循环水腐蚀原因

合集下载

循环水(冷却水)腐蚀结垢及微生物问题探讨

循环水(冷却水)腐蚀结垢及微生物问题探讨

冷却水问题探讨一般冷却水常引起的危害有三种,即腐蚀( corrosion ) 、水垢(scale)、淤泥之沉积( deposition ) 及微生物 ( slime ),兹将其发生原因及控制方法分述如下: 1、腐蚀!腐蚀发生原因:金属腐蚀是经由化学或电化学反应而导致金属毁坏之现象。

最主要的腐蚀问题是由氧气所引起的,冷却水于冷却水塔中与空气密切接触,水中溶氧高达 8~10 ppm 极易促成腐蚀。

a.铁材质与水中氧气作用而腐蚀,其反应如下:氧气所引起的腐蚀呈点蚀( pitting ) 状态有愈深之倾向(如下图), 若未有效抑止可能穿透管壁而造成穿孔、泄漏。

点蚀是最具腐蚀破坏力之一,并且也是最难在实验室预测得知。

b.当微生物繁殖时,其微生物体的分泌物与冷却水有机物、无机物聚积而形成的黏泥,沉积在系统中时,将造成沉积下腐蚀。

沉积物上下界面因溶存氧浓度不同将会造成氧浓淡电池( Oxygen concentration cell)于沉积物下发生严重之腐蚀现象。

图 : pitting 会导致设备快速破损c.两种不同金属互相接触时,因金属间电位差造成流电腐蚀(galvanic corrosion), 例如热交换器之铜管与碳钢端板,其接触部份的钢铁材质会因此加速腐蚀。

双金属之间的电位差会因金属接触而造成流电腐蚀,但工业上也时常运用此原理来做防蚀方法,此方法称之为牺牲阳极。

双金属腐蚀d.其它影响腐蚀的因素尚有pH、间隙、溶解盐类、温度、流速等。

!腐蚀控制方法:腐蚀之控制不外是改变系统金属材质,就是改变系统环境。

改变系统材质将是一很大成本花费,而且并不是百分之百可以防止腐蚀发生。

然改变系统环境是目前广泛被用到控制腐蚀的方法。

在水系统内,有三种方式改变水中环境来有效抑制腐蚀;用水中自然存在之钙离子及碱度,在金属表面上形成碳酸钙保护膜。

利用化学或机械方法将溶存于水中之氧气去除。

加入腐蚀抑制剂 。

如上所云,加入腐蚀抑制剂亦是一个简便而有效的方式。

循环水中腐蚀和管道结垢原因和处理方法

循环水中腐蚀和管道结垢原因和处理方法

在现代的工业生产中,循环水含有的物质例如化学物质、金属物资等方面,工业循环水管道受到这些物质的影响,会产生结垢还有腐蚀等影响,如果处理不及时,就是妨碍到循环水管道的使用性能,继而降低工业生产效率,不能得到良好的经济效益。

所以,需要对工业循环水管道结垢产生的原因还有机理明确好,针对性的采取控制和解决措施,目的就是保证循环水管道使用的稳定性,提升工业生产的效率,实现比较好的经济效益。

1.结垢和腐蚀产生的机理和原因结垢和腐蚀可以说是影响工业循环水管道使用性能的重要原因,并且两者有直接的联系,通常情况下腐蚀就会产生结垢,结垢会产生腐蚀,时间长了就会影响管道的相关零件的使用性能,提升机泵运行的负荷,继而对设备、整体系统换热冷却等方面,不仅会影响到工业循环水管道的使用性能,还会使得工业生产效率还有经济效益,有所下降。

接下来就和大家针对于工业循环水管道结垢和腐蚀产生的机理和原因相关内容,展开分析和阐述。

1.1补充水由于在工业生产中,会消耗大量的是,因此为了保证生产的效率还有稳定性,需要定期进行补充,但是补充水在进入工业循环水管道之后,补充水中硬度、碱度还有PH值、浊度等方面,都会导致结垢。

如果补充水中的硬度和碱度越大,意味着结垢离子更多,并且受到温度的影响,补充水容易达到饱和的状态,增加了循环水管道腐蚀现象的产生。

此外,在工业循环水管道使用中,水质中的悬浮物会起到晶核的作用,这样浊度就会产生较多,悬浮物也会变多,这样如果不定期进行处理,也会导致悬浮物长期积累,增加工业循环水管道腐蚀和结垢现象的产生。

1.2温度导致工业循环水管道结垢和腐蚀的重要因素之一就是温度,主要是由于工业循环水管道在运行过程中,循环水中包含的硬度盐类会根据温度的变化,产生溶解的现象。

并且,在溶解的时候,假如溶解度相对较小,温度较高的话,容易导致结垢现象的产生。

此外,由于温度的不断提升,结垢也会有相应的变化,时间一长就会导致腐蚀现象的产生,影响工业循环水管道运行的稳定性,工业生产效率就会下降。

循环冷却水换热器结垢及腐蚀的原因及处理措施

循环冷却水换热器结垢及腐蚀的原因及处理措施

循环冷却水换热器结垢及腐蚀的原因及处理措施1.水中硬度高:水中含有大量以碳酸钙和碳酸镁为主的硬度成分,当水循环过程中温度升高后,硬度成分就会析出形成垢。

处理措施:使用软水,通过水处理设备如软化器或反渗透系统来减少水中的硬度成分。

2.水中含有有机物:循环冷却水中含有有机物,这些有机物在温度变化条件下会发生化学反应,生成沉淀物。

处理措施:使用适当的水处理试剂来稳定有机物,并保持水体的清洁。

3.循环冷却水中含有微生物:水中的微生物如藻类、细菌和真菌会在换热器内壁形成生物膜,进而导致结垢。

处理措施:使用杀菌剂来抑制微生物的生长,定期清洗换热器。

4.放热水性质变化:放热水循环过程中,温度升高,水中盐类溶解度增加,导致结垢。

处理措施:控制水质中的含盐量,定期检测水质。

1.氧腐蚀:水中含有氧气,当水接触金属表面时,氧气可以与金属发生氧化反应,导致金属腐蚀。

处理措施:使用氧化剂来控制水中的氧含量,或者使用缓蚀剂来形成保护膜。

2.酸腐蚀:循环冷却水中可能含有酸性物质,如硫酸、盐酸等,这些酸性物质会导致金属腐蚀。

处理措施:控制水质的酸性物质含量,使用缓蚀剂来形成保护膜。

3.碱腐蚀:循环冷却水中可能含有碱性物质,如氢氧化钠、氢氧化钙等,这些碱性物质会导致金属腐蚀。

处理措施:控制水质的碱性物质含量,使用缓蚀剂来形成保护膜。

4.废气腐蚀:有些工业过程中会产生含有腐蚀性气体的废气,这些废气经过冷却后溶解在水中,导致金属腐蚀。

处理措施:使用除气设备来除去废气中的腐蚀性气体,使用缓蚀剂来形成保护膜。

对于循环冷却水换热器结垢和腐蚀问题的处理措施主要有以下几点:1.定期检测和监测换热器水质,包括PH值、硬度、溶解氧等指标,并根据结果采取相应措施。

2.定期清洗换热器内部,使用适当的清洗剂和工艺来去除结垢和沉积物。

3.定期对换热器进行维护和检修,包括清洗管道、更换损坏的部件等。

4.使用适当的水处理设备,如软化器、反渗透系统等来处理水质。

循环冷却水处理腐蚀及其控制PPT

循环冷却水处理腐蚀及其控制PPT
安全风险
腐蚀严重时会导致设备穿孔、 破裂等安全事故,危及人员和
设备安全。
03
循环冷却水处理腐蚀控制方法
缓蚀剂的应用
01
02
03
缓蚀剂种类
根据化学成分和作用机理 ,缓蚀剂可分为无机缓蚀 剂、有机缓蚀剂和复合缓 蚀剂。
缓蚀剂选择
选择合适的缓蚀剂需要考 虑水质条件、系统材质和 运行工况等因素,以达到 最佳的防腐效果。
循环冷却水的特点
循环冷却水具有高浓缩倍数、高 硬度和高盐度等特点,同时在使 用过程中会受到不同程度的污染 和腐蚀。
循环冷却水处理的重要性
防止腐蚀和结垢
循环冷却水处理可以有效防止设 备和管道的腐蚀和结垢,延长设 备使用寿命,降低维修和更换成
本。
提高冷却效率
通过有效的循环冷却水处理,可以 保持系统高效运行,提高冷却效率 ,从而降低能源消耗和生产成本。
04
循环冷却水处理腐蚀控制案例分析
案例一
总结词
全面优化方案
详细描述
该化工厂的循环冷却水处理系统面临着严重的腐蚀问题。通过采用全面的优化方案,包括水质稳定剂 、缓蚀剂和杀菌剂的联合使用,成功地控制了腐蚀速率,延长了设备使用寿命,并提高了冷却效率。
案例二:某电厂循环冷却水处理系统腐蚀控制
总结词
新型防腐材料应用
腐蚀的类型
根据腐蚀发生的机理,可以分为化学 腐蚀和电化学腐蚀两类。
循环冷却水处理中腐蚀的原因
水中溶解氧
水中的溶解氧可以与金属发 生氧化还原反应Байду номын сангаас导致金属 腐蚀。
水质硬度
硬水中的钙、镁等离子可以 在金属表面形成沉淀,引起 垢下腐蚀。
pH值
水质的pH值过低或过高都会 加速金属的腐蚀。

浅析炼油厂循环水设备腐蚀原因及对策

浅析炼油厂循环水设备腐蚀原因及对策

浅析炼油厂循环水设备腐蚀原因及对策炼油厂是炼制石油的工业设施,循环水是炼油过程中常用的工艺流体之一。

在实际运行中,循环水设备往往会遭受腐蚀的问题,严重影响设备的运行效率和寿命。

本文将从腐蚀原因和对策两方面对炼油厂循环水设备腐蚀问题进行浅析。

一、腐蚀原因分析1.1. 氧化腐蚀炼油厂循环水中溶解氧的存在会导致氧化腐蚀的发生。

在高温高压的炼油过程中,循环水中溶解的氧会与金属表面发生反应,形成金属的氧化物,导致设备金属表面的腐蚀。

1.2. 酸性腐蚀炼油厂循环水中含有较多的硫化氢、二氧化硫等气体,这些气体与水反应生成酸性物质,使循环水的酸度增加。

酸性环境对设备金属表面具有强烈的腐蚀性,容易导致设备腐蚀。

1.3. 可溶性盐腐蚀炼油厂循环水中还含有大量的可溶性盐,例如钠盐、钾盐、镁盐等。

这些盐在高温环境下容易产生结晶,形成沉积物并对金属表面产生腐蚀作用。

1.4. 电化学腐蚀在循环水中,金属设备表面与电解质溶液形成电化学系统。

当金属表面存在缺陷时,形成阳极和阴极,发生电化学反应,导致金属表面的腐蚀。

二、对策分析2.1. 氧化腐蚀的对策针对氧化腐蚀问题,可以采取以下对策:(1) 控制循环水中溶解氧的含量,采取除氧措施,减少氧化腐蚀的发生。

(2) 增加循环水中的缓蚀剂,形成保护膜,降低金属表面的氧化速度。

(3) 在循环水中加入碱性物质,提高循环水的pH值,减少氧化腐蚀的发生。

2.3. 可溶性盐腐蚀的对策针对可溶性盐腐蚀问题,可以采取以下对策:(1) 控制循环水中可溶性盐的含量,定期对循环水进行处理和处理剂的添加,防止盐的结晶和沉积。

(2) 定期清洗和除去设备表面的盐类沉积物,减少盐对金属表面的腐蚀作用。

2.4. 电化学腐蚀的对策针对电化学腐蚀问题,可以采取以下对策:(1) 在金属表面涂覆保护层,形成防腐蚀层,减少金属表面的阳极和阴极的形成。

(2) 采用电位保护措施,如阳极保护、阴极保护等,调整电解质环境,降低电化学反应的速率。

循环水换热器腐蚀原因分析及对策

循环水换热器腐蚀原因分析及对策

循环水换热器腐蚀原因分析及对策作者:乔君辉来源:《市场周刊·市场版》2017年第07期摘要:本文首先分析了造成循环水换热器腐蚀的主要原因,进而根据这些原因提出了改善循环水的有效措施,旨在通过不断提高循环水的技术水平,保证循环水系统的高效运行,降低设备被腐蚀的风险。

关键词:循环水换热器;腐蚀;措施一、换热器腐蚀原因分析(1)结垢对腐蚀的影响。

在循环水换热器的使用过程中,由于长期进行内外的水流交换,在设备表面容易形成一层厚厚的结垢。

由于水的电化学反应的存在,被污垢封闭的区域内,设备金属部分成为导电的阳极,发生反应后就会导致铁的溶解,因而结垢越厚的地方越容易发生腐蚀,也越容易受到破坏。

水的导电性是与其中的钙、镁离子的浓度成正相关的,一般来说,离子浓度越高,水的导电性就越强,也就越容易造成电化学反应带来的腐蚀;钙、镁离子含量越高,循环水越容易结垢。

除此之外,循环水中的杂质越多,也越容易加大腐蚀的速率,因此在设备投入使用前,一定要检测循环水的浊度是否达到标准。

循环水换热器结垢,见图一。

(2)微生物对设备的腐蚀。

循环水中的微生物也会导致电化学腐蚀。

在日常的生产活动中,循环水不断与外界空气接触,使得空气中的部分微生物得以繁衍生息。

它们往往会形成生物黏泥吸附在金属物体表面,进而产生电化学腐蚀,对设备造成一定的破坏。

循环水中总磷含量越高,微生物越容易繁衍,循环水易结藻,导致水质变差。

(3)水中负离子对腐蚀的影响。

在循环水中,高浓度的氯离子,碳酸根离子,磷酸根离子会增加水的腐蚀性。

其中氯离子除了会对不锈钢造成应力腐蚀外,还可能破坏金属表面的氧化膜,因此在氯离子的浓度控制上,一定要按照规范严格要求,一般而言,其质量浓度不得超过300mg/L。

循环水的电导率/市政管网来的新鲜水的电导率,称为浓缩倍数。

浓缩倍数越高,表明装置的循环水重复利用率高,越省水;但浓缩倍数太高,会使水质恶化,对水冷设备产生不利影响。

应根据分析数据,用新鲜水对循环水及时进行置换。

工业循环水系统中结垢和腐蚀现象分析及控制方案

工业循环水系统中结垢和腐蚀现象分析及控制方案

工业循环水系统中结垢和腐蚀现象分析及控制方案摘要:工业水处理是使用化学和物理方法去除水中杂质的过程。

电石生产的特点是很复杂的过程,生产环节与水密不可分。

电石炉是将电能转化为热能的设备,这就决定了它时刻处在高温环境状态下运行。

为了保证电石炉长周期安全运行,对设备各系统进行冷却必不可少。

循环冷却水的再利用尤其可以提高用水过程的效率,循环水的再利用将产生盐分积聚的问题,这些问题会污染并损坏热交换器,降低传热效率并增加设备成本和安全隐患。

关键词:工业循环水系统;结垢;腐蚀前言工业循环水系统中传热面上的结垢现象一直被人们关注,有效降低管线中的结垢速率,实现持续的稳产高产,已成为电石生产领域研究的热点之一。

为保持油藏压力,提高采收率。

为了节约水资源,多数企业目前采用循环冷却水代替普通工业用水,冷却水在对设备降温的同时,其自身温度也在不断上升,有时在夏季设备冷却水出口温度高达60℃以上,这样的工作温度极易形成水垢粘接在设备内壁,从而造成设备换热效果差,而且水垢还会局部脱落、堆积阻塞管路和阀门,导致水流阻力增加,设备壁厚被腐蚀减薄,另一方面会造成垢下腐蚀,甚至穿孔,必须每隔一段时间对结垢严重的管段进行酸洗或停产维修,增加了管线维护费用,严重影响了电石的正常生产和经济效益。

1产生结垢的原因1.1硬垢天然水中溶解有各种盐类物质,有重碳酸盐、硫酸盐、氯化物、硅酸盐等。

其中溶解的重碳酸盐为最多,也最不稳定,容易分解成碳酸盐。

在使用重碳酸盐含量较多的水作为冷却水时,当通过换热器传热面时会受热分解。

当循环水经过冷却塔冷却时,溶解在水中的CO2会逸出,水的PH会升高。

重碳酸盐在碱性条件下会发生以下反应。

Ca(HCO3)2+2OH-=CaCO3↓+2H2O+CO2-3当水中溶解有氯化钙时,还会产生置换反应。

CaCl2+CO2-3=CaCO3↓+2Cl-当水中溶解有磷酸盐时,磷酸根和钙离子还会生成磷酸钙。

3Ca2++2PO3-4=Ca3(PO4)2↓当循环水在冷却蒸发过程中,水分不断蒸发而浓缩,浓缩倍数提高,原来溶解于水中的盐类浓度会不断增加,当其浓度超过同等条件下的饱和溶解度时就会出现结晶析出,形成水垢。

供热系统外网循环水的腐蚀及控制

供热系统外网循环水的腐蚀及控制

供热系统外网循环水的腐蚀及控制摘要:热网换热器的泄漏会造成机组水质劣化并引起严重事故,热网循环水水质不合格是造成换热器腐蚀泄漏的重要原因之一。

根据本单位供热系统材质及实际水质情况,选择合适的水处理工艺,并控制热网循环水pH至合理范围,减轻对供热换热器及系统的腐蚀,是保护供热系统安全的一项重要工作之一。

关键词:供热系统;外网循环水;腐蚀及控制引言造成供热系统腐蚀的主要因素是过量的溶解氧和氯离子等腐蚀性离子。

外网循环水由于水量大,补充水没有或未投运除氧器等原因,控制水中溶氧较为困难,提高 pH 来防止腐蚀较为可行。

一、浅谈供热系统腐蚀的原因电厂为城市热网循环水补水多采用一级反渗透产水,也有生水或软化水。

反渗透设备脱盐率正常时,硬度等指标容易合格,但反渗透设备对气体没有去除能力,反渗透产水的溶解氧处于饱和状态。

一些热电厂设计有除氧器,后改的供热机组有些没有设计除氧器,补充水未经除氧补入热力循环系统,氧腐蚀严重。

反渗透产水由于去除二价离子较一价离子效率高,产水中一价离子对金属的腐蚀也更强。

(一)氧腐蚀是供热系统的主要腐蚀之一随着水温的升高,氧腐蚀速度增加,当水温在80℃时,钢铁在敞开体系中氧腐蚀速度最大。

低于80℃时,溶液温度升高,使溶液粘度降低,扩散系数增加而加快腐蚀。

高于80℃时溶氧在溶液中的溶解度随温度升高而降低,从而使腐蚀速度降低。

供热外网循环水工作温度正在氧腐蚀的最大腐蚀区间之内。

(二)水的pH值是影响腐蚀主要原因在低pH值下,氧腐蚀更加严重。

资料表明,将热网水的pH提高到10.5以上,碳钢、不锈钢就基本不腐蚀,并与水中溶解氧含量无关。

当pH在10~13的范围内,腐蚀速度下降,在这个pH范围内,钢的表面能生成较完整的保护膜,从而抑制了氧腐蚀。

当pH大于13时,由于腐蚀产物变为可溶性的HFeO2-,腐蚀速度再次上升。

1.3水中含有不同离子对腐蚀速度影响差别很大水中有些离子有钝化作用,有些离子有活化作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

循环水腐蚀原因
循环水腐蚀是一种常见的工业设备损坏问题,对于循环水系统而言,腐蚀是导致设备损坏的主要原因之一。

循环水腐蚀的原因多种多样,主要包括水质问题、金属材料选择不当、操作不当等。

本文将从不同角度探讨循环水腐蚀的原因,并提出相应的解决措施。

水质问题是导致循环水腐蚀的主要原因之一。

循环水中的溶解氧、硬度、碱度、盐分等成分会直接影响水的腐蚀性。

溶解氧是引起金属腐蚀的主要因素之一,因此,控制循环水中的溶解氧含量非常重要。

一种常见的解决措施是通过加入氧化剂或使用除氧设备来降低溶解氧含量,从而减少腐蚀的发生。

此外,合理控制循环水的硬度、碱度和盐分也是避免腐蚀的重要手段。

金属材料选择不当也是循环水腐蚀的重要原因之一。

不同金属材料对于不同水质的耐蚀性有所差异,因此,在循环水系统中选择合适的金属材料非常重要。

一般来说,不锈钢、镍基合金等具有较好的耐腐蚀性能,可以在循环水系统中广泛应用。

此外,合理选用防腐涂层和防腐衬里也可以有效降低循环水对金属的腐蚀。

操作不当也是导致循环水腐蚀的重要原因之一。

例如,循环水系统中的水质监测和维护不及时、不规范,会导致水质恶化和腐蚀加剧。

因此,定期对循环水进行水质监测和分析是非常重要的,及时发现问题并采取相应的措施。

针对以上问题,可以采取一些解决措施来防止循环水腐蚀。

首先,建立完善的水质监测和维护体系,定期对循环水进行水质分析和处理,及时调整水质参数,保证循环水的质量稳定。

其次,合理选择金属材料,并加强防腐涂层和防腐衬里的使用,提高金属材料的耐腐蚀性。

此外,加强操作培训,确保操作人员掌握正确的操作方法和技能,避免操作不当导致腐蚀的发生。

循环水腐蚀是一种常见的工业设备损坏问题,其原因多种多样。

水质问题、金属材料选择不当、操作不当等都可能导致循环水腐蚀的发生。

为了有效防止循环水腐蚀,我们应该加强对循环水的监测和维护,合理选择金属材料,并加强操作培训,确保设备的正常运行和使用寿命。

只有综合考虑这些因素,才能有效预防循环水腐蚀的发生,保护设备的安全和稳定运行。

相关文档
最新文档