同济大学线性代数
线性代数课件(完整版)同济大学

a11 a12 a13
a21 a22 a23
引进记号
a31 a32 a33
原则:横行竖列
主对角线 a11 a12 a13
a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
副对角线 a31 a32 a33
a13a22a31 a12a21a33 a11a23a32
p1 p2 L pn
4. 当 p1 p2 L是p偶n 排列时,对应的项取正号; 当 p1 p2 L是奇pn排列时,对应的项取负号.
思考题: 1 1成立吗? 答:符号 1可以有两种理解: ✓若理解成绝对值,则 1 ;1 ✓若理解成一阶行列式,则 1 . 1
注意:当n = 1时,一阶行列式|a| = a,注意不要与 绝对值的记号相混淆. 例如:一阶行列式 1 1 .
线性代数(第五版)
在以往的学习中,我们接触过二 元、三元等简单的线性方程组.
但是,从许多实践或理论问题里 导出的线性方程组常常含有相当 多的未知量,并且未知量的个数 与方程的个数也不一定相等.
我们先讨论未知量的个数与方程 的个数相等的特殊情形. 在讨论这一类线性方程组时,我 们引入行列式这个计算工具.
例:写出四阶行列式中含有因子a11a的23 项.
解:a11a23a32a44 和 a11a23a34a42 .
例:计算行列式
a11 0 0 0
0 D1 0
a22 0 0 a33
0 0
0 0 0 a44
0 0 0 a14
0 D2 0
0 a23 a32 0
0 0
a41 0 0 0
a11 a12 a13 a14
(a a a a )x a b b a
同济大学线性代数第五章

定理 设n阶方阵 A aij 的特征值为 1 , 2 , , n
(2) 1 2 n a11 a22 ann ;
证明① 当 1 , 2 , , n 是A的特征值时,A的特征多项 式可分解为 f E A 1 2 n 令 0, 得 A 1 12 n
注 ① ② 特征值问题只针对与方阵,且特征向量不能为零 , 并不一定唯一;
③ n阶方阵A的特征值,就是使齐次线性方程组 E A x 0 有非零解的λ值,即满足 E A 0 的λ都是方阵A的特征值.
定义 E A 0 为A的特征方程(几元几次方程?)
定义 f E A
2 2
当且仅当α与β的线性相关时,等号成立. 由非零向量α得到单位向量 称为把α单位化或标准化.
0
1
的过程
3、夹角 设α与β为n维空间的两个非零向量,α与β的夹 , , 因此α与β的夹角为 角的余弦为 cos
, ,0 . arccos
注:内积是向量的一种运算,用矩阵形式表示,有 b1 b , a1 a2 an 2 T . bn
2、性质 (1)对称性: , , (2)线性性: , , ,
5、标准正交基 由标准正交向量组构成的空间V的基
4、性质 定理 正交向量组必为线性无关组. 证明见P112 例题: 证明:r个n维向量构成的向量组,若r>n则该向量组 一定不是正交组 思路:r个n维向量组当r>n时,必然线性相关
1 1 1 1 , 2 2 正交, 例2 已知三维向量空间中, 1 1 试求 3 , 1 , 2 , 3 是三维向量空间的一个正交基.
同济大学线性代数第六版线性相关与线性无关的判定方法

同济大学线性代数第六版线性相关与线性无关的判定方法在线性代数中,线性相关和线性无关是对于向量组的性质进行判断的重要概念。
在同济大学线性代数第六版教材中,针对线性相关和线性无关的判定方法进行了详细的阐述和说明。
本文将根据该教材的内容,对线性相关和线性无关的判定方法进行介绍和解释。
1. 向量组及其线性组合在线性代数中,向量组指的是由一系列向量组成的集合。
对于一组向量A = (a_1, a_2, ..., a_n)可以通过线性组合的方式生成新的向量。
线性组合的定义如下:对于任意实数k_1, k_2, ..., k_n,向量b可以表示为:b = k_1 * a_1 + k_2 * a_2 + ... + k_n * a_n2. 线性相关与线性无关的定义在线性代数中,向量组A中的向量线性相关指的是存在一组不全为零的实数k_1, k_2, ..., k_n,使得:k_1 * a_1 + k_2 * a_2 + ... + k_n * a_n = 0反之,如果向量组A中的向量线性相关的话,则称其线性无关。
3. 线性相关的判定方法方法来判定一个向量组是否线性相关:3.1 行列式法行列式法是线性代数中常用的判定线性相关的方法之一。
对于向量组A = (a_1, a_2, ..., a_n),如果存在一个n阶行列式|A| = 0,则向量组A线性相关;如果|A| ≠ 0,则向量组A线性无关。
3.2 线性方程组法线性方程组法是另一种常用的判定线性相关的方法。
对于向量组A = (a_1, a_2, ..., a_n),将其表示为线性方程组的形式:k_1 * a_1 + k_2 * a_2 + ... + k_n * a_n = 0如果线性方程组存在非零解,则向量组A线性相关;如果线性方程组只有零解(即只有全部系数均为0的解),则向量组A线性无关。
3.3 列向量线性组合法列向量线性组合法是通过列向量的线性组合判定线性相关的方法。
同济大学线性代数

同济大学线性代数
线性代数是一门重要的数学课程,它在工程计算、推理及数据分析等领域中都有广泛的应用。
在继续深入学习高级数学和数学建模方面,线性代数也具有重要的作用。
同济大学的线性代数课程也为学生们的深入学习提供了极大的便利。
同济大学的线性代数课程覆盖了线性方程组、向量空间、范数、行列式、矩阵论、线性变换及其应用、秩与基的概念等内容。
通过研究这些内容,学生们可以了解线性方程组、向量空间、范数、行列式、矩阵论、线性变换及其应用、以及秩和基之间的联系与区别,从而加深对线性代数的理解。
同济大学的线性代数课程还让学生们通过实际例子学习线性代数,比如学习如何解决线性规划问题、如何求线性变换的最大最小值等。
学生们还可以利用计算机软件解决复杂的线性代数问题,从而更好地掌握和运用线性代数知识。
此外,同济大学的线性代数课程强调实验教学,给学生们留出充足的实验时间,让学生们可以把线性代数知识灵活运用到实践中,从而加深对线性代数知识的理解及掌握。
在学习线性代数课程时,学生们还可以了解线性代数在其他领域的应用,比如在机器学习、大数据分析等领域,线性代数都发挥着重要的作用。
机器学习涉及到很多数学模型,其中线性代数概念是重要的一环。
此外,线性代数在大数据分析中的应用也很广泛,比如在图像处理中,学习线性代数可以帮助研究人员更好地提取图像中的细微
特征信息。
综上所述,可以肯定的是,同济大学的线性代数课程对学生来说是一次宝贵的机会,学生们可以在课程中深入学习和了解线性代数,从而更好地利用线性代数知识帮助他们解决诸多数学问题。
《线性代数》同济大学版-课后习题答案详解

《线性代数》同济大学版 课后习题答案详解第一章 行列式1. 利用对角线法则计算下列三阶行列式:(1)381141102---;解 381141102---=2´(-4)´3+0´(-1)´(-1)+1´1´8 -0´1´3-2´(-1)´8-1´(-4)´(-1) =-24+8+16-4=-4.(2)b a c ac b cb a解 ba c a cbc b a=acb +bac +cba -bbb -aaa -ccc=3abc -a 3-b 3-c 3.(3)222111c b a cb a ;解 222111c b a cb a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y y x y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3=3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3=-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3.(5)1 3 × × × (2n -1) 2 4 × × × (2n );解 逆序数为2)1(-n n :3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) × × × × × ×(2n -1)2, (2n -1)4, (2n -1)6, × × ×, (2n -1)(2n -2) (n -1个)(6)1 3 × × × (2n -1) (2n ) (2n -2) × × × 2. 解 逆序数为n (n -1) : 3 2(1个) 5 2, 5 4 (2个) × × × × × ×(2n -1)2, (2n -1)4, (2n -1)6, × × ×, (2n -1)(2n -2) (n -1个) 4 2(1个) 6 2, 6 4(2个) × × × × × ×(2n )2, (2n )4, (2n )6, × × ×, (2n )(2n -2) (n -1个) 3. 写出四阶行列式中含有因子a 11a 23的项. 解 含因子a 11a 23的项的一般形式为(1)ta 11a 23a 3r a 4s ,其中rs 是2和4构成的排列 这种排列共有两个即24和42所以含因子a 11a 23的项分别是 (1)ta 11a 23a 32a 44(1)1a 11a 23a 32a 44a 11a 23a 32a 44(1)t a 11a 23a 34a 42(1)2a 11a 23a 34a 42a 11a 23a 34a 424. 计算下列各行列式:(1)7110025*******214; 解71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 265232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf decd bd ae ac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b e c b adf ---=abcdefadfbce 4111111111=---=(4)dc b a100110011001---. 解 d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ad a ab dc ccdad ab +-+--=+111)1)(1(23abcd +ab +cd +ad +1.5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3.(2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bx az z y b y by ax z x bx az y z bz ay x a +++++++=22zy x yx z x z y b y x z x z y z y x a 33+=y x z x z y z y x b y x z x z y z y x a 33+=yx z x z y z y x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得)5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得) 022122212221222122222=++++=d d c c b b a a .(4)444422221111d c b a d c b a d c b a=(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d );证明444422221111d c b a d c b a d c b a)()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c bd b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x x n n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n+a 1x n -1+ × × × +a n -1x +a n .证明 用数学归纳法证明 当n =2时,2121221a x a x a x a x D ++=+-=, 命题成立.假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ × × × +a n -2x +a n -1, 则D n 按第一列展开有11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n+a 1x n -1+ × × × +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90°、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以nnn n n n nnnn a a a a a a a a a a D 2211111111111)1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a aDD n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=同理可证nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n Tn n 2)1(2)1()1()1(---=-=.D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0;解aa a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开))1()1(10 00000 0000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a aan n n nn a a a +⋅⋅⋅-⋅-=--+)2)(2(1 )1()1(=a n-an -2=a n -2(a 2-1).(2)xa a a x a a a x D n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a aa a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n -1.(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nnn n ; 解 根据第6题结果 有nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 1111)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)n nnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112;解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开)nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2于是∏=-=ni i i i i n D c b d a D 222)(.而111111112c b d a d c b a D -==所以∏=-=ni i i i i n c b d a D 12)((5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |,4321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 152423210 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 × × × a n ¹0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 1111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni in a a a a8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x解 因为14211213513241211111-=----=D142112105132412211151-=------=D28411235122412111512-=-----=D42611135********5113-=----=D14202132132212151114=-----=D所以 111==D D x , 222==D D x , 333==D D x , 144-==DDx . (2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x解 因为665510006510006510065100065==D15075100165100065100650000611==D11455101065100065000601000152-==D7035110065000060100051001653==D3955100060100005100651010654-==D2121100005100065100651100655==D所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x ,6652124=x .9. 问l , m 取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D令D =0, 得 m =0或l =1 于是 当m =0或l =1时该齐次线性方程组有非零解.10. 问l 取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D =(1-l )3+(l -3)-4(1-l )-2(1-l )(-3-l ) =(1-l )3+2(1-l )2+l -3. 令D =0, 得l =0, l =2或l =3. 于是 当l =0, l =2或l =3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x求从变量x 1x 2 x 3到变量y 1 y 2 y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B 求3AB 2A 及A TB解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321((132231)(10)(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1a 12x 2a 13x 3 a 12x 1a 22x 2a 23x 3 a 13x 1a 23x 2a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++=5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B 问:(1)AB BA 吗? 解 AB BA因为⎪⎭⎫ ⎝⎛=6443AB⎪⎭⎫ ⎝⎛=8321BA 所以AB BA(2)(A B )2A 22AB B 2吗?解 (A B )2A 22AB B 2因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫⎝⎛=2914148但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610所以(AB )2A 22AB B 2(3)(A B )(A B )A 2B 2吗?解 (A B )(A B )A 2B 2因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛=-1020B A⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A故(AB )(A B )A 2B 26. 举反列说明下列命题是错误的: (1)若A 2则A 0;解 取⎪⎭⎫ ⎝⎛=0010A 则A20 但A 0(2)若A 2A , 则A 0或A E ;解 取⎪⎭⎫ ⎝⎛=0011A 则A2A , 但A 0且A E(3)若AX AY , 且A 0, 则X Y .解 取⎪⎭⎫ ⎝⎛=0001A⎪⎭⎫ ⎝⎛-=1111X⎪⎭⎫ ⎝⎛=1011Y则AX AY , 且A 0, 但X Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2A 3A k解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A⎪⎭⎫ ⎝⎛=101λk A k8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k.解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫用数学归纳法证明:当k2时, 显然成立.假设k 时成立,则k1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219. 设A B 为n 阶矩阵,且A 为对称矩阵,证明B TAB 也是对称矩阵.证明 因为A TA 所以(B TAB )TB T (B T A )T B T A T B B T AB从而B TAB 是对称矩阵. 10. 设AB 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA证明 充分性: 因为A TA B T B 且AB BA 所以(AB )T(BA )TA TB T AB即AB 是对称矩阵. 必要性: 因为ATA B T B 且(AB )T AB 所以AB(AB )TB T A T BA11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1¹0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2¹0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A AA A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2× × ×a n¹0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程: (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ;解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫⎝⎛-=80232(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=20143101213. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===35321x x x14. 设AkO (k 为正整数), 证明(E A )1E A A 2 A k1证明 因为A kO 所以E AkE 又因为E A k(E A )(E A A2A k 1)所以 (EA )(E A A 2A k 1)E由定理2推论知(E A )可逆 且(E A )1E A A 2 A k1证明 一方面 有E (E A )1(EA )另一方面由A kO 有E (E A )(A A 2)A 2A k1(Ak 1A k )(E A A 2 A k 1)(E A )故 (E A )1(E A )(E A A 2A k 1)(E A ) 两端同时右乘(EA )1就有(E A )1(E A )E A A2Ak 115. 设方阵A 满足A 2A 2E O , 证明A 及A 2E 都可逆, 并求A 1及(A2E )1.证明 由A 2A 2E O 得A 2A 2E , 即A (A E )2E或E E A A =-⋅)(21,由定理2推论知A 可逆 且)(211E A A -=-由A2A 2E O 得 A 2A 6E4E 即(A2E )(A 3E )4E或E A E E A =-⋅+)3(41)2(由定理2推论知(A 2E )可逆且)3(41)2(1A E E A -=+-证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得|A2A |2即 |A ||A E |2,故 |A |0 所以A 可逆, 而A 2EA 2 |A 2E ||A 2||A |20 故A 2E 也可逆.由 A2A 2E O A (A E )2E A 1A (A E )2A 1E)(211E A A -=-又由 A 2A 2E O (A 2E )A 3(A 2E )4E(A 2E )(A3E ) 4 E 所以 (A 2E )1(A 2E )(A3E )4(A 2 E )1)3(41)2(1A E E A -=+-16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8´2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A-1, 所以当A 可逆时 有|A *|=|A |n|A -1|=|A |n -1¹0,从而A *也可逆.因为A *=|A |A -1, 所以 (A *)1|A |1A又*)(||)*(||1111---==A A A A A 所以(A *)1|A |1A |A |1|A |(A 1)*(A 1)* 18. 设n 阶矩阵A 的伴随矩阵为A * 证明: (1)若|A |0, 则|A *|0;(2)|A *||A |n 1证明(1)用反证法证明. 假设|A *|0 则有A *(A *)1E 由此得A A A *(A *)1|A |E (A *)1O所以A *O 这与|A *|0矛盾,故当|A |0时 有|A *|0(2)由于*||11A A A =-, 则AA *|A |E 取行列式得到|A ||A *||A |n若|A |0 则|A *||A |n 1若|A |0 由(1)知|A *|0此时命题也成立因此|A *||A |n 119. 设⎪⎪⎭⎫⎝⎛-=321011330A , ABA 2B 求B .解 由AB A 2E 可得(A 2E )BA 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫ ⎝⎛-=01132133020 设⎪⎪⎭⎫⎝⎛=101020101A 且AB E A 2B 求B解 由AB E A 2B 得(A E )B A 2E 即 (AE )B (A E )(A E )因为01001010100||≠-==-E A 所以(A E )可逆 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B21设A diag(12 1) A *BA 2BA 8E 求B解 由A *BA 2BA8E 得(A *2E )BA 8EB 8(A *2E )1A 18[A (A *2E )]18(AA *2A )1 8(|A |E 2A )18(2E 2A )14(E A )14[diag(2 1 2)]1)21 ,1 ,21(diag 4-=2diag(121)22已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A且ABA 1BA13E 求B 解 由|A *||A |38 得|A |2由ABA 1BA 13E 得ABB 3AB 3(A E )1A 3[A (E A 1)]1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060000660300101001000016123. 设P 1AP , 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P 1AP , 得A PP1所以A 11A =P11P 1.|P |3⎪⎭⎫ ⎝⎛-=1141*P⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=6846832732273124 设AP P 其中⎪⎪⎭⎫⎝⎛--=111201111P ⎪⎪⎭⎫ ⎝⎛-=Λ511求(A )A 8(5E6AA 2)解 ()8(5E62) diag(1158)[diag(555)diag(6630)diag(1125)]diag(1158)diag(1200)12diag(10)(A )P ()P 1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=111111111425 设矩阵A 、B 及A B 都可逆 证明A1B 1也可逆 并求其逆阵证明 因为A 1(A B )B1B1A1A1B1而A 1(A B )B 1是三个可逆矩阵的乘积 所以A 1(A B )B 1可逆 即A1B 1可逆(A 1B 1)1[A 1(A B )B 1]1B (A B )1A26 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121 解 设⎪⎭⎫ ⎝⎛=10211A ⎪⎭⎫ ⎝⎛=30122A ⎪⎭⎫ ⎝⎛-=12131B⎪⎭⎫ ⎝⎛--=30322B则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A 所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠解4100120021010*********0021010010110100101==--=--=D C B A而01111|||||||| ==D C B A故 |||||||| D C B A D C B A ≠28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A4解 令⎪⎭⎫ ⎝⎛-=34431A ⎪⎭⎫ ⎝⎛=22022A则 ⎪⎭⎫ ⎝⎛=21A O O A A故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A1682818281810||||||||||===A A A A A⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⎪⎩⎪⎨⎧====--121413B C O C O C A C所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A30 求下列矩阵的逆阵(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025解 设⎪⎭⎫ ⎝⎛=1225A ⎪⎭⎫ ⎝⎛=2538B 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001解 设⎪⎭⎫ ⎝⎛=2101A⎪⎭⎫ ⎝⎛=4103B⎪⎭⎫ ⎝⎛=2112C 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1 把下列矩阵化为行最简形矩阵(1)⎪⎪⎭⎫ ⎝⎛--340313021201解 ⎪⎪⎭⎫ ⎝⎛--340313021201(下一步 r 2(2)r1r 3(3)r 1 )~⎪⎪⎭⎫⎝⎛---020*********(下一步 r 2(1)r 3(2) )~⎪⎪⎭⎫⎝⎛--010*********(下一步 r 3r 2)~⎪⎪⎭⎫⎝⎛--300031001201(下一步 r 33 )~⎪⎪⎭⎫⎝⎛--100031001201(下一步 r 23r 3)~⎪⎪⎭⎫⎝⎛-100001001201(下一步 r 1(2)r2r 1r 3 )~⎪⎪⎭⎫ ⎝⎛100001000001(2)⎪⎪⎭⎫ ⎝⎛----174034301320解 ⎪⎪⎭⎫ ⎝⎛----174034301320(下一步: r 22(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫ ⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1¸2. )~⎪⎪⎭⎫ ⎝⎛000031005010(3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2¸(-4), r 3¸(-3) , r 4¸(-5). )~⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫ ⎝⎛---00000000002210032011(4)⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110(下一步: r 22r 1, r 3-8r 1, r 4-7r 1. ) ~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1r 2, r 2(1), r 4-r 3. ) ~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2r 3. ) ~⎪⎪⎪⎭⎫⎝⎛--00000410003011020201 2 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A 求A解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1 2) 其逆矩阵就是其本身⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1 2(1)) 其逆矩阵是E (1 2(1)) ⎪⎪⎭⎫⎝⎛-=100010101⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=2872212541000101019873216543 试利用矩阵的初等变换 求下列方阵的逆矩阵(1)⎪⎪⎭⎫⎝⎛323513123解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123 ~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267 (2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023解 ⎪⎪⎪⎭⎫⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫⎝⎛----00100301100001001220594012102321 ~⎪⎪⎪⎭⎫⎝⎛--------20104301100001001200110012102321 ~⎪⎪⎪⎭⎫⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042114(1)设⎪⎪⎭⎫⎝⎛--=113122214A ⎪⎪⎭⎫⎝⎛--=132231B 求X 使AX B解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A ⎪⎭⎫ ⎝⎛-=132321B 求X 使XA B解 考虑A T XTB T 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(TT B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1TT T B A X从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X5 设⎪⎪⎭⎫⎝⎛---=101110011A AX 2X A 求X解 原方程化为(A2E )X A因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~所以 ⎪⎪⎭⎫ ⎝⎛---=-=-011101110)2(1A E A X6 在秩是r 的矩阵中,有没有等于0的r 1阶子式? 有没有等于0的r 阶子式? 解 在秩是r 的矩阵中 可能存在等于0的r 1阶子式 也可能存在等于0的r 阶子式例如⎪⎪⎭⎫⎝⎛=010*********A R (A )3000是等于0的2阶子式10001000是等于0的3阶子式7 从矩阵A 中划去一行得到矩阵B 问AB 的秩的关系怎样? 解 R (A )R (B )这是因为B 的非零子式必是A 的非零子式故A 的秩不会小于B 的秩8 求作一个秩是4的方阵 它的两个行向量是(110) (110 0 0)解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001此矩阵的秩为4 其第2行和第3行是已知向量9 求下列矩阵的秩并求一个最高阶非零子式(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫ ⎝⎛---443112112013(下一步: r 1r 2. )~⎪⎪⎭⎫ ⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211 矩阵的2秩为41113-=-是一个最高阶非零子式(2)⎪⎪⎭⎫ ⎝⎛-------815073*********解 ⎪⎪⎭⎫ ⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431矩阵的秩是2 71223-=-是一个最高阶非零子式(3)⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812解 ⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 23r 1, r 32r 1. )~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步: r 216r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301矩阵的秩为3 070023085570≠=-是一个最高阶非零子式10 设A 、B 都是mn 矩阵 证明A ~B 的充分必要条件是R (A )R (B )证明 根据定理3 必要性是成立的充分性 设R (A )R (B ) 则A 与B 的标准形是相同的 设A 与B 的标准形为D则有A ~D D ~B由等价关系的传递性 有A ~B11设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A 问k 为何值 可使(1)R (A )1 (2)R (A )2 (3)R (A )3解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r(1)当k 1时 R (A )1(2)当k 2且k1时 R (A )2 (3)当k 1且k2时 R (A )312求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x解 对系数矩阵A 进行初等行变换 有A ⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数) (2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x解 对系数矩阵A 进行初等行变换, 有A ⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x (k1k 2为任意常数)(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x解 对系数矩阵A 进行初等行变换, 有A ⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001于是 ⎪⎩⎪⎨⎧====00004321x x x x故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x解 对系数矩阵A 进行初等行变换, 有。
线性代数教案全(同济大学第六版)

线性代数教案第(1)次课授课时间()1.教学内容: 二、三阶行列式的定义;全排列及其逆序数;阶行列式的定义2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.基本内容备注第一节 二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组 ⎩⎨⎧=+=+22222211212111b x a x a b x a x a用消元法,当021122211≠-a a a a 时,解得211222111212112211222112121221,a a a a b a b a x a a a a b a b a x --=--=令2112221122211211a a a a a a a a -=,称为二阶行列式 ,则如果将D 中第一列的元素11a ,21a 换成常数项1b ,2b ,则可得到另一个行列式,用字母1D 表示,于是有2221211a b a b D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
同理将 中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 表示,于是有2121112b a b a D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==D D x D D x 2211 其中0≠D例1. 解线性方程组 .1212232121⎪⎩⎪⎨⎧=+=-x x x x 同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a用消元法解得定义 设有9个数排成3行3列的数表333231232221131211a a a a a a a a a 记 333231232221131211a a a a a a a a a D =322113312312332211a a a a a a a a a ++=332112322311312213a a a a a a a a a ---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆: 从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2.计算三阶行列式 .(-14) 例3.求解方程 ( ) 例4.解线性方程组 解 先计算系数行列式573411112--=D 069556371210≠-=----+-= 再计算 321,,D D D515754101121-=--=D ,315534011222=--=D ,55730112123=---=D得 23171==D D x ,69312-==D D y ,6953-==D D z第( 2 )次课授课时间()第( 3 )次课授课时间()1.教学内容: 行列式按行(列)展开;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;教学手段: 黑板讲解与多媒体演示.基本内容备注第5节 行列式按行(列)展开定义 在 阶行列式中, 把元素 所处的第 行、第 列划去, 剩下的元素按原排列构成的 阶行列式, 称为 的余子式, 记为;而 称为 的代数余子式.引理 如果 阶行列式中的第 行除 外其余元素均为零, 即: .则: .证 先证简单情形:再证一般情形:定理 行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和, 即按行: 按列: 证:(此定理称为行列式按行(列)展开定理)nnn n ini i n a a a a a a a a a D212111211000000+++++++++=nnn n in n nnn n i n nn n n i n a a a a a a a a a a a a a a a a a a a a a 21112112121121121111211000000+++=).,2,1(2211n i A a A a A a in in i i i i =+++=例1 : . 解:例2: 21122112----=n D解: 21122112----=n D 211221100121---=+++nr r)()()()()()21331122213311n n n n n n n x x x x x x x x x x x -----, 并提出因子 )()2321111--n n n x x x x x x()1-n 阶范德蒙行列式(1n x x -行列式一行(列)的各元素与另一行(列)对应各元素的代数余子式乘积之和为零第( 4 )次课授课时间()1.教学内容: 克拉默法则;2.时间安排: 2学时;教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.4.教学手段:黑板讲解与多媒体演示.基本内容备注第(5)次课授课时间()1.教学内容: 矩阵;矩阵的运算;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示。
同济大学线性代数

同济大学线性代数
同济大学线性代数是一门非常重要的数学课程,它作为同济大学本科数学基础课程之一,让学生们熟悉、掌握基本的数学技能和理论,为研究生阶段的学习打下良好的基础。
线性代数是学习数学的重要基础,也是许多工程和理论研究领域中使用的数学工具。
对于本科生来说,线性代数是一门具有挑战性的课程,它将要求学生理解、掌握一些基本的线性代数概念、定理和公式,在学习的过程中要多加练习,以便能够灵活变通练习题,掌握解决应用题的技巧和方法。
在学习线性代数的过程中,学生需要掌握矩阵论、有理函数、空间分析等基本概念,了解矩阵论基本性质,掌握行列式的基本计算及其应用,以及真分式的性质、杨辉三角形的定义及其应用,掌握空间几何基本概念及其应用,学习动态系统的基本概念,掌握常见的数学分析方法,并将其应用于线性代数解题。
以上这些知识都非常重要,是研究生阶段构建科学技术理论和应用基础的重要课题。
同时,学习线性代数也可以帮助学生培养解决实际问题的能力。
通过一些应用题的训练,学生可以学会用几何图形表示数学模型,掌握求解数学模型的方法和方法,有效地利用数学建模解决实际问题。
线性代数学习是一个持续的过程,在学习线性代数的过程中,学生应该不断提高学习的能力和技能,增强问题分析能力和实际应用能力,同时要求学生不断努力,以达到一个更高的数学水平。
因此,熟悉并掌握《同济大学线性代数》的知识点对于学生来说,非常重要。
在学习线性代数时,学生要能够把数学抽象的概念抽象出来,并能够把概念运用到实际应用中,以此来了解、掌握和掌握线性代数,从而为未来更高层次的研究打下良好的基础。
线性代数同济大学第五版课件4-5PPT课件

三、向量的坐标
定义 8 如果在向量空间 V 中取定一个基
a1 , a2 , ···, ar , 那么 V 中任一向量 x 可唯一地表 示为
x = 1a1 + 2a2 + ···+ rar , 数组 1 , 2 , ···, r 称为向量 x 在基 a1 , a2 , ···, ar
V 的一个基, r 称为向量空间 V 的维数,并称 V 为 r 维向量空间.
第9页/共20页
例如: 由向量组 a1 , a2 , ···, am 所生成的向量空间
L ={ x = 1a1 + 2a2 + ···+ mam | 1, ···, m R }, 显然向量空间 L 与向量组 a1 , a2 , ···, am 等价, 所以向量组 a1 , a2 , ···, am 的最大无关组就是L 的 一个基, 向量组 a1 , a2 , ···, am 的秩就是 L 的维数.
第17页/共20页
即基变换公式为
(b1 , b2 , b3) = (a1 , a2 , a3)P , 其中表示式的系数矩阵 P = A-1B 称为从旧基到
新基的过渡矩阵.
设向量 x 在旧基和新基中的坐标分别为
y1 , y2 , y3 和 z1 , z2 , z3 ,即
y1
z1
x (a1, a2 , a3 ) y2 , x (b1, b2 , b3 ) z2 ,源自例 20 齐次线性方程组的解集
S = { x | Ax = 0 }
因为由齐次线性方程组的解的性质1、2,
即知其解集 S 对向量的线性运算封闭.
S是一个向量空间,
称为齐次线性方程组的解空间.
第4页/共20页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同济大学线性代数
同济大学线性代数是一门基础的数学课程,在同济大学的学生中被广泛的学习。
这门课是针对学生们学习数学的基本原理和方法,以及在实际应用中使用这些原理和方法的能力,特别是一般有关矩阵,向量空间和线性变换的概念学习。
在学习这门课之前,学生们需要具备一定的微积分知识,加之对线性结构和算法分析的基本了解,才能更好地理解线性代数。
主要内容
线性代数主要包括以下几个方面:矩阵论、向量空间论、线性变换论、线性方程组论及其应用。
1.矩阵论:学习矩阵的基本定义、特性及其操作,包括行列式、矩阵函数、条件数、广义逆矩阵、奇异值分解、正定矩阵和矩阵分解等知识。
2.向量空间论:学习矢量空间的定义、性质及其基本操作,包括线性相关、线性无关、维数、正交基、正交坐标系、向量的线性组合等。
3.线性变换论:学习线性变换的定义、性质及其基本操作,包括线性变换、秩、固有值及其固有向量、行列式、圆及其上的线性变换等。
4.线性方程组论及其应用:学习线性方程组的基本原理及其应用,包括稀疏矩阵、最小二乘法、最优结构及其应用等。
这门课程是一门非常实用的数学课程,应用到实际生活中非常多,
特别是在机械工程、电子工程、金融工程等行业中。
性代数对于解决计算机中的各种技术问题、设计优化算法和表示几何信息也有重要的作用,学习线性代数后,可以更加熟练地应用线性代数的概念来解决实际问题。
同济大学线性代数课程作为一门基础性的科目,对学生们掌握数学的基本原理和方法是非常重要的,也是在数学以及其它学科中扩展思维,打下有力基础的一门课程。
在学习同济大学线性代数课程的过程中,不仅可以学到更加丰富的知识,而且在实践中逐渐掌握现代科学技术的研究能力,也是培养高素质的社会人才的重要课程。