同济大学矩阵论考试题型

合集下载

矩阵理论习题与答案

矩阵理论习题与答案

矩阵理论习题与答案矩阵理论习题与答案矩阵理论是线性代数中的重要内容之一,它在数学、工程、计算机科学等领域都有广泛的应用。

为了帮助读者更好地理解和掌握矩阵理论,本文将介绍一些常见的矩阵理论习题,并提供详细的答案解析。

一、基础习题1. 已知矩阵A = [[2, 3], [4, 5]],求A的转置矩阵。

答案:矩阵的转置是将其行和列互换得到的新矩阵。

所以A的转置矩阵为A^T = [[2, 4], [3, 5]]。

2. 已知矩阵B = [[1, 2, 3], [4, 5, 6]],求B的逆矩阵。

答案:逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。

由于B是一个2×3的矩阵,不是方阵,所以不存在逆矩阵。

3. 已知矩阵C = [[1, 2], [3, 4]],求C的特征值和特征向量。

答案:特征值是矩阵C的特征多项式的根,特征向量是对应于每个特征值的线性方程组的解。

计算特征值和特征向量的步骤如下:首先,计算特征多项式:det(C - λI) = 0,其中I是单位矩阵,λ是特征值。

解特征多项式得到特征值λ1 = 5,λ2 = -1。

然后,将特征值代入线性方程组 (C - λI)x = 0,求解得到特征向量:对于λ1 = 5,解得特征向量v1 = [1, -2]。

对于λ2 = -1,解得特征向量v2 = [1, -1]。

所以C的特征值为λ1 = 5,λ2 = -1,对应的特征向量为v1 = [1, -2],v2 = [1, -1]。

二、进阶习题1. 已知矩阵D = [[1, 2], [3, 4]],求D的奇异值分解。

答案:奇异值分解是将矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,一个是对角矩阵。

计算奇异值分解的步骤如下:首先,计算D的转置矩阵D^T。

然后,计算D和D^T的乘积DD^T,得到一个对称矩阵。

接下来,求解对称矩阵的特征值和特征向量。

将特征值构成对角矩阵Σ,特征向量构成正交矩阵U。

最后,计算D^T和U的乘积D^TU,得到正交矩阵V。

同济大学矩阵论考试题型

同济大学矩阵论考试题型

题型一:广义逆和最小二乘解1设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=211,311220201βA ,求不相容方程组β=Ax 的最优最小二乘解.(12分)2.设⎪⎪⎪⎭⎫ ⎝⎛---=733411123221A ,求A 的广义逆+A 。

(12分) 3、(15分)设线性方程组1212122136126x x x x x x -=⎧⎪-=⎨⎪-+=-⎩,用广义逆验证它是矛盾方程,并求它的最小二乘解的通解.4.设⎪⎪⎪⎭⎫⎝⎛---=733411123221A ,求A 的广义逆+A 。

(12分)5.(15分)设线性方程组1231231232024213632x x x x x x x x x -+=⎧⎪-+-=⎨⎪-+=-⎩,用广义逆验证它是矛盾方程,并求它的最小二乘解的通解.6、(18分) 设方程=Ax b ,其中121121031-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A ,111-⎛⎫⎪= ⎪ ⎪⎝⎭b1、 求A 的满秩分解(记为=A BC );2、 说明方程=Ax b 为矛盾方程;3、 求方程=Ax b 的长度最小最小二乘解和最小二乘解通解.7、(本题12分) 用广义逆验证线性方程组⎪⎩⎪⎨⎧-=-+=+--=-+24420442122321321321x x x x x x x x x 是矛盾方程祖,并求其最小二乘通解。

8、(15分)用广义逆验证线性方程组12312312341228141x x x x x x x x x -+=⎧⎪-+-=-⎨⎪-+-=-⎩ 是矛盾方程祖,并求其最小二乘通解。

9、(15分)用广义逆验证线性方程组12312312341228141x x x x x x x x x -+=⎧⎪-+-=-⎨⎪-+-=-⎩ 是矛盾方程祖,并求其最小二乘通解。

10、(15分)用广义逆验证线性方程组12312312341228241x x x x x x x x x -+=⎧⎪-+-=⎨⎪-+-=-⎩是矛盾方程祖,并求其最小二乘通解。

同济版 数值分析与矩阵论课答案对应题型

同济版 数值分析与矩阵论课答案对应题型

2.用Doolittle 分解计算线性代数方程组 (LU 分解,求解)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡201814513252321321x x x 例 已知线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡564221261142321x x x ,用LU 分解求此线性方程组。

解:设LU A =⎪⎪⎪⎭⎫ ⎝⎛=221261142,⎪⎪⎪⎭⎫⎝⎛=101001323121l l l L ,⎪⎪⎪⎭⎫⎝⎛=332322131211000u u u u u u U 则:2*2*4122641214233322331322231312321222121131211=++=+==+=+====u l u l l u l l u l u l l u u u 得:2302123421142333231232221131211=========u l l u u l u u u⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=∴23002340142,10210121001U L .,,b LUx b Ax LU A =∴==设b Ly y Ux =∴=,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴56410210121001321y y y Ly . 得⎪⎪⎪⎭⎫ ⎝⎛=344y ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴34423002340142321x x x Ux . 得⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=24121x8. 用追赶法求解三对角线代数方程组 (:单位上三角矩阵:下三角矩阵分解U L U L )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡201814513252321321x x x 解:设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==100101,000,231312333331222111u u u U l l l l l l L U L A9. 用迭代法求解线代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡251113108481044410321x x x (1)分别写出Jacobi 迭代、Gauss-Seidel 迭代的计算式;(2)对任意初值,迭代式是否收敛?为什么?例 已知方程⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-111122*********x x x 。

同济大学 线性代数--期末试题重点解析题目

同济大学 线性代数--期末试题重点解析题目

,选A.
0 A 逆矩 4.设A,B分别为m阶和n阶可逆矩阵,那么矩阵 B 0
阵等于
0 (A ) −1 B
[
0 A −1 , (B) −1 A 0 B −1 A −1 , (C) 0 0 B −1 0 , (D) 0 −1 B
A满足条件(2E-C-1B)AT=C,求 1. (2C-B)-1 ; 2. A .
1 2 3 1 0 0 1 2 3 1 − 2 1 解.1. (2C-B,E ) = 0 1 2 0 1 0~ 0 1 0 0 1 − 2 0 0 1 0 0 1 0 0 1 0 0 1
(D) 3.
1 − 3 4 1 − 3 4 2 −1 3 ~ 0 5 − 5 , 所以选C. −1 2 a 0 0 a + 3
2.设n阶矩阵A满足条件aij=Aij (i,j=1,2,…,n), 其中Aij是元素 aij的代数余子式,则矩阵A的伴随矩阵A*等于 (A) A, (B) -A, (C) AT, (D) -AT. [ C ].
所以:
1 − 2 1 (2C-B)-1 = 0 1 − 2 0 0 1
2. 由(2E-C-1B)AT=C , 得 AT= (2C-B)-1C2 , 即
1 − 2 1 1 T A = 0 1 − 20 0 0 1 0 1 − 2 1 1 = 0 1 − 20 0 0 1 0
02期末试题( 02期末试题(一)解析 期末试题
一、填空题(15分)
2 1 −1 0 , B = ,则A2(B-1A)-1=( 1.设矩阵 A = − 1 1 1 1
).

矩阵论复习题 带答案1

矩阵论复习题 带答案1

矩阵论复习题1设A 、B 均为n 阶正规矩阵,试证A 与B 酉相似的充分必要条件是A 与B 的特征值相同。

证明: 充分性:A 与B 的特征值相同,A 、B 均为n 阶正规矩阵,则有11,A P IP B Q IQ --== 故11111,,A P QIQ P R Q P R P Q -----==令= A 与B 酉相似 必要性:A,B 为n 阶正规矩阵,存在初等变换R,1A RBR -=11,,,I E PQ A P IP B Q EQ --==为对角矩阵,存在初等变换111,I PAP E QRAR Q ---== ,因为I,E 为对角矩阵,故I=E 。

因此A 与B 的特征值相同。

#2 作出下列矩阵的奇异值分解10(1)A 0111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦011(2)A 200-⎡⎤=⎢⎥⎣⎦ (1)632- 6 3 2101263011,130 2 6 311206333T B AA ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 2221 2 2,131222 2 2TC A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应故263 2 6 32210263 2 203 2 6 3220063 2 20 33HA ⎡⎤-⎢⎥⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦(2) 2010,240401T B AA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应, 0040012201-1,2-400- 2 20-11022- 2 2T C A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 0101022200A 001 2202022022H⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦3.求下列矩阵A 的满秩分解123002111021A ⎛⎫⎪=- ⎪⎪⎝⎭112211001230010,021110102111001230010,021101100001001230=010021-11-11L L A L L L A A ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦故4 设A 、B 均为n 阶Hermite 正定矩阵,证明:若B A ≥且BA AB =,则33B A ≥.证明:由于A 、B 均为n 阶Hermite 正定矩阵,且BA AB =,则AB 与BA 均为n 阶Hermite 正定矩阵。

矩阵论期末试题及答案

矩阵论期末试题及答案

矩阵论期末试题及答案1. 选择题题目1:矩阵的秩是指矩阵中非零行(列)线性无关的最大个数,下面关于矩阵秩的说法中,错误的是:A. 若矩阵A的秩为r,则只能确定 A 中有r个行(列)线性无关。

B. 若矩阵A的秩为r,则只能确定 A 中有r个坐标线性无关。

C. 设A,B为n×m矩阵,若A的秩为r,B的秩为s,则AB的秩至少为max{r,s}。

D. 同一矩阵的行秩与列秩相等。

题目2:对于阶梯形矩阵,以下说法正确的是:A. 阶梯形矩阵的行秩与列秩相等。

B. 阶梯形矩阵的行秩等于主元的个数。

C. 阶梯形矩阵的列秩等于主元的个数。

D. 阶梯形矩阵的行秩与列秩之和等于矩阵的阶数。

题目3:设A为n阶矩阵,下列说法正确的是:A. 若A为可逆矩阵,则A的行秩和列秩都为n。

B. 若A的行秩和列秩都为n,则A为可逆矩阵。

C. 若对于非零向量 x,都有Ax=0,则称矩阵A为零矩阵。

D. 若A为可逆矩阵,则方程Ax=b存在唯一解。

题目4:对于实对称矩阵A,以下说法正确的是:A. A一定有n个线性无关的特征向量。

B. A的所有特征值都是实数。

C. 若A的特征向量构成的特征子空间的维数为n,则称A为满秩矩阵。

D. A一定可以对角化。

2. 计算题题目1:已知矩阵A = [1, 2; 3, 4],求矩阵A的转置矩阵。

解答:转置矩阵的行与列互换,故矩阵A的转置矩阵为:A^T = [1, 3; 2, 4]题目2:已知矩阵B = [2, 1; -1, 3],求矩阵B的逆矩阵。

解答:逆矩阵满足BB^(-1) = I,其中I为单位矩阵。

对于矩阵B,可以使用伴随矩阵法求解:B^(-1) = (1/(ad-bc)) * [d, -b; -c, a]其中a、b、c、d分别为矩阵B的元素:B^(-1) = (1/(2*3-(-1)*1)) * [3, -1; 1, 2] = [3/7, -1/7; 1/7, 2/7]题目3:已知矩阵C = [1, 2, 3; 4, 5, 6],求矩阵C的行列式的值。

矩阵论考试试题(含答案)

矩阵论考试试题(含答案)

矩阵论试题一、(10分)设函数矩阵()⎪⎪⎭⎫⎝⎛-=t t t t t A sin cos cos sin求:()⎰tdt t A 0和(()⎰20t dt t A )'。

解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫⎝⎛-⎰⎰⎰⎰t tt t tdt tdt dt t dtt 0sin cos cos sin =⎪⎪⎭⎫⎝⎛---t t t t cos 1sin sin cos 1 (()⎰2t dt t A )'=()⎪⎪⎭⎫⎝⎛-=⋅22222sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基⎪⎪⎪⎭⎫ ⎝⎛-=1111α,⎪⎪⎪⎭⎫ ⎝⎛-=1202α,⎪⎪⎪⎭⎫⎝⎛-=1013α变为基 ⎪⎪⎪⎭⎫ ⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫ ⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。

解:(1)不难求得:()2111ααβασ-==()32122αααβασ++-== ()321332αααβασ++-==因此σ在321,,ααα下矩阵表示为⎪⎪⎪⎭⎫ ⎝⎛---=110211111A(2)设()⎪⎪⎪⎭⎫ ⎝⎛=321321,,k k k αααξ,即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321111021101321k k k解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。

()ξσ在321,,ααα下坐标可得⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛1332239410110211111321y y y (3)ξ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---6151941001111110194101A()ξσ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---94101332230111111011332231A 三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。

同济大学线性代数试卷题库(4)

同济大学线性代数试卷题库(4)

同济大学线性代数试卷题库(4)同济大学课程考核试卷(A 卷) 2009—2010学年第一学期课名:线性代数B 考试考查:考试一、填空题(每空3分,共24分)1、设1α、2α、3α均为3维列向量,已知矩阵123(,,)A ααα=,()123123123927,248B ααααααααα=++++++,3,且1A =,那么B = -12 .解:由矩阵之间的关系,我们可以得到1321941278B A =??,对等式两边取行列式,有 1321941278B A ??=??。

所以得到-12B =2、设分块矩阵A O C O B ??=, ,A B 均为方阵,则下列命题中正确的个数为4 .(A).若,A B 均可逆, 则C 也可逆.(B).若,A B 均为对称阵, 则C 也为对称阵.(C).若,A B 均为正交阵, 则C 也为正交阵. (D).若,A B 均可对角化, 则C 也可对角化. 解:A. 若,A B 均可逆,说明,A B 的行列式都不为0,则我们可以根据拉普拉斯定理求出C 的行列式为A B ,所以可知C 的行列式也不为0,即C 可逆.B .若,A B 均为对称阵,则有,TTA AB B ==,对矩阵C 取转置,根据对角阵性质有T TT A O A O C C O B O B === ? ??,所以C 也是对称阵。

C .若,A B 均为正交阵, 则有,T TA A EB B E ==,固T T TT TA O A O A A O C C E OB O B O B B === ? ? ?。

所以C 也为正交阵. D .若,A B 均可对角化,则有-1-112,A P P B Q Q =Λ=Λ,则-1-111-1-122=O P O P P O P O C O O Q OQ Q O Q ΛΛ= ? ? ΛΛ??,令P O M O Q ??= ,则原式可看成-1-111-12P P O C M M OQ Q ??Λ==Λ ?Λ??固以上4个全对(考试里出现全对的情况还是第一次见)3、设2341345145617891D =,则D 的第一列上所有元素的代数余子式之和为 0 .解:直接利用代数余子式性质,求113411451015611891D ==4、设向量组(I):12,,,r αααL 可由向量组(II):12,,,s βββL 线性表示,则 D 成立.(注:此题单选)(A).当r s <时,向量组(II )必线性相关 (B).当r s >时,向量组(II )必线性相关(C).当r s <时,向量组(I )必线性相关 (D).当r s >时,向量组(I )必线性相关解:直接分析,举反例,A 反例1201,,,10200r r ααα==??L ,(),()12100,,,0103001s s βββ==??L ,;B 反例()12100,,,0103001s s βββ??==L ,,121000,,,010040011r r ααα==??L ,();C 反例1201,,,10200r r ααα??==L ,(),()12100,,,0103001s s βββ??==L ,;D.正确,这个很显然。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型一:广义逆和最小二乘解1设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=211,311220201βA ,求不相容方程组β=Ax 的最优最小二乘解.(12分)2.设⎪⎪⎪⎭⎫ ⎝⎛---=733411123221A ,求A 的广义逆+A 。

(12分) 3、(15分)设线性方程组1212122136126x x x x x x -=⎧⎪-=⎨⎪-+=-⎩,用广义逆验证它是矛盾方程,并求它的最小二乘解的通解.4.设⎪⎪⎪⎭⎫⎝⎛---=733411123221A ,求A 的广义逆+A 。

(12分)5.(15分)设线性方程组1231231232024213632x x x x x x x x x -+=⎧⎪-+-=⎨⎪-+=-⎩,用广义逆验证它是矛盾方程,并求它的最小二乘解的通解.6、(18分) 设方程=Ax b ,其中121121031-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A ,111-⎛⎫⎪= ⎪ ⎪⎝⎭b1、 求A 的满秩分解(记为=A BC );2、 说明方程=Ax b 为矛盾方程;3、 求方程=Ax b 的长度最小最小二乘解和最小二乘解通解.7、(本题12分) 用广义逆验证线性方程组⎪⎩⎪⎨⎧-=-+=+--=-+24420442122321321321x x x x x x x x x 是矛盾方程祖,并求其最小二乘通解。

8、(15分)用广义逆验证线性方程组12312312341228141x x x x x x x x x -+=⎧⎪-+-=-⎨⎪-+-=-⎩ 是矛盾方程祖,并求其最小二乘通解。

9、(15分)用广义逆验证线性方程组12312312341228141x x x x x x x x x -+=⎧⎪-+-=-⎨⎪-+-=-⎩ 是矛盾方程祖,并求其最小二乘通解。

10、(15分)用广义逆验证线性方程组12312312341228241x x x x x x x x x -+=⎧⎪-+-=⎨⎪-+-=-⎩是矛盾方程祖,并求其最小二乘通解。

11、(15分)用广义逆验证线性方程组12312312341228141x x x x x x x x x -+=⎧⎪-+-=-⎨⎪-+-=-⎩ 是矛盾方程祖,并求其最小二乘通解。

12、(15分)用广义逆验证线性方程组1231231232212441221x x x x x x x x x -+=⎧⎪-+-=-⎨⎪-+-=-⎩ 是矛盾方程祖,并求其最小二乘通解。

13.设线性方程组1212122124126x x x x x x -=⎧⎪-=⎨⎪-+=-⎩,用广义逆验证它是矛盾方程,并求它的最小二乘解的通解。

(10分)14、(15分)用广义逆验证线性方程组12312312341228241x x x x x x x x x -+=⎧⎪-+-=⎨⎪-+-=-⎩是矛盾方程祖,并求其最小二乘通解。

15.(15分)设线性方程组1231231232212441221x x x x x x x x x -+=⎧⎪-+-=-⎨⎪-+-=-⎩,用广义逆验证它是矛盾方程,并求它的最小二乘解的通解。

题型二:广义特征值 特征向量1设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=2112,4222B A .求A 相对于 B 的广义特征值和广义特征向量.(12分)2.设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=4224,4222B A 。

求A 相对于 B 的广义特征值和广义特征向量。

(12分)3.设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛-=4224,4222B A 。

求A 相对于 B 的广义特征值和广义特征向量。

(12分)题型三:矩阵分解1设⎪⎪⎪⎭⎫⎝⎛-----=8410101749A ,求A 的谱分解. (12分) 2、(10分)设⎪⎪⎪⎭⎫⎝⎛--=140102011A ,求矩阵A 的LR 分解.3.(10分)设⎪⎪⎪⎭⎫ ⎝⎛--=200242111A ,求矩阵A 的谱分解.4、(10分)设1210A -⎛⎫= ⎪-⎝⎭,求A 的谱分解.5、(本题10分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛-=102322121A ,求A 的三角分解(LU 分解)。

6、(10分)设矩阵111102111A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,求A 的三角分解A =LR ,7、(10分)设矩阵112122424483A -⎛⎫ ⎪=--- ⎪ ⎪--⎝⎭,求A 的满秩分解。

8、(10分)设矩阵111102111A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,求A 的三角分解A =LR ,9、设矩阵121223140A ⎛⎫⎪= ⎪ ⎪-⎝⎭,求A 的三角分解A =LR ,10.设⎪⎪⎪⎭⎫⎝⎛--=140102011A ,⎪⎪⎪⎭⎫ ⎝⎛-=731b ,用Doolittle 分解计算线性方程组b Ax =(10分)11(10分)设矩阵121223140A ⎛⎫⎪= ⎪ ⎪-⎝⎭,求A 的三角分解A =LR ,题型四:J 标准型和e A(t)的求解1设⎪⎪⎪⎭⎫⎝⎛------=8610111769A ,求可逆阵P 和若当(Jordan )标准形J ,使P AP J -=1,并求At e 2(16分)2 设A =-----⎛⎝ ⎫⎭⎪⎪⎪313729214。

求可逆阵P 和若当(Jordan )标准形J ,使P AP J -=1,并求e At (18分)3、(15分)设⎪⎪⎪⎭⎫ ⎝⎛-=101434210A ,求可逆阵P 和A 的Jordan 标准形J ,使1P AP J -=.4. 设A =-----⎛⎝ ⎫⎭⎪⎪⎪313729214。

求可逆阵P 和若当(Jordan )标准形J ,使P AP J -=1,并求eAt(18分)5.(15分)设⎪⎪⎪⎭⎫ ⎝⎛--=300142011A ,求可逆阵P 和A 的Jordan 标准形J ,使1P AP J -=.6、(7分)设200311313⎛⎫ ⎪=-- ⎪ ⎪⎝⎭A ,求A 的若当(Jordan )标准形J .7、(本题12分) 设矩阵⎪⎪⎪⎭⎫⎝⎛--=221010110A ,求矩阵A 的Jordan 标准型8、(15分)设矩阵110330102A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,求A 的Jordan 标准形J 与可逆阵P ,使1P A P J -=。

9、(15分)设矩阵110341213A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,求A 的Jordan 标准形J 。

10、(15分)设矩阵110335102A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,求A 的Jordan 标准形J 与可逆阵P ,使1P AP J -=。

11、(15分)设矩阵110341213A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,求A 的Jordan 标准形J 与可逆阵P ,使1P A P J -=。

12.设⎪⎪⎪⎭⎫ ⎝⎛-----=412927313A ,求可逆阵P 和A 的Jordan 标准形J ,使1P A P J -=。

(1513(15分)设⎪⎪⎪⎭⎫⎝⎛--=110430102A ,求A 的Jordan 标准形J 与可逆阵P ,使1P AP J -=。

题型五:矩阵函数求解下常微分方程组1用矩阵函数求解下常微分方程组初值问题的解⎩⎨⎧==⎪⎩⎪⎨⎧++-=+-=0)0(1)0(,14321212211x x x x dtdxx x dt dx .(18分) 2用矩阵函数求解下常微分方程组初值问题的解⎩⎨⎧==⎪⎩⎪⎨⎧++-=++-=1)0(2)0(,014321212211x x x x dtdxx x dt dx 。

(18分) 3、(15分)用矩阵函数求解常微分方程组初值问题的解()⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛---=T=0131150t t x x dt dx |)(.4.用矩阵函数求解下常微分方程组初值问题的解⎩⎨⎧==⎪⎩⎪⎨⎧++-=++-=1)0(2)0(,014321212211x x x x dtdxx x dt dx 。

(18分) 5.(15分)用矩阵函数求解常微分方程组初值问题的解⎪⎩⎪⎨⎧+=-=21221154x x dt dxx x dt dx ,⎩⎨⎧-==101021)()(x x 6、(18分)用矩阵函数求解下面常微分方程组初值问题的解: ()()()()()()1121221200102431t t t (),()t t t ⎧=-+⎪=⎧⎪⎨⎨=⎩⎪=-+⎪⎩dx x x x dtx dx x x dt7、(15分)求微分方程组的初值问题⎪⎩⎪⎨⎧===)0()()()(0x t x t Ax dtt dx t 的解,其中⎪⎪⎪⎭⎫ ⎝⎛---=336018027A ,⎪⎪⎪⎭⎫⎝⎛-=213)0(x 。

8、(15分)求微分方程组的初值问题⎪⎩⎪⎨⎧===)0()()()(0x t x t Ax dtt dx t 的解,其中122121112A --⎛⎫⎪=-- ⎪ ⎪-⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛-=213)0(x 。

9、(15分)求微分方程组的初值问题⎪⎩⎪⎨⎧===)0()()()(0x t x t Ax dtt dx t 的解,其中⎪⎪⎪⎭⎫ ⎝⎛---=336018027A ,⎪⎪⎪⎭⎫⎝⎛-=213)0(x 。

10、(15分)求微分方程组的初值问题⎪⎩⎪⎨⎧=+==)0()()()()(0x t x t f t Ax dtt dx t 的解,其中⎪⎪⎭⎫⎝⎛-=1113A ,⎪⎪⎭⎫⎝⎛-=11)(t f ,⎪⎪⎭⎫ ⎝⎛=21)0(x 。

11.(15分)用矩阵函数求解常微分方程组初值问题的解⎪⎩⎪⎨⎧===00|)(x t x Axdt dx t 其中⎪⎪⎭⎫ ⎝⎛=3612A ,⎪⎪⎭⎫ ⎝⎛=210x 。

题型六:T 线性变换(证明 矩阵 特征值)1设V 是二阶实方阵全体,⎪⎪⎭⎫⎝⎛=0011C . 对任意V A ∈,令=)(A T CA AC +(20分)1) 证明T 是V 的线性变换;2) 求T 在V 的基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-=2100,1100,0002,00114321B B B B 下的矩阵表示;3) 求T 的特征值; 4)判别T 是否可对角化.2设V 是二阶实方阵全体, 对任意V A ∈,令=)(A T 2-T A 3A (18分) 4) 证明T 是V 的线性变换;5) 求T 在V 的基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=2100,1100,0002,00114321B B B B 下的矩阵表示;6) 求T 的特征值; 4)判别T 是否可对角化。

3、(15分)设T 为线性空间22R⨯上的变换,22(),T X AXA X R ⨯=∈,其中⎪⎪⎭⎫⎝⎛-=1011A , 求线性变换T 在基123411011110,,,11100000A A A A --⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭下的矩阵,并求T 的特征值.5.(15分)设x e x cos =1α,x e x sin =2α,x xe x cos =3α,x xe x sin =4α,x e x x cos 2521=α,x e x x sin 2621=α是6维线性空间V 的一组基,求微分变换D 在这组基下的矩阵,并求D 的特征值.6、(本题16分) 设⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=111,312,101;100,210,321321321βββααα是3R 中的两组基,(1)求由基123,,ααα到基123,,βββ的转移矩阵;(2)设α在基123,,ααα下的坐标向量是T-)1,1,1(,求α在基123,,βββ下的坐标。

相关文档
最新文档