七年级下册数学知识点(精选6篇)

合集下载

七年级数学知识点归纳(合集23篇)

七年级数学知识点归纳(合集23篇)

七年级数学知识点归纳(合集23篇)七年级数学知识点归纳第1篇整式的加减单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.多项式:几个单项式的和叫多项式.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.合并同类项法则:系数相加,字母与字母的指数不变.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).一元一次方程等式:用“=”号连接而成的式子叫等式.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.方程:含未知数的等式,叫方程.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).七年级数学知识点归纳第2篇回归书本,梳理章节概念公式、性质定理等就像盖房子,房子的地基是否扎实稳固。

比如我们在复习课中,要求孩子们默写公式等,记忆单项式、多项式、整式的概念,以及幂的运算、整式乘除的法则,而且一定要记住平方差和完全平方公式以及变形。

数学七年级下册课本概念总结

数学七年级下册课本概念总结

初一数学第二学期重点知识第二部分: 整式的乘除法7、单项式与单项式相乘, 把它们的系数、相同字母的幂分别相乘, 其余字母连同它的指数不变, 作为积的因式。

8、单项式与多项式相乘, 就是根据分配律用单项式去乘多项式的每一项, 再把所得的积相加。

9、多项式与多项式相乘, 先用一个多项式的每一项乘另一个多项式的每一项, 再把所得的积相加。

10、平方差公式:11.完全平方公式: ,12、单项式相除, 把系数、同底数幂分别相除后, 作为商的因式;对于只在被除式里含有的字母, 则连同它的指数一起作为商的一个因式。

13、多项式相除, 先把这个多项式的每一项分别除以单项式, 再把所得的商相加13.多项式相除,先把这个多项式的每一项分别除以单项式,再把所得的商相加 第一部分: 幂的运算1、同底数幂相乘, 底数不变, 指数相加n m n m a a a +=•(n m ,都是正整数)2.幂的乘方, 底数不变, 指数相乘mn n m a a =)((n m ,都是正整数)3.积的乘方等于每一个因数乘方的积n n n b a ab =)((n 都是正整数)4.同底数幂相除, 底数不变, 指数相减( 都是正整数, 且 )5、我们规定: ( 都是正整数)6、科学记数法;一般地, 一个小于1的正数可以表示为 , 其中 , n 是负整数。

6.科学记数法;一般地,一个小于1的正数可以表示为 ,其中 ,n 是负整数。

6、科学记数法;一般地,一个小于1的正数可以表示为n a 10⨯,其中101<≤a ,n 是负整数。

13、多项式相除,先把这个多项式的每一项分别除以单项式,再把所得的商相加第三部分: 相交线与平行线14.若两条直线只有一个公共点, 我们称这两条直线为相交线。

在同一平面内, 不相交的两条直线叫做平行线。

15.对顶角的性质: 对顶角相等16.如果两个角的和是, 那么称这两个角互为补角。

如果这两个角的和是, 那么称这两个角互为余角。

初一数学知识点(精选5篇)

初一数学知识点(精选5篇)

初一数学知识点(精选5篇)第一章有理数1.整数。

(正整数、0、负整数)2.正数和负数。

3.有理数。

(整数和分数统称有理数)4.自然数。

(非负整数)5.相反数。

(只有符号不同的两个数互为相反数)6.绝对值。

(一个数的绝对值就是表示这个数的点与原点的距离)第二章代数式1.代数式。

(用运算符号把数或表示数的字母连接起来的式子)2.代数式的值。

(求代数式的值就是给代数式中的字母个代数式确定值)第三章实数1.平方根。

(如果一个数的平方等于a,那么这个数就叫做a 的平方根)2.算数平方根。

(一个非负数的正的平方根叫做算数平方根)3.立方根。

(如果一个数的立方等于a,那么这个数就叫做a 的立方根)4.实数。

(有理数和无理数)5.实数的性质。

(实数能进行减、乘、除、加、乘方运算)6.近似数。

(通过四舍五入得到的与精确数接近的数)第四章整式和分式1.整式。

(与有理数相对的数式叫整式)2.分式。

(整式的一部分)3.分式的值为零。

(分子为零且分母不等于零)4.分式的乘除。

(乘除法转化成乘法计算)5.分式的加减。

(异分母的分式加减转化成通分后求和)6.分式方程。

(分母里含有未知数的方程叫分式方程)初一数学知识点篇21.有理数:有理数包括正整数、0和负整数。

有理数可以用分数表示。

2.数轴:数轴是一条直线,它的上面写着从0开始连续不断的点。

数轴上的0是正负数的分界线。

3.相反数:如果两个数的和为0,那么这两个数是一对相反数。

相反数包括正数和负数。

4.绝对值:一个数的绝对值是它离0的距离。

正数的绝对值是它本身,负数的绝对值是它的相反数。

5.代数式:用代数式表示出数量关系和变化规律的式子。

包括等式、不等式、方程、不等式、函数等。

6.整式:整式包括单项式和多项式。

单项式是由数字和字母组成,多项式是由几个单项式组成。

7.分式:分式包括分子和分母。

分子是由数字和字母组成,分母是由分式和整式组成。

8.方程:用方程表示出两个量之间的关系,并且这个方程是一个等式。

2024年湘教版七年级数学知识点总结(2篇)

2024年湘教版七年级数学知识点总结(2篇)

2024年湘教版七年级数学知识点总结一、整数1. 整数的概念:整数包括正整数、零和负整数。

2. 整数的比较:可以使用数轴或大小比较法进行整数的比较。

3. 相反数和绝对值:两个数互为相反数当且仅当它们的和为0,一个数的绝对值即这个数到0的距离。

4. 加减法运算:整数之间的加减法运算,与正数的加减法相似,要注意正负数相加的规则。

5. 乘除法运算:整数之间的乘法运算需要注意正负数相乘的规则,除法运算有正数除以负数、负数除以正数、负数除以负数三种情况。

6. 运算性质:整数之间加减乘除运算满足结合律、交换律和分配律。

7. 混合运算:整数的加减乘除可以混合进行,按照运算规则进行计算。

8. 整数的分数:可以将整数看作分母为1的分数。

二、分数1. 分数的概念:分数由分子和分母组成,分子表示被取的份数,分母表示整体被分成的份数。

2. 分数的大小比较:可以通过同分母比较分数的大小,也可以通过通分比较分数的大小。

3. 分数的化简:将分数的分子和分母除以它们的最大公约数,得到分数的最简形式。

4. 分数的加减法:分数的加减法需要先找到这些分数的最小公倍数,并将分数的分子和分母都乘以相应的数使分母相同,然后进行相加或相减。

5. 分数的乘法:分数的乘法直接将分数的分子和分母相乘得到新分数。

6. 分数的除法:将除法转化为乘法,即将除法的被除数乘以除数的倒数,然后进行分数的乘法。

7. 分数的加减乘除运算:分数之间可以进行加减乘除混合运算,按照运算规则进行计算。

8. 数轴上的分数:可以利用数轴上点的位置对分数进行表示。

三、代数式和方程式1. 代数式:由数据和运算符号组成的式子,其中包括字母表示的变量。

2. 方程式:含有等号的代数式称为方程式,可以通过变量的取值使方程式成立。

3. 算式和方程式的解:使算式成立的数叫做算式的解,使方程式成立的数叫做方程式的解。

4. 算式和方程式的应用:通过算式和方程式可以解决实际问题。

5. 一元一次方程:只含有一个变量和一次幂的方程。

七年级下册数学知识点归纳

七年级下册数学知识点归纳

七年级下册数学知识点归纳
1. 有理数的运算
- 有理数的加法、减法、乘法和除法
- 有理数的乘方和开方
- 有理数的混合运算法则
2. 整式的加减
- 单项式和多项式的概念
- 同类项的定义及合并同类项法则
- 整式的加减运算
3. 一元一次方程
- 一元一次方程的概念和解法
- 等式的性质
- 应用题的列方程解法
4. 几何图形初步
- 点、线、面、体的概念
- 直线、射线、线段的性质
- 角的概念和分类
5. 平行线与相交线
- 平行线的定义和性质
- 相交线的定义和性质
- 平行线和相交线的判定方法
6. 平面直角坐标系
- 坐标系的建立和坐标表示
- 点的坐标和图形的坐标
- 坐标系中点的平移变换
7. 三角形
- 三角形的分类和性质
- 三角形的内角和定理
- 三角形的外角和定理
8. 数轴与绝对值
- 数轴的概念和性质
- 绝对值的定义和性质
- 绝对值的运算法则
9. 代数式
- 代数式的定义和分类
- 代数式的化简
- 代数式的求值
10. 概率初步
- 概率的定义和计算方法 - 简单事件的概率
- 概率在实际问题中的应用
11. 数据的收集与处理
- 数据的收集方法
- 数据的整理和表示
- 统计图表的绘制和解读
12. 几何图形的初步认识
- 几何图形的基本概念
- 几何图形的性质和定理
- 几何图形的构造和证明
以上是七年级下册数学的主要知识点归纳,涵盖了数与代数、几何与图形、统计与概率等数学基础知识。

2024年初一下册数学知识点总结北师(4篇)

2024年初一下册数学知识点总结北师(4篇)

2024年初一下册数学知识点总结北师第一单元:自然数与整数1. 自然数:0、1、2、3、4、5……,它们可以用来表示物体的数量。

2. 整数:自然数及其相反数与零的集合,包括正整数、负整数和零。

3. 整数的加法:同号相加得更大的数,异号相加得正数减去绝对值较大的数。

4. 整数的减法:a-(-b) = a + b,a-(-b) = a-b。

5. 整数的乘法:正数相乘为正数,负数相乘为负数,0与任何数相乘为0。

6. 整数的除法:除数不为0时,两正数相除为正数,两负数相除为正数,正数除以负数为负数。

7. 素数与合数:只有两个相异因数1和自身的整数是素数,可以被除了1和自身外的其他数整除的整数是合数。

第二单元:有理数1. 有理数:可以表示成两整数之比的数,包括整数、分数和小数。

2. 分数的加法与减法:分母相同,分子相加(减);分母不同,通分后分子相加(减)。

3. 分数的乘法与除法:分子相乘(除),分母相乘(除)。

4. 有理数的相反数与数轴:任何有理数与其相反数的和为0,数轴上,正数在右侧,负数在左侧。

5. 有理数的比较与排序:将有理数转化为分数后比较其大小。

第三单元:代数的基本概念1. 代数:利用字母(变量)表示数的运算。

2. 代数式:由字母、数字和运算符号组成的式子。

3. 项与系数:含有加减号的代数式可以分解成若干项,每一项中字母的指数与系数的乘积称为项的系数。

4. 等式:左右两边的值相等的代数式称为等式。

5. 解方程:通过变换等式的形式找到使等式成立的未知数的值。

第四单元:一次方程与消元法1. 一次方程:未知数的最高次数为1的方程。

2. 解一元一次方程:通过变换等式的形式找到使等式成立的未知数的值。

3. 消元法:通过两个方程的相加、相减或相乘消除其中一个未知数,以求解另一个未知数。

第五单元:图形的认识与运用1. 平面图形:点、线段、直线、射线、角、三角形、矩形、正方形、平行四边形、菱形、梯形、圆等。

2. 两条直线的位置关系:平行、相交、重合。

2024年苏教版七年级数学重要知识点总结(2篇)

2024年苏教版七年级数学重要知识点总结(2篇)

2024年苏教版七年级数学重要知识点总结数学是一门基础学科,对培养学生的逻辑思维能力、分析问题和解决问题的能力具有重要作用。

以下是____年苏教版七年级数学的重要知识点的总结。

1. 整数:整数的概念,包括正整数、零、负整数;整数的表示:∵表示法、绝对值的概念和计算;整数的比较:同号相比大小,异号比大小;整数的加法和减法:同号相加或相减,异号相加或相减;整数的乘法和除法:正数与正数相乘得正数,正数与负数相乘得负数,两个负数相乘得正数,除法遵循乘法的规律。

2. 分数:分数的概念,分子、分母概念;分数的相等:化简真分数;分数的加减法:相同分母的分数相加、相减;分数的乘法:分数乘法的意义,一个数乘以一个分数,两个分数相乘;分数的除法:一个数除以一个分数,一个分数除以另一个分数。

3. 数的性质和运算:整数的加法、乘法的运算律;分数的加法、乘法的运算律;分数的乘方、指数、根式。

4. 代数式和方程:代数式的概念,字母在数学中的作用;代数式的值:带入特定的数值,计算代数式的值;方程的概念,方程中字母的含义;方程的解:使方程成立的数值;解一元一次方程:三种情况(等式消去法、等式转移法、因式分解法);方程解的检验。

5. 图形的认识:平面图形:正方形、长方形、三角形、平行四边形、梯形、圆;实心图形:认识实心图形,计算实心图形的面积;解决实际问题时,准确地选择和使用公式。

6. 身边的比例:比例的概念和性质;比、比例和比例因子的关系;利用比例关系求未知量;百分数的概念和计算;利用百分数解决实际问题。

7. 相似:相似的概念和判定相似的条件;相似的性质和性质判断;相似的计算和应用;相似的角和线段。

8. 数据的收集、整理和分析:数据的收集和整理的方法;数据的分析和统计的方法;根据数据分析问题。

9. 几何与分析:测量的概念和工具:长度的测量、时间的闹、质量的测量、容量的测量、温度的测量、角度的测量;计量单位的换算;作图。

以上是____年苏教版七年级数学重要知识点的总结,希望对您有所帮助。

初一下数学知识点

初一下数学知识点

初一下学期的数学知识点主要包括以下几个方面:
1. 有理数:有理数是可以表示为两个整数的比的数,包括整数和分数。

学生需要掌握有理数的四则运算,包括加法、减法、乘法和除法。

2. 整式的加减:整式是由常数、变量、加、减、乘等运算符号组成的代数式。

学生需要学会整式的合并同类项和去括号等基本运算。

3. 一元一次方程:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。

学生需要掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤。

4. 图形初步认识:学生需要初步认识线段、角、相交线、平行线等基本图形,了解它们的基本性质和判定方法。

5. 数据的收集与整理:学生需要学会如何收集、整理和描述数据,包括数据的分类、频数、频率、直方图等基本概念和方法。

以上是初一下学期数学的主要知识点,通过学习这些知识点,学生可以打下坚实的数学基础,为后续的数学学习做好准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学知识点〔精选6篇〕篇1:七年级下册数学知识点七年级下册数学知识点合集一、单项式1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减1、整式加减的理论根据是:去括号法那么,合并同类项法那么,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法那么,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法那么去括号。

(3)合并同类项。

4、代数式求值的一般步骤:(1)代数式化简。

(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进展计算。

五、同底数幂的乘法1、n个一样因式(或因数)a相乘,记作an,读作a的n 次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数一样的幂叫做同底数幂。

3、同底数幂乘法的运算法那么:同底数幂相乘,底数不变,指数相加。

即:am﹒an=am+n。

4、此法那么也可以逆用,即:am+n = am﹒an。

5、开场底数不一样的幂的乘法,假如可以化成底数一样的幂的乘法,先化成同底数幂再运用法那么。

六、幂的乘方1、幂的乘方是指几个一样的'幂相乘。

(am)n表示n个am 相乘。

2、幂的乘方运算法那么:幂的乘方,底数不变,指数相乘。

(am)n =amn。

3、此法那么也可以逆用,即:amn =(am)n=(an)m。

七、积的乘方1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法那么:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。

即(ab)n=anbn。

3、此法那么也可以逆用,即:anbn=(ab)n。

八、三种“幂的运算法那么”异同点1、共同点:(1)法那么中的底数不变,只对指数做运算。

(2)法那么中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

(3)对于含有3个或3个以上的运算,法那么仍然成立。

2、不同点:(1)同底数幂相乘是指数相加。

(2)幂的乘方是指数相乘。

(3)积的乘方是每个因式分别乘方,再将结果相乘。

九、同底数幂的除法1、同底数幂的除法法那么:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。

2、此法那么也可以逆用,即:am-n = am÷an(a≠0)。

十、零指数幂1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

十一、负指数幂1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

十二、整式的乘法(一)单项式与单项式相乘1、单项式乘法法那么:单项式与单项式相乘,把它们的系数、一样字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,注意符号。

3、一样字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法那么对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘1、单项式与多项式乘法法那么:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。

即:m(a+b+c)=ma+mb+mc。

2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数一样。

4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

(三)多项式与多项式相乘1、多项式与多项式乘法法那么:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

即:(m+n)(a+b)=ma+mb+na+nb。

2、多项式与多项式相乘,必须做到不重不漏。

相乘时,要按一定的顺序进展,即一个多项式的每一项乘以另一个多项式的每一项。

在未合并同类项之前,积的项数等于两个多项式项数的积。

3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

4、运算结果中有同类项的要合并同类项。

5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

十三、平方差公式1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。

2、平方差公式中的a、b可以是单项式,也可以是多项式。

3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成(a+b)•(a-b)的形式,然后看a2与b2是否容易计算。

学数学的方法有哪些1注重打好数学根底对于学生来说,想要学好数学,那么一定从小打好根底,因为数学是一个非常注重根底,一环扣一环的学科,之前知识上的欠缺也会影响后续的学习,所以对于数学不好的学生来说首先应该做的就是打根底,把自己欠缺的根底都补上,才能更好的进展后续的学习。

2整理笔记关于数学的笔记我有两本,一个是我们教师总结的一些方法和技巧,一些公式的记忆以及法那么概念之类的(这个要好好记!做题的时候经常用到!没有公式做题简直是… )另一本是关于一些好题难题错题典型题,把这些题从纸上剪下来贴到本子上再做一遍,到中考前我把这个错题本又全部重新做了一遍(当然,这个由于太懒,有的题有点三天打渔两天晒网 ) 怎么样才能打好初一数学根底第一,重视初一数学公式。

有很多同学数学学不好就是因为对概念和公式不够重视,详细的表现为对初一数学概念的理解只是停留在说明,不去挖掘引申的含义,对数学概念的特殊情况不明白。

还有对数学概念和公式有的学生只是死记硬背,初一学生缺乏对概念的理解。

还有一局部初一同学不重视对数学公式的记忆。

其实记忆是理解的根底。

我们设想假如你不能将数学公式烂熟于心,那么又怎么可以在数学题目中纯熟的应用呢?第二,就是总结那些相似的数学题目。

当我们养成了总结归纳的习惯,那么初一的学生就会知道自己在解决数学题目的时候哪些是自己比拟擅长的,哪些是自己还缺乏的。

同时擅长总结也会明白自己掌握哪些数学的解题方法,只有这样你才可以真正掌握了初一数学的解题技巧。

其实,做到总结和归纳是学会数学的关键,假如初一学生不会做到这一点那么久而久之,不会的数学题目还是不会。

篇2:关于七年级数学下册知识点整式的加减1、整式加减的理论根据是:去括号法那么,合并同类项法那么,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法那么,然后准确合并同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法那么去括号。

(3)合并同类项。

4、代数式求值的一般步骤:(1)代数式化简。

(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进展计算。

同底数幂的乘法1、n个一样因式(或因数)a相乘,记作an,读作a的n 次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数一样的幂叫做同底数幂。

3、同底数幂乘法的运算法那么:同底数幂相乘,底数不变,指数相加。

即:am·an=am+n。

4、此法那么也可以逆用,即:am+n = am·an。

5、开场底数不一样的幂的乘法,假如可以化成底数一样的幂的乘法,先化成同底数幂再运用法那么。

相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,假如有一个角为90度,那么称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与直线垂直。

7、垂线段最短。

8、点到直线的间隔:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:假如两条直线都与第三条直线平行,那么这两条直线也互相平行。

假如b//a,c//a,那么b//c10、平行线的断定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角互补,两直线平行。

11、推论:在同一平面内,假如两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。

②对应点的线段平行且相等。

平移:在平面内,将一个图形沿某个方向挪动一定的间隔,图形的这种挪动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点挪动后得到的,这样的两个点叫做对应点。

15、命题:判断一件事情的语句叫命题。

命题分为题设和结论两局部;题设是假如后面的,结论是那么后面的。

命题分为真命题和假命题两种;定理是经过推理证实的真命题。

实数一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数负有理数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。

相关文档
最新文档