高一数学圆的标准方程和一般方程公式-最新教育文档
高一数学圆的一般方程

x y DxEyF 0没有
2 2
实数解,因而不表示任 何图形.
三、知识巩固
解:设所求圆的一般方程为x2+y2+Dx+Ey+F=0,
例1.求过三点O(0,0),M1(1,1),M2(4,2)的圆 的方程,并求这个圆的半径和圆心坐标.
用待定系数法将O, M1, M2 的坐标代入圆的方程,得: 解得:F=0,D=-8,E=6.
四、点、线与圆的位置关系
例 6 . 已 知 圆 C 1的 方 程 为 x y 2x 4y 3 0,
2 2
直 线 l : x 2 y 4 0 ,试 求 圆 C 1关 于 直 线 l 对 称 的 圆 为 C 2的 方 程 .
五、小结
1、圆的一般方程的定义和特点 2、直线与圆的位置关系
作业:
课本 习题7.6:P82 5、 6、 7、8.
三级分销 /
kce235uip
例3.已知直线 :xl 2 y 3 0 , 圆C : x y 2 x 0 , 若 点 P 在 圆 C 上 ,
2 2
试 确 定点 P的 坐 标点 ,P 使 到直线 l的距离最小,并个 求最 这小值。
四、点、线与圆的位置关系
1、点与圆的位置关系
2 2 2 设圆C:(x a) (y b) r ,点M(x , y )到 0 0
F 0, D E F 2 0, 4 D 2 E F 20 0,
所求圆的一般方程为x2+y2-8x+6y=0, 2 2 半径为 r1 D E 4 F 5 . 2 圆心坐标为(4,-3).
三、知识巩固
高一数学圆的一般方程

四、点、线与圆的位置关系
由(
x
a)2 (y b)2 AxByC
0
r
2
消
去
y
得
x
的
一
元
二 次 方 程 判 别 式 为 Δ ,则 有 代 数 特 征 :
(1) 0 直线与圆相交;
配方可得
(x D )2 (y E )2 D2 E2 4F
2
2
4
(*)
( 1) 当 D2 E2 4 F 0 时 , 方 程( *) 表 示 以
( D , E ) 为 圆 心 ,1 D2 E2 4 F为 半 径 的 圆
22
2
二、圆的一般方程的定义:
( 2 ) 当 D2 E2 4 F 0 时 , 方 程
解:设所求圆的一般方程为x2+y2+Dx+Ey+F=0,
用待定系数法将O, M1, M2 的坐标代入圆的方程,得:
F 0,
D E F 2 0,
解得:F=0,D=-8,E=6.
4D 2E F 20 0,
所求圆的一般方程为x2+y2-8x+6y=0,
半径为
四、点、线与圆的位置关系
设圆C:(x a)2 (y b)2 r2,点M(x0,y0 )到 圆 心 的 距 离 为 d , 则 有:
(1)d r 点M在圆外 (2)d r 点M在圆上 (3)d r 点M在圆内
四、点、线与圆的位置关系
设 圆 C:( x a )2 ( y b )2 r2 , 直 线 l: Ax By C 0, 圆 心 (a,b)到 直 线 l的 距 离 为d, 则有几何特征:
高中数学公式整理总结

高中数学公式整理总结高中数学公式总结圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f0】椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
两角和公式1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb) 4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga) 倍角公式1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))和差化积1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb诱导公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tan α(k∈Z)cot(2kπ+α)=cotα(k∈Z)二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cot α三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cot α五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα高考数学考前冲刺技巧1.整理公式数学的内容更加灵活一些,不需要去背诵,只是会应用就可以了。
高一数学:2.2.2圆的一般方程 课件(北师大必修2)

1) x + y - 2 x + 4 y + 2 = 0
2
4) x + y + 2ax - 4by - a + b = 0
2 2 2 2
( x - 1) + ( y + 2) = 3
2 2
( x + a ) + ( y - 2b) = 2a + 3b
2 2 2
2
例1:求过点 O(0,0), M1 (1,1), M 2 (4,2) 的圆的 方程,并求出这个圆的半径长和圆心.
2 2
例2:已知一曲线是与两个定点O(0,0),
1 A(3,0)距离的比为 的点的轨迹, 2
求此曲线的方程,并画出曲线。
y
直接法
M(x,y)
.
(-1,0) O
.
.
A(3,0)
x
x + y + 2x - 3 = 0
2 2
例3:已知线段AB的端点B的坐标是(4,3),端 2 2 点A在圆( x + 1) + y = 4 上运动,求线段 AB的中点M的轨迹方程. 解:设M的坐标为(x, y),点A的坐标是 ( x0 , y0 ) .
2 2
D = -2, E = 4, F = 1 D + E - 4F = 16 圆心: (1, -2) 半径: r = 2
2 2
(2) + y - 6 x = 0 3) x
D = -6, E = F = 0 D + E - 4F = 36
2 2
圆心: (3,0)
半径:
r=3
(3) 2 4) x
E = 2b, D = F = 0 D + E - 4F = 4b 圆心: (0, -b) 半径: | b |
人教版高中数学第四章 圆的一般方程(共13张PPT)教育课件

凡事 都 是多 棱 镜, 不 同的 角 度会
凡 事都 是 多棱 镜 ,不 同 的角 度 会看 到 不同 的 结果 。 若能 把 一些 事 看淡 了 ,就 会 有个 好 心境 , 若把 很 多事 看 开了 ,就 会 有个 好 心情 。 让聚 散 离合 犹 如月 缺 月圆 那 样寻 常 ,让 得 失利 弊 犹如 花 开花 谢 那样 自 然, 不 计较 , 也不 刻意 执 着; 让 生命 中 各种 的 喜怒 哀 乐, 就 像风 儿 一样 , 来了 , 不管 是 清风 拂 面, 还 是寒 风 凛冽 , 都报 以 自然 的微 笑 ,坦 然 的接 受 命运 的 馈赠 , 把是 非 曲折 , 都当 作 是人 生 的定
《
《
我
是
算
命
先
生
》
读
同学们加油!
自
己
弄
五
分
钟
就
弄
完
所
以
最
后
通
常
变
成
我
自
己
弄
。
但
这
样
做
有
一
个
不
好
的
后
果
就
是
当
你
真
的
■
电
:
“
色
情
男
女
是
你
和
尔
东
口
罗
其
实
不
是
■电你是否有这样经历,当 你在做某一项工作 和学习的时候,脑 子里经常会蹦出各 种不同的需求。比 如你想安 心下来看2小时的书,大脑会 蹦出口渴想喝水, 然后喝水的时候自 然的打开电视。。 。。。。,一个小 时过去 了,可能书还没看2页。很多 时候甚至你自己都 没有意思到,你的 大脑不停地超控你 的注意力,你就这 么轻易 的被你的大脑所左右。你已 经不知不觉地变成 了大脑的奴隶。尽 管你在用它思考, 但是你要明白你不 应该隶属 于你的大脑,而应该是你拥 有你的大脑,并且 应该是你可以控制 你的大脑才对。一 切从你意识到你可 以控制你 的大脑的时候,会改变你的 很多东西。比如控 制你的情绪,无论 身处何种境地,都 要明白自己所
高一数学圆的一般方程

三、知识巩固
例1.求过三点O(0,0),M1(1,1),M2(4,2)的圆 的方程,并求这个圆的半径和圆心坐标.
解:设所求圆的一般方程为x2+y2+Dx+Ey+F=0,
F 0, D E F 2 0, 4 D 2 E F 20 0,
用待定系数法将O, M1, M2 的坐标代入圆的方程,得: 解得:F=0,D=-8,E=6.
五、小结
作业:
; 琅琊榜娱乐
vyd02wau
了千万里之外的故乡,返回到了似乎有一些遥远了的童年时代,想到了母亲,想到了妹妹,想到了慈祥的姥娘和姥爷,想到了舅舅一家,也想到 了童年的伙伴们,尤其是心灵手巧温顺善良的秀儿、憨厚豪爽的大壮走了一会儿神,耿正无比美妙的二胡乐曲声儿又将耿英拉回到了眼前的现实 中。眼前,除了这几乎可以说是天籁之音的二胡乐曲声之外,屋子里再没有一点点其他的声音了。耿英抬头望望白幺爹。但见他微微闭目,轻轻 晃动着身体,双手无声地拍打着自己的双膝盖,一副陶醉享受的样子。耿英感觉非常欣慰,心下里想,以后白幺爹每次出江回来,都要让哥哥给 他拉二胡听!白家这个当家人也真够不容易的,一年里绝大部分时间都在长江上漂。温馨的家对于这个善良憨厚的魁梧汉子来说,更像是人生旅 途中的客栈一样,但他怎么对妻子和女儿对他的关爱就那么不领情呢!耿英有点儿不解地轻轻地摇摇头,苦笑了一下。这样想着,耿英再转头看 看乔氏母女。只见小青正陶醉在另外一种境界中:与其说她是在用心地聆听乐曲儿,还不如说她是在瞪大眼睛看乐曲儿;不,是在看耿正正在拉 着的二胡,看耿正拉二胡的手和胳膊,看耿正拉二胡的姿态慢慢地,她的目光从耿正的胳膊上移动到了脸上,目不转睛且柔情似水。一会儿,竟 然羞涩地低下了头,只敢偷偷地瞄一眼耿正支撑着二胡琴筒的膝盖、微微摆动的裤腿和踩在地上的鞋子。耿英再看看乔氏,发现她正在满脸欣喜 地看着耿正,眼眶里似乎还有一些清澈的东西在不算太明亮的灯光下闪闪发光。然而,端坐在那里专注地拉二胡的耿正,对于母女二人的这些有 点儿反常的表现浑然不觉!耿英心里暗叫:“不好!莫不是”隔着哥哥,耿英看不明了爹爹和弟弟的表情。耿英知道,弟弟年幼尚不知晓大人们 的那些个情感之事,因此间心里只念着:爹爹呀,你可别像白幺爹那样闭着眼睛听啊!夜慢慢深了,但除了耿英之外,拉曲儿的、听曲儿的和看 拉曲儿的,似乎都忘记了时间怎么来唤醒大家呢?想一想,耿英慢慢地挪动身子,努力地伸长右腿,再伸长一点儿,终于够得着哥哥的脚尖了; 再往前用力推一推,耿正终于从忘我的状态中回过神儿来。他完全领会了妹妹的意思,轻松地拉了一小段过门儿曲后,乐曲声儿戛然而止。少顷, 大家也从各自忘情的姿态中回归了。耿直高兴地说:“哥哥,你拉得太好了!好久没有听到这么好听的曲儿了!”乔氏拿手绢擦擦眼睛,笑着说: “看我,怎么高兴地都给流眼泪了!”她又转头看看女儿,高兴地说:“我们娘儿俩从来没有听过这么好听的曲儿,今儿个可真是开了眼界了!” 小青也红着脸笑着说:“是呀,真正是开了眼界哩!”白百大则意味深长地说:“正伢子啊,幺爹多么想每天听你拉二胡啊!”耿老
圆的标准方程(高一数学)

圆的标准方程1定义:圆的标准方程中(x-a)²+(y-b)²=r²中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
2圆的方程;X²+Y²=1 ,圆心O(0,0)被称为1单位圆;x²+y²=r²,圆心O(0,0),半径r;(x-a)²+(y-b)²=r²,圆心O(a,b),半径r。
确定圆方程的条件确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,即列出关于a、b、r的方程组,求a、b、r,或直接求出圆心(a,b)和半径r,一般步骤为:根据题意,设所求的圆的标准方程(x-a)²+(y-b)²=r²;根据已知条件,建立关于a、b、r的方程组;解方程组,求出a、b、r的值,并把它们代入所设的方程中去,就得到所求圆的方程3方程推导(x-a)²+(y-b)²=r²在平面直角坐标系中,设有圆O,圆心O(a,b) 点P(x,y)是圆上任意一点。
圆是平面到定点距离等于定长的所有点的集合。
所以两边平方,得到(x-a)²+(y-b)²=r²4一般式²+y²+Dx+Ey+F=0此方程可用于解决两圆的位置关系配方化为标准方程:其圆心坐标:半径为此方程满足为圆的方程的条件是:D²+E²-4F>0若不满足,则不可表示为圆的方程已知直径的两个端点坐标A(m,n)B(p,q)设圆上任意一点C(X,Y)。
则有:向量AC*BC=0;可推出方程:(X-m)*(X-p)+(Y-n)*(Y-q)=0 再整理即可得出一般方程5点与圆点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)²+(y1-b) ²>r²时,则点P在圆外。
高一数学 圆的一般方程

圆的标准方程是 (x a)2 ( y b)2 r2.
上式展开得 x2 y2 2ax 2by a2 b2 r2 0.
形如x2 y2 Dx Ey F 0 的方程的曲线是不是圆?
二、圆的一般方程的定义:
1.分析方程x2 y2 Dx Ey F 0 所表示的轨迹?
四、点、线与圆的位置关系
设圆C:(x a)2 (y b)2 r2,点M(x0,y0 )到 圆 心 的 距 离 为 d , 则 有:
(1)d r 点M在圆外 (2)d r 点M在圆上 (3)d r 点M在圆内
四、点、线与圆的位置关系
设 圆 C:( x a )2 ( y b )2 r2 , 直 线 l: Ax By C 0, 圆 心 (a,b)到 直 线 l的 距 离 为d, 则有几何特征:
2
圆心坐标为(4,-3).
三、知识巩固
例2.已知一曲线是两个与定点O(0,0),
A(3,0)的距离的比为1/2的点的轨迹, 求此曲线的方程,并画出曲线.
例 3.已 知 直 线:lx 2y 3 0,圆 C: x2 y2 2x 0,若点P在圆C上, 试 确 定 点 P的 坐 标 , 使点 P到 直 线 l的 距 离 最 小 , 并 求 这个 最 小 值 。
例 6.已 知 圆 1C的 方 程 为 x2 y2 2x 4y3 0, 直 线 l:x 2y 4 0,试 求 圆 C1关 于 直 线 l对 称 的 圆 为 C2的 方 程 .
五、小结
作业:
x2 y2 Dx Ey F 0只要实
数
解
x
D 2
,y
E 2
,表
示
一
个
点
(
D 2
,
E 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学圆的标准方程和一般方程公式
:期中考试已经结束了,大家知道自己还有哪些知识不熟了吗?小编也为大家整理了高一数学圆的公式,希望大家喜欢。
圆:体积=4/3(π)(r^3)
面积=(π)(r^2)
周长=2(π)r
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式
椭圆面积公式:S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高
总结:高一数学圆的公式就为大家介绍完了,高考是重要的考试,大家要好好把握。
想要了解更多学习内容,请继续关注查字典数学网。