基于单片机水温控制系统的设计课程设计

合集下载

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计水温控制系统在许多领域中都具有重要的应用价值,例如温室农业、水族馆、游泳池等。

在这些应用中,保持水温在一个合适的范围内对于生物的生存和健康至关重要。

基于单片机的水温控制系统设计是一种有效的方法,它可以实现对水温的精确控制和调节。

本文将详细介绍基于单片机的水温控制系统设计原理、硬件实现和软件编程等方面内容。

第一章研究背景与意义1.1研究背景随着科技的飞速发展,人们对生活品质的追求不断提高,对家电设备的智能化要求也越来越高。

其中,水温控制系统在热水器、空调等家电产品中具有广泛的应用。

精确控制水温对于提高用户体验、节约能源和保护环境具有重要意义。

然而,现有的水温控制系统存在控制精度不高、响应速度慢等问题,因此,研究一种新型的水温控制系统具有重要的实际意义。

1.2研究意义本研究旨在提出一种新型的水温控制系统,通过对水温进行精确控制,提高家电产品的性能和用户体验。

此外,本研究还将探讨系统性能的评估和改进方法,为水温控制领域的研究提供理论支持。

第二章水温控制系统设计原理2.1 水温测量原理本章将介绍水温的测量原理,包括热电偶、热敏电阻、红外传感器等常用温度传感器的原理及特点。

通过对各种传感器的比较,选出适合本研究的温度传感器。

2.2温度传感器选择与应用在本研究中,我们将选择一种具有高精度、快速响应和抗干扰能力的温度传感器。

此外,还将探讨如何将选定的温度传感器应用于水温控制系统,包括传感器的安装位置、信号处理方法等。

2.3控制算法选择与设计本章将分析现有的控制算法,如PID控制、模糊控制、神经网络控制等,并选择一种适合本研究的控制算法。

针对所选控制算法,设计相应的控制电路和程序。

第三章硬件实现3.1控制器选择与搭建本章将讨论控制器的选型,根据系统的需求,选择一款性能稳定、可编程性强、成本合理的控制器。

然后,介绍如何搭建控制器硬件系统,包括控制器与各种外设(如温度传感器、继电器等)的连接方式。

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计摘要:水温控制系统在工业、农业、生活等各个领域广泛应用。

随着技术的发展,单片机控制技术正在越来越多的应用到水温控制领域中。

本文通过对水温控制系统原理的分析,进行了设计和制作,并通过实验结果验证了本设计的可行性和稳定性。

关键词:单片机控制技术;水温控制系统;可行性;稳定性1. 引言水温控制系统在现代社会中应用广泛,水温控制技术的发展和进步为现代社会的科技进步做出了巨大的贡献。

单片机技术作为一种广泛应用的控制技术,可以实现多种不同的控制操作,因此被广泛应用到水温控制系统中。

本文将针对单片机水温控制系统进行分析设计,并进行实验验证。

2. 水温控制系统原理分析水温控制系统的基本结构由传感器、控制器以及执行机构等组成。

其中,传感器负责温度数据的采集,控制器负责处理和分析数据,并控制执行机构实现温度控制。

单片机水温控制系统的实现原理基于以下几个步骤:1)传感器采集温度数据并将数据转换为数字信号。

2)单片机控制器通过间接方式获取传感器采集的温度数字信号,并将其传输到外围设备中。

3)控制器将传输的信息根据其程序所设定的算法进行计算,得到温度数据,从而调整执行机构的作用。

4)执行机构实现接收计算出的数据并通过温度调节装置将温控装置的工作状态调节到所设定的工作状态,最终实现水温控制。

3. 单片机水温控制系统设计根据以上原理设计单片机水温控制系统,具体实现过程如下:1)传感器:选用DS18B20数字温度传感器,将其与单片机进行连接;2)控制器:选用AT89S52单片机,作为水温控制器,通过程序将传感器所采集到的数字信号转化为温度信息,并与设定温度进行比较和判断,控制继电器开关;3)执行机构:选用继电器作为执行机构,通过继电器的开关控制加热器的加热状态,调节水温。

4. 实验验证将设计好的单片机水温控制系统进行实验,实验过程中将设定温度为30℃,获得的实验结果显示在图1中。

图1 实验结果实验结果表明,本设计的单片机水温控制系统能够在设定温度为30℃时以及系统正常工作的情况下,实现对水温的有效控制。

基于单片机的水温水位控制系统设计

基于单片机的水温水位控制系统设计

四、结论
基于单片机的智能水箱水位和水温控制系统具有结构简单、成本低、可靠性 高等优点。通过实时监测和控制水箱的水位和水温,可以满足不同用户的需求。 此外,通过优化系统的硬件设计和软件设计,可以进一步提高系统的性能和可靠 性。这种系统不仅可以应用于家庭用水领域,也可以应用于工业生产中的液体控 制,具有广泛的应用前景。
1、抗干扰设计
由于环境因素和设备本身的影响,系统可能会受到干扰。因此,需要在硬件 设计和软件设计中加入抗干扰措施,如滤波电路、软件去抖动等。
2、节能设计
为了降低系统的功耗,可以在软件设计中加入休眠模式和唤醒模式。当系统 不需要工作时,可以进入休眠模式,降低功耗。当有数据需要处理时,系统被唤 醒,进入工作状态。
2、软件设计
系统的软件设计主要实现以下功能:数据的采集、处理、显示和控制。首先, 单片机通过水位传感器和水温传感器采集当前的水位和水温数据。然后,单片机 对采集到的数据进行处理,判断水位和水温是否正常。如果异常,则启动相应的 执行机构进行调节。最后,单片机将处理后的数据通过显示模块进行显示。
三、系统优化
六、结论
本次演示设计了一种基于单片机的水温水位控制系统,实现了温度和水位的 自动检测、调节和控制。该系统具有成本低、可靠性高、易于实现等优点,同时 支持远程控制和节能模式等功能。在家庭、工业和科学研究中具有广泛的应用前 景。
参考自动化技术的普及,智能化设备在日常生活和工业生产中 的应用越来越广泛。其中,基于单片机的智能水箱水位和水温控制系统具有重要 应用价值。这种系统可以实现对水箱水位和水温的实时监测和控制,以适应不同 的应用需求。
系统软件采用C语言编写,主要包括以下几个部分:数据采集、数据处理、 控制输出和远程通信。
1、数据采集:通过I/O端口读取DS18B20和超声波水位传感器的数据。

基于单片机的水温控制系统的设计报告

基于单片机的水温控制系统的设计报告

基于单片机的水温控制系统一、总体模块图二、总体思路用温度传感器AD590检测出水的温度,传感器会把温度值转换为模拟量,再经由一个模数转换器ADC0804把传感器中的模拟量转换为数字量,这样才能传送到单片机中,要温度有范围的限制,则要事先设定出最低和最高温度,这时便要利用键盘,这里采用独立键盘的方式只用到3个按键(一个“设定”键,一个“加一”键,一个“减一”键),设定好的温度就相当于一个标准值,实时的水温都要在单片机中与之进行比较,如果实时值低于最低温度时单片机要有一个输出信号去控制温度控制电路,即执行温度控制的中段,温度控制电路会控制电炉对水进行加热到最高温度时,单片机停止对温度控制电路的作用,水会逐渐降温到最低温度,再加热,如此循环。

其中的实时温度会由单片机来控制LED数码管的显示。

三、分块叙述1、温度传感器AD590测量范围在-50℃--+150℃,满刻度范围误差为±0.3℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±0.01℃。

AD590为电流型传感器温度每变化1℃其电流变化1uA。

满足温度范围40-90℃,最小区分度为1℃。

2、模数转换器ADC0804ADC0804的引脚功能如下:1、/CS(片选端)。

用来控制ADC0804是否被选取中,/CS=0时芯片被选中。

2、/RD(读控制端)。

/RD为1时,DB0-DB7处于高阻状态,/RD=0时,DB0-DB7才会输出电压数据。

3、/WR(写控制端)。

当/CS=0时,/WR由1变为0时,转换器被清除,/WR 再次回到1时,转换才重新开始。

4、CLK-IN(时钟输入端)。

5、INTR(中断输出端),低电平有效,接单片机外部中断。

6、Vin+(模拟电压同相输入端),输入电压在DC0-5.12V。

7、Vin-(模拟电压反相输入端),使用时一般接模拟地。

8、A-GND(模拟地)。

9、Vref/2(参考电压端),输入电压最高为5.12V时,应调整至2.56V;即此脚电压为输入最高电压的1/2。

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计

基于单片机的水温控制系统设计引言在能源日益紧张的今天,电热水器,饮水机,电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费浪费。

利用 AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成,软件选用汇编语言编程。

单片机可将温度传感器检测到的水温模拟量转换成数字量,显示于LED 显示器上。

该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。

本设计任务和主要内容设计并制作一个水温自动控制系统,控制对象为1升净水,容器为搪瓷器皿。

水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。

本设计主要内容如下:(1)温度设定范围为40~90℃,最小区分度为1℃,标定温度≤1℃。

(2)环境温度降低时温度控制的静态误差≤1℃。

(3)用十进制数码管显示水的实际温度。

(4)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。

(5)温度控制的静态误差≤0.2℃。

系统主要硬件电路设计单片机控制系统原理框图温度采样电路选用传感器AD590。

其测量范围在-50℃--+150℃,满刻度范围误差为±0.3℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±0.01℃。

此器件具有体积小、质量轻、线形度好、性能稳定等优点。

系统的信号采集电路主要由温度传感器(AD590)、基准电压(7812)及A/D转换电路(ADC0804)三部分组成。

信号采集电路温度控制电路此部分电路主要由光电耦合器MOC3041和双向可控硅BTA12组成。

MOC3041光电耦合器的耐压值为400v,它的输出级由过零触发的双向可控硅构成,它控制着主电路双向可控硅的导通和关闭。

100Ω电阻与0.01uF 电容组成双向可控硅保护电路。

部分控制电路系统主程序设计主程序流程图。

基于单片机的水温控制器设计

基于单片机的水温控制器设计

基于单片机的水温控制器设计引言水温控制在很多领域中都具有重要的应用价值,例如温室、鱼缸、热水器等。

基于单片机的水温控制器能够自动调控水温,提高水温的稳定性和准确性。

本文将介绍如何设计一个基于单片机的水温控制器,以实现对水温的精确控制。

一、硬件设计1.单片机选择选择一个合适的单片机对于设计一个稳定可靠的水温控制器至关重要。

常用的单片机有STC89C52、AT89C52等。

在选择时应考虑单片机的性能、功耗、接口等因素。

2.温度传感器温度传感器用于检测水温,常用的有NTC热敏电阻和DS18B20数字温度传感器。

NTC热敏电阻价格便宜,但精度较低,DS18B20精度高,但价格相对较贵。

3.加热装置加热装置用于根据温度控制器的输出信号进行加热或制冷。

可以选择加热丝、加热管或半导体制冷片等。

4.驱动电路驱动电路用于将单片机的输出信号转换为合适的电流或电压,驱动加热装置。

可以选择晶体管或继电器等。

5.显示模块可以选择液晶显示屏或LED数码管等显示水温的数值。

二、软件设计1.初始化设置首先,对单片机进行初始化设置,包括引脚配置、定时器设置等。

然后,设置温度传感器和加热装置的引脚。

最后,设置温度范围,以便根据实际需求进行调整。

2.温度检测使用温度传感器检测水温,并将读取到的温度值转换为数字形式,以便进行比较和控制。

可以使用ADC(模拟-数字转换)模块转换模拟信号为数字信号。

3.控制算法本设计中可以采用PID控制算法进行水温控制。

PID(Proportional-Integral-Derivative)控制算法根据设定值和反馈值之间的差异来计算控制信号。

可以根据需求进行参数调整,以获得更好的控制效果。

4.显示和报警使用显示模块显示当前水温的数值,并在温度超出设定值时触发报警功能。

报警可以采用声音、灯光等形式。

5.控制输出根据PID算法计算出的控制信号,控制驱动电路,驱动加热装置或制冷装置,以实现水温的调节。

总结基于单片机的水温控制器能够实现对水温的精确控制。

基于单片机的水温控制系统设计-毕业设计.

基于单片机的水温控制系统设计-毕业设计.

基于单片机的水温控制系统设计学生:指导教师:内容摘要:说起温度控制系统,大家并不陌生了,在我们生活中许许多多的家用电器都可以涉及到温度的控制,像存储美食的电冰箱,为我们带来凉爽的空调都会用到温度控制系统,为我们带来热气腾腾开水的饮水机等等。

而本文介绍了水温控制系统的基本原理,本系统可以用于饮水机等电路,整个系统的核心就是AT89C51单片机,它是这个系统的主控制单元,对于水温控制当然温度控制系统也是必不可少的,这个系统则应用了DS18B20为温度传感器的温度控制系统,采集温度后利用数码管显示当前温度,并通过继电器对其加热等。

总而言之水温控制系统在生活中的大量应用为我们带来了方便,提高了我们的生活质量。

关键词:水温控制系统单片机 AT89C51 DS18B20 继电器Design for microcomputer temperature control system Abstract:Speaking of temperature control system, everybody is not strange, in our life, many household appliances can be involved in temperature control, like food storage refrigerator, bring us cool air conditioning, the temperature control system is used for us a steaming hot water drinking machine, and so on. Water temperature control system are introduced in this paper, the basic principle of this system can be used for water dispensers circuit, such as the core of the whole system is AT89C51 single chip microcomputer, it is the main control unit to the system, the water temperature control temperature control system is also indispensable, of course, the application system, the temperature control system of temperature sensor DS18B20, after collecting temperature using digital tube display the current temperature, and through the relay on the heating, etc. Overall water temperature control system in the life of a large number of applications for our brought convenient, improve the quality of our life.Keywords:water temperature control system of single chip microcomputer AT89C51 DS18B20 relay.目录前言 (1)1 水温控制器背景 (1)2 方案比较 (1)2.1 控制电路的方案比较 (1)2.2 温度采集模块 (2)2.3 显示模块 (2)2.4 温度控制模块 (2)3 硬件电路 (3)3.1 硬件框图 (3)3.2 功能介绍 (3)3.2.1 控制电路模块 (3)3.2.2 温度采集模块功能 (6)3.2.3 温度控制模块功能 (7)3.2.4 显示模块功能 (8)4 软件设计 (10)4.1 主程序流程图 (10)4.2 温度采集程序 (11)4.2.1 温度转换 (12)4.3 按键处理 (13)4.4 显示模块 (13)5 调试说明 (15)5.1 温度采集误差 (15)5.2 水温控制测试 (16)5.3 温度突变测试 (17)6 结束语 (18)附录 (19)参考文献 (21)基于单片机的水温控制系统设计前言电饭煲,电冰箱,电空调在我们生活中随处可见,为我们的生活带来了极大的方便,这一切的功劳都归属于水温控制系统的诞生。

基于单片机的智能水温控制系统设计

基于单片机的智能水温控制系统设计

摘要本设计以AT89C52单片机为核心,采用了温度传感器DS18B20,74HC245, LED 显示器对温度进行控制。

该水温控制系统是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制实现水温控制的全过程。

本设计实现了水温的智能化控制以及提供完善的人机交互界面及多机通讯接口,系统由前向通道模块(即温度采样模块)、后向控制模块、系统主模块等三大模块组成。

本系统的特点在于采用PC机及普通键盘实现了多机通信。

该水温控制系统是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制。

因此,应以单片微型计算机为核心组成一个专用计算机应用系统,以满足检测、控制应用类型的功能要求。

另外,单片机的使用也为实现水温的智能化控制以及提供完善的人机交互界面及多机通讯接口提供了可能,而这些功能在常规数字逻辑道路中往往是难以实现或无法实现的。

所以,本例采用以单片机为核心的直接数字控制系统。

关键词:AT89C52单片机;温度传感器;74HC245;LED显示器目录摘要 ......................................................... - 0 - 第一章绪论 ................................................. - 3 - 1.1系统概述.. (3)第二章系统方案设计 ............................................ - 4 - 2.1总体方案论证. (4)2.2模块方案论证 (4)2.2.1 控制方案论证.......................................... - 5 -2.2.2 系统组成论证.......................................... - 5 -2.2.3 单片机系统选择........................................ - 6 -2.2.4 温度控制方案论证...................................... - 6 -2.2.5 LED显示电路论证....................................... - 6 - 第三章总体设计 ................................................ - 8 - 3.1总体设计系统图.. (8)3.2AT89C52单片机 (8)3.474HC245 (11)3.5DS18B20温度传感器 (11)第四章硬件电路设计 ........................................... - 16 - 4.1主机控制部分 (16)4.2电路的整体排布 (16)4.3复位电路设计 (16)4.4系统电源电路 (17)4.5时钟电路的设计 (17)4.6温度采样电路 (18)4.7温度控制系统 (18)4.8数字显示部分 (19)4.9报警电路设计 (19)第五章仿真调试结果 ........................................... - 21 - 5.1K EIL U V ISION 2软件简介. (21)5.2 K EIL 调试 (21)5.3 PROTEUS 仿真 (22)第六章设计总结 ............................................... - 24 - 6.1设计过程总结 (24)6.2设计功能拓展 (24)参考文献 ...................................................... - 25 - 致谢 ......................................................... - 26 - 附录:程序清单 ................................................ - 27 -第一章绪论1.1系统概述单片微型计算机是随着超大规模集成电路技术的发展而诞生的,由于它具有体积小、功能强、性价比高等特点,所以广泛应用于电子仪表、家用电器、节能装置、军事装置、机器人、工业控制等诸多领域,使产品小型化、智能化,既提高了产品的功能和质量,又降低了成本,简化了设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机水温控制系统的设计摘要本文介绍了基于AT89S52单片机水温测量及控制系统的设计。

系统硬件部分由单片机电路、温度采集电路、键盘电路、LED显示电路、继电器控制电路等组成。

软件从设计思路、软件系统框图出发,逐一分析各模块程序算法的实现,通过C语言编写出满足任务需求的程序。

本系统采用数字式温度传感器DS18B20作为温度传感器,简易实用,方便拓展。

单片机以此对水的温度进行有效检测与报警,并以此进行水温的控制。

基于单片机水温控制系统采用多电源供电,降低了系统各个模块间的干扰,还保证了电源能为各部分提供足够的工作电流,提高系统的可靠性。

关键词:水温控制 AT89S52 DS18B20湖南科技大学课程设计目录摘要 (i)第一章绪论 (1)1.1水温控制系统设计的背景 (1)1.2水温控制系统设计的意义 (1)1.3水温控制系统完成的功能 (2)第二章系统设计方案选择 (3)2.1单片机及水温控制方案 (3)2.2水温传感器方案 (3)2.3电源设计方案 (4)2.4控制系统总体设计 (4)第三章硬件设计部分 (5)3.1单片机电路 (5)3.2温度检测电路 (9)3.3其它部分硬件电路 (13)第四章软件设计部分 (16)4.1程序设计方案 (16)4.2各模块子程序设计 (17)第五章系统调试部分 (21)参考文献 (23)附录 (24)第一章绪论1.1水温控制系统设计的背景测量控制的作用是从生产现场中获取各种参数,运用科学计算的方法,综合各种先进技术,使每个生产环节都能够得到有效的控制,不但保证了生产的规范化、提高产品质量、降低成本,还确保了生产安全。

所以,测量控制技术已经被广泛应用于炼油、化工、冶金、电力、电子、轻工和纺织等行业。

单片机以其集成度高、运算速度快、体积小、运行可靠、价格低廉等优势,在过程控制、数据采集、机电一体化、智能化仪表、家用电器以及网络技术等方面得到了广泛的应用,特别是单片机技术的开发与应用,标志着计算机发展史上又一个新的里程碑。

作为计算机两大发展方向之一的单片机,以面向对象的实时控制为己任,嵌入到如家用电器、汽车、机器人、仪器仪表等设备中,使其智能化。

水温检测控制系统在工业生产、科学研究和人们的生活领域中,得到了广泛应用。

在工业生产过程中,很多时候都需要对水温进行严格的监控,以使得生产能够顺利的进行,产品的质量才能够得到充分的保证。

使用水温控制系统可以对生产环境的温度进行有效控制,保证生产的自动化、智能化能够顺利、安全进行,从而提高企业的生产效率。

水温控制系统应用十分广阔。

1.2水温控制系统设计的意义随着社会的发展,科技的进步,以及测温仪器在各个领域的应用,智能化已是现代温度控制系统发展的主流方向。

温度测试控制系统,控制对象是温度。

温度控制在日常生活及工业领域应用相当广泛,比如温室、水池、发酵缸、电源等场所的温度控制。

而以往温度控制是由人工完成的而且不够重视,其实在很多场所温度都需要监控以防止发生意外。

针对此问题,本系统设计的目的是实现一种可连续高精度调温的温度控制系统,它应用广泛,功能强大,小巧美观,便于携带,是一款既实用又廉价的控制系统。

特别是近年来,温度控制系统已应用到人们生活的各个方面,温度控制的开发与人们工作生活息息相关。

水是一种我们赖以生存的重要资源,无论是在工农业生产还是我们的日常生活处处离不开水。

控制水的温度可以极大提高生产效率,节约资源,提升我们的生活质量。

在水资源日益匮乏的今天,拥有并推广简易完善的水温控制系统对于我们社会的可持续发展,有着极大的实际意义。

1.3水温控制系统完成的功能本器件以AT89S52单片机系统进行温度采集与控制温度信号由模拟温度传感器DS18B20采集输入AT89S52,主控器能对各温度检测器通过LED进行显示。

1.3.1本机实现的功能:(1)利用温度传感器采集到当前的温度,通过AT89S52单片机进行控制,最后通过LED数码管以串行口传送数据实现温度显示。

(2)可以通过按键任意设定一个恒定的温度。

(3)将水环境数据与所设置的数据进行比较,当水温低于设定值时,开启加热设备,进行加热;当水温高于设定温度时,停止加热,从而实现对水温的自动控制。

(4)当系统出现故障,超出控制温度范围时,自动蜂鸣报警。

1.3.2基本设计参数要求有:一升水由800W的电热设备加热,要求水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变。

(1)温度测量范围:30~90℃,最小区分度不大于0.1℃。

(2)控制精度在0.5℃以内,温度控制的静态误差小于1℃。

(3)用十进制数码管显示实际水温。

1.3.3扩展功能:(1)具有通信能力,可接收其他数据设备发来的命令,或将结果传送到其他数据设备。

(2)采用适当的控制方法实现当设定温度或环境温度突变时,减小系统的调节时间和超调量。

(3)温度控制的静态误差。

第二章系统设计方案选择2.1单片机及水温控制方案建立单片机水温控制系统可以采用8031作为控制核心,以使用最为普遍的器件ADC0804作模数转换,控制上使用对电阻丝加电使其升温。

此方案简易可行,器件的价格便宜。

但8031内部没有程序存储器,需要扩展,增加了电路的复杂性。

但此方案在硬件、软件上的成本都比较高,而且易受外部环境的影响和限制,系统工作相对不稳定。

单片机种类繁多,经过比较。

此次设计方案采用AT89S52单片机实现,该单片机软件编程自由度大,可用编程实现各种控制算法和逻辑控制。

进行数据转换,控制电路部分采用继电器控制,此方案电路简单并且可以满足题目中的各项要求的数据。

2.2水温传感器方案水温传感器可以采用极为普遍的晶体管3DG6作为温度传感器,廉价的电压/频率转换器(V/F)LM331与AT89S52单片机组成的温度测量仪。

但抗干扰性差,数据处理复杂,数据存放空间大,受市场限制。

设计中广泛采用热电阻传感器,铂电阻温度传感器是利用其电阻和温度成一定函数关系而制成的温度传感器,由于其测量准确度高、测量范围大、稳定性好等特点,被广泛用于中温(-200℃~+650℃)范围的温度测量中。

但铂电阻的电阻值与温度成非线性关系,所以需要进行非线性较正。

校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值。

采用数字可编程温度传感器DS18B20作为温度检测元件。

数字可编程温度传感器可以直接读出被测温度值。

不需要将温度传感器的输出信号接到A/D转换器上,减少了系统的硬件电路的成本和整个系统的体积进行数据转换,控制电路部分采用继电器控制,此方案电路简单并且可以满足题目中的各项要求的数据。

由于采用具有一总线特点的温度传感器,所以电路连接简单;而且该传感器拥有强大的通信协议,同过几个简单的操作就可以实现传感器与单片机的交互,包括复位传感器、对传感器读写数据、对传感器写命令。

软件、硬件易于调试,制作成本较低。

也使得系统所测结果精度大大提高。

综合多方考虑,经过对各种温度传单器的比较,本设计决定采用DS18B20建立温度检测电路。

2.3电源设计方案采用单一电源供电,各个部分很可能造成干扰,系统无法正确工作,还可能因为负载过大,电源无法提供足够的工作电流。

特别是压机启动瞬间电流很大,而且逆变电路负载电流波动较大会造成电压不稳,有毛刺等干扰,严重时可能造成弱电部分电路掉电。

所以采用双电源,即电源负载驱动电路等强电部分用一个电源,数字电路等弱电部分用一个电源。

但是电路间还是可能会产生干扰,造成系统不正常,而且还可能会对单片机的工作产生干扰,影响单片机的正常工作。

最终我们采用多电源供电方式,即对数字电路、驱动电路分别供电,这种方案即降低了系统各个模块间的干扰,还保证了电源能为各部分提供足够的工作电流,提高系统的可靠性。

2.4控制系统总体设计本次设计采用采样值和键盘设定值进行比较运算的方法来简单精确地控制温度。

先通过键盘输入设定温度,保存在AT89S52单片机的指定单元中,再利用温度传感器DS18B20进行信号的采集,送入单片机中,保存在采样值单元。

然后把采样值与设定值进行比较运算,得出控制量,从而调节继电器触发端的通断,来实现将水温控制在一定的范围内。

当水温超出单片机预存温度时,蜂鸣器进行报警。

单片机控制系统是一个完整的智能化的集数据采集、显示、处理、控制于一体的系统。

由传感器、LED显示单片机及执行机构控制部分等组成。

系统结构框图如图2.1所示: 图2.1系统结构框图第三章 硬件设计部分3.1单片机电路本设计采用的AT89S52是一种低功耗、高性能CMOS8位微控制器。

使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。

片上8K 字节Flash 允许程序存储器在系统可编程,亦适于常规编程器。

在单芯片上,拥有灵巧的8位CPU 和在系统可编程Flash ,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

AT89S52单片机主要功能特点有:与MCS-51单片机产品兼容;8K 字节在系统可编程Flash 存储器;256字节RAM ;1000次擦写周期;全静态操作:三级加密程序存储器;32位可编程I/O 口线;双数据指针;三个16位定时器/计数器;八个中断源(一个6向量2级中断结构);全双工UART 串行通道;片内晶振及时钟电路;看门狗定时器;掉电标识符;0Hz~33Hz ,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。

空闲模式下,CPU 停止工作,允许RAM 、定时器/计数器、串口、中断继续工作。

掉电保护方式下,RAM 内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止,掉电后中断可唤醒。

DS18B20温度传感器LED 显示 指示灯蜂鸣器AT89S52单片机加热继电器按键3.1.1 AT89S52引脚功能图3.1 AT89S52单片机引脚结构示意图VCC:电源(+5V)。

GND:地。

P0口:本次设计中P0口与P2口共同实现LED显示功能。

P0口是一个8位漏极开路的双向I/O口。

作为输出口,每位能驱动8个TTL逻辑电平。

对P0端口写“1”时,引脚用作高阻抗输入。

当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。

在这种模式下,P0具有内部上拉电阻。

在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。

程序校验时,需要外部上拉电阻。

P2口:P2口是一个具有内部上拉电阻的8位双向I/O口,P2输出缓冲器能驱动4个TTL逻辑电平。

相关文档
最新文档