1=±1,±3时,x 、y 为整数, ∴k =-2,0,2,4. 所以选A .【变式题组】01. (广西南宁)从2,3,4,5这四个数中,任取两个数p 和q (p ≠q ),构成函数y =px -2和y =x +q ,并使这两个函数图象的交点在直线x =2的右侧,则这样的有序数对(p ,q )共有( ) A .12对 B .6对 C .5对 D .3对 02. (浙江竞赛试题)直线l :y =px (p 是不等于0的整数)与直线y =x +10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线l 有( ) A .6条 B .7条 C .8条 D .无数条 03. (荆州竞赛试题)点A 、B 分别在一次函数y =x ,y =8x 的图像上,其横坐标分别是a 、b (a >0,b >0).若直线AB 为一次函数y =kx +m 的图象,则当ba是整数时,求满足条件的整数k 的值. 【例4】已知x 、y 、z 都为非负数,满足x +y -z =1,x +2y +3z =4,记ω=3x +2y +z .求ω的最大值与最小值.【解法指导】将x 、y 、z 中的三个未知量选定一个看成已知,则关于x 、y 、z 的三元方程可变成关于x 、y 的二元方程,从而求出x 与y ,然后代入ω=3x +2y +z 中,可得ω与z 的一次函数关系式,然后再求出z 的取值范围,即可求出ω的最大值与最小值.解:由已知得:1243x y z x y z +=+⎧⎨+=-⎩,∴5234x z y z =-⎧⎨=-⎩,∴ω=3x +2y +z =3(5z -2)+2(3-4z )+z =8z .∵x 、y 、z 都为非负数,∴5203400z z z -⎧⎪-⎨⎪⎩≥≥≥,∴2354z ≤≤,∴ω的最大值为8×34=6,ω的最小值为8×25=165.【变式题组】01. (荆州竞赛试题)已知x 满足不等式:31752233x xx -+--≥,|x -3|-|x +2|的最大值为p ,最小值为q ,则pq 的值是( )A .6B .5C .-5D .-102. 已知非负数a 、b 、c 满足条件:3a +2b +c =4,2a +b +3c =5.设S =5a +4b +7c 的最大值为m ,最小值为n ,则n -m =________.03. (黄冈竞赛试题)若x +y +z =30,3x +y -z =50,x 、y 、z 均为非负数,则M =5x +4y+2z 的取值范围是( ) A .100≤M ≤110 B .110≤M ≤120 C .120≤M ≤130 D .130≤M ≤140【例5】已知直线l 1经过点(2,5)和(-1,-1)两点,与x 轴的交点是点A ,将直线y =-6x +5的图象向上平移4个单位后得到l 2,l 2与l 1的交点是点C ,l 2与x 轴的交点是点B ,求△ABC 的面积.【解法指导】设直线l 1的解析式为y =kx +b ,∵l 1经过(2,5),(-1,-1)两点, ∴251k b k b +=⎧⎨-+=-⎩,解得21k b =⎧⎨=⎩,∴y =2x +1,∴当y =0时,2x +1=0,x =12-,∴A (12-,0).又∵y =-6x +5的图象向上平移4个单位后得l 2,∴l 2的解析式为y =-6x +9, ∴当y =0时,-6x +9=0,x =32,∴B (32,0).∴2169y x y x =+⎧⎨=-+⎩,∴13x y =⎧⎨=⎩,∴C (1,3),∴AB =32-(12-)=2,∴S △ABC =12×2×3=3.演练巩固·反馈提高01. 已知一次函数y =32x +m ,和y =12-x +n 的图象交点A (-2,0),且与y 轴分别交于B 、C 两点,那么△ABC 的面积是( )A .2B .3C .4D .602. 已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)第3题图 第6题图03. 如图,直线y =kx +b 与x 轴交于点A (-4,0),则y >0时,x 的取值范围是( )A .x >-4B .x >0C .x <-4D .x <0 04. 直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-205. 直线y =kx +b 与坐标轴的两个交点分别为A (2,0)和B (0,-3).则不等式kx +b +3≥0的解集为( ) A .x ≥0 B .x ≤0 C .x ≥2 D .x ≤206. 如图是在同一坐标系内作出的一次函数y 1、y 2的图象l 1、l 2,设y 1=k 1x +b 1,y 2=k 2x+b 2,则方程组111222y k x b y k x b ⎧⎨⎩=+,=+的解是( )A .22x y =-⎧⎨=⎩B .23x y =-⎧⎨=⎩C .33x y =-⎧⎨=⎩D .34x y =-⎧⎨=⎩07. 若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点,则a =_________. 08. 已知一次函数y =2x +a 与y =-x +b 的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则S △ABC =_________.09. 已知直线y =2x +b 和y =3bx -4相交于点(5,a ),则a =___________. 10.已知函数y =-x +m 与y =mx -4的图象交点在x 轴的负半轴上,则m 的值为__________.11.直线y =-2x -1与直线y =3x +m 相交于第三象限内一点,则m 的取值范围是___________. 12.若直线122a y x =-+与直线31544y x =-+的交点在第一象限,且a 为整数,则a =_________.13.直线l 1经过点(2,3)和(-1,-3),直线l 2与l 1交于点(-2,a ),且与y 轴的交点的纵坐标为7.⑴求直线l2、l1的解析式;⑵求l2、l1与x轴围成的三角形的面积;⑶x取何值时l1的函数值大于l2的函数值?14.(河北)如图,直线l1的解析式为y=-3x+3,l1与x轴交于点D,直线l2经过点A(4,0),B(3,32 ).⑴求直线l2的解析式;⑵求S△ADC;⑶在直线l2上存在异于点C的另一点P,使得S△ADP=S△ADC,求P点坐标.l2第14题图。

7.7 一元一次不等式与一元一次方程、一次函数

7.7 一元一次不等式与一元一次方程、一次函数

收获和体会
根据下列一次函数的图象, 根据下列一次函数的图象,你能求出 哪些不等式的解集? 哪些不等式的解集?并直接写出相应的 不等式的解集。 不等式的解集。
3x+6>0
y Y=3x+6
( x>- 2) ( x<- 2) ( x ≥- 2) ( x ≤ - 2)
3x+6<0 3x+6≥0
-2
0
x
3x+Biblioteka ≤0如图是一个一次函数,请根据图像回答问题: 例1 如图是一个一次函数,请根据图像回答问题: (1)写出直线对应的一次函数的表达式 ) ; (2)当x=0时,y= ) = 时 = ,当y=0时,x= = 时 = ; . 当y=4时,x= 时 (3)一元一次方程 1 ) 和一次 x+2= ? 有什么联系? 函数 有什么联系0
(2)直线y=ax+b上使函数值y>0(x轴上方 直线y=ax+b上使函数值y>0( y=ax+b上使函数值y>0 的图像) 的取值范围是ax+b 的图像)的x的取值范围是ax+b > 0的 解集;使函数值y<0( 轴下方的图像) 解集;使函数值y<0(x轴下方的图像)的x y<0 的取值范围是ax+b 的取值范围是ax+b< 0的解集. 的解集.
小结: 小结:
(1)当一次函数中的一个变量的值确定时, 当一次函数中的一个变量的值确定时, 可以用一元一次方程确定另一个变量的值; 可以用一元一次方程确定另一个变量的值; (2)当已知一次函数中的一个变量取值的范 围时,可以用一元一次不等式(组)确定另 围时,可以用一元一次不等式( 一个变量取值的范围. 一个变量取值的范围.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
即5x+4<2x+10 < x <2
0
∴此不等式的解集为 y=2x+1
-5
0
2
x
y=5x+4
两种解不等式的方法都是把 不等式转化为比较直线上点 的位置的高低
y y=3x-6 x
y 14
10
0
2
4
-6
-5 y=2x+10
0
2
x
y=5x+4
拓展探究
6.东风商场文具部的某种毛笔每枝售价..元, 东风商场文具部的某种毛笔每枝售价..元 .. 书法练习本每本售价. 书法练习本每本售价.元,该商场为促销制定了 两种优惠办法.. ..甲 两种优惠办法..甲:买一枝毛笔就赠送一本练 习本; 乙:按购买金额打九折付款. 习本; 按购买金额打九折付款. 某校欲为书法兴趣小组购买这种毛笔.. ..枝 某校欲为书法兴趣小组购买这种毛笔..枝,书 法练习本. x≥10) 法练习本.(x≥10)本. 写出每种优惠办法实际付款金额. (.)写出每种优惠办法实际付款金额.甲 ),. (元),.乙(元)与.(本)之间的函数关系 式; 购买同样多的书法练习本时, (.)购买同样多的书法练习本时,按哪种优惠 办法付款更省钱。 办法付款更省钱。
初中数学八年级下册 (苏科版) 苏科版)
7.7一元一次不等式与一元一次 7.7一元一次不等式与一元一次 方程、 方程、一次函数
盱眙一中 龚恒雷
一根长20厘米的弹簧,一端固定, 一根长20厘米的弹簧,一端固定,另 20厘米的弹簧 一端挂物体。 一端挂物体。在弹簧伸长后的长度不超过 30厘米的限度内 每挂1千克的物体, 厘米的限度内, 30厘米的限度内,每挂1千克的物体,弹簧 伸长0.5厘米,如果所挂物体的质量为x 0.5厘米 伸长0.5厘米,如果所挂物体的质量为x kg,弹簧的长度为 弹簧的长度为y kg,弹簧的长度为y cm. 写出y 间的函数关系式。 (1) 写出y与x间的函数关系式。 求这根弹簧所挂物体的最大质量。 (2)求这根弹簧所挂物体的最大质量。 若所挂物体质量在10~15 kg之间 之间, (3)若所挂物体质量在10~15 kg之间, 请确定挂上该物体后弹簧的长度范围。 请确定挂上该物体后弹簧的长度范围。
质疑探究
探究点二: 探究点二:一次函数与一元一次不等式的联系 问题2 由问题1 问题2:由问题1,你能总结出 一元一次不等式kx+b>0( kx+b>0(或 一元一次不等式kx+b>0(或 问题1 由图, 问题1:由图,根据函数 kx+b<0)与一次函数 kx+b<0)与一次函数 y=2x- 的图像, y=2x-8的图像,你能说出不 y=kx+b(k≠0)( -8<0的解集 y=kx+b(k≠0)(从函数值的角 –4 等式2x 8>0,2x2x等式2x-8>0,2x 8<0的解集 有什么关系吗? 度)有什么关系吗? 吗? 问题3 由问题1 问题3:由问题1,你能总结出 一元一次不等式kx+b>0( kx+b>0(或 一元一次不等式kx+b>0(或 kx+b<0)与一次函数 kx+b<0)与一次函数 y=kx+b(k≠0)( y=kx+b(k≠0)(从函数图象的 角度)有什么关系吗? 角度)有什么关系吗?
问题4:由前面三个问题你能总结出 问题4 一元一次方程kx+b=0(k≠0)与一次 一元一次方程kx+b=0(k≠0)与一次 kx+b=0(k≠0) 函数y=kx+b(k≠0)有什么关系吗? 函数y=kx+b(k≠0)有什么关系吗? y=kx+b(k≠0)有什么关系吗
归纳总结: 归纳总结:
一元一次方程kx+b=0(k≠0)的解既是与一次函 一元一次方程kx+b=0(k≠0)的解既是与一次函 kx+b=0(k≠0) y=kx+b(k≠0)的图像与 轴交点的横坐标, 的图像与x 数y=kx+b(k≠0)的图像与x轴交点的横坐标,也 是当一次函数y=kx+b(k≠0)的函数值y=0时 的函数值y=0 是当一次函数y=kx+b(k≠0)的函数值y=0时x的 取值
-6
解法二:
把 5x+4<2x+10 看做两 < 个一次函数y=5x+4和y=2x+10, 个一次函数 和
y 14
画出y=5x+4和y=2x+10的图 和 画出 的图 . 像由图像可知
10
它们的交点的横坐标为2. 它们的交点的横坐标为
时直线y=5x+4 上的 当x <2时直线 时直线 点都在直线y=2x+10的下方 的下方. 点都在直线 的下方
关注生活
一根长20厘米的弹簧,一端固定, 一根长20厘米的弹簧,一端固定,另 20厘米的弹簧 一端挂物体。 一端挂物体。在弹簧伸长后的长度不超过 30厘米的限度内 每挂1千克的物体, 厘米的限度内, 30厘米的限度内,每挂1千克的物体,弹簧 伸长0.5厘米,如果所挂物体的质量为x 0.5厘米 伸长0.5厘米,如果所挂物体的质量为x kg,弹簧的长度为y cm. kg,弹簧的长度为y 弹簧的长度为 写出y 间的函数关系式。 (1) 写出y与x间的函数关系式。 求这根弹簧所挂物体的最大质量。 (2)求这根弹簧所挂物体的最大质量。 若所挂物体质量在10~15 kg之间 之间, (3)若所挂物体质量在10~15 kg之间, 请确定挂上该物体后弹簧的长度范围。 请确定挂上该物体后弹簧的长度范围。
2
.
y
3 2 1
第1题 题
x
1 2 3
第2题–1 –2 –3 –4
当堂训练
★★一次函数y=kx+b(k≠0)的图像与坐标轴的两 一次函数y=kx+b 3.★★一次函数y=kx+b 的图像与坐标轴的两 个交点为( ) ),求不等式 个交点为(2,0)和(0,-3),求不等式 , ),求不等式kx+b≤0 的解集. 的解集 已知一次函数y =3x+3与 2x+8的图像在同 4.已知一次函数y1=3x+3与y2=-2x+8的图像在同 一坐标系内的交点坐标是(1,6),则当y1>y2 一坐标系内的交点坐标是(1,6),则当y ),则当 的取值范围是( 时,x的取值范围是( ) A x≥1 B x=1 C x<1 D x>1
当堂训练
一次函数的图像如图所示, 1.一次函数的图像如图所示,则它的解析式 为 y>0; y>0;当y y=0; ,当x 时,y=0;当x 时,x<0. 时,
如果一元一次方程2x+m=0的根是x= 2x+m=0的根是x=2.如果一元一次方程2x+m=0的根是x=-1,那么一次函数 y=2x+m的图像与x y=2x+m的图像与x轴交点的坐标为 的图像与 y
综合应用
5.用画函数图象的方法解不等式:5x+4<2x+10 用画函数图象的方法解不等式:5x+4<
解法一: 解法一:不等式化为
由图像可以看出: 由图像可以看出:
3x-6 <0 画出函数y=3x-6的图像 画出函数 的图像
0
y
y=3x-6
2
x
当 x<2 时这条直线上的点在 轴 < 时这条直线上的点在x轴 的下方, 的下方, 这时 y=3x-6 <0 此不等式的解集为x ∴ 此不等式的解集为 <2
知识综合应用
画出函数y= 3x+9的图像 结合图像: y=的图像, 例 画出函数y=-3x+9的图像,结合图像: (1)求方程-3x+9=0的解 求方程-3x+9=0的解 求不等式-3x+9>0和 3x+9<0的解集 的解集. (2)求不等式-3x+9>0和-3x+9<0的解集.
拓展延伸:根据函数y=-3x+9的图像,你能 拓展延伸:根据函数y=-3x+9的图像, y= 的图像 确定不等式-3x+9>6的解集吗 的解集吗? 确定不等式-3x+9>6的解集吗? 规律方法总结: 规律方法总结:解决这类题目主要是通过 观察图像, 观察图像,找出要想满足不等式所对应的 函数的自变量的取值范围
问题1 求一元一次方程2x-8=0的解 问题1:求一元一次方程2x-8=0的解 2x
x=4
问题2 请问一次函数y=2x问题2:请问一次函数y=2x-8,请问x y=2x 请问x 取什么值时,y=0? 取什么值时,y=0?
y=0, 2x-8=0,从而解得x=4 令y=0,即2x-8=0,从而解得x=4
课堂小结
(1)当一次函数中的一个变量的值确定时, 当一次函数中的一个变量的值确定时, 可以用一元一次方程确定另一个变量的值; 可以用一元一次方程确定另一个变量的值; (2)当已知一次函数中的一个变量取值的范 围时,可以用一元一次不等式( 围时,可以用一元一次不等式(组)确定另 一个变量取值的范围. 一个变量取值的范围.
学始于疑
通过上述问题请你思考 1.一元一次方程与一次函数之间有什么关系? 1.一元一次方程与一次函数之间有什么关系? 一元一次方程与一次函数之间有什么关系 2.一元一次不等式与一次函数之间有什么关系? 2.一元一次不等式与一次函数之间有什么关系? 一元一次不等式与一次函数之间有什么关系
质疑探究
探究点一: 探究点一:一次函数与一元一次方程联系
问题3 画出一次函数y=2x- 的图像, 问题3:画出一次函数y=2x-8的图像, y=2x 当自变量x取什么值时,函数值y=0 y=0? 当自变量x取什么值时,函数值y=0?
图像与x轴的交点的纵坐标y=0, 2x-8=0; 图像与x轴的交点的纵坐标y=0,即2x-8=0;即 y=0 的取值为该一次函数的图像与x 当x的取值为该一次函数的图像与x轴交点的横 坐标时,能使2x 2x坐标时,能使2x-8=0
相关文档
最新文档