信息论与编码试题集与答案考试必看
答案~信息论与编码练习

1、有一个二元对称信道,其信道矩阵如下图所示。
设该信道以1500个二元符号/秒的速度传输输入符号。
现有一消息序列共有14000个二元符号,并设在这消息中P(0)=P(1)=1/2。
问从信息传输的角度来考虑,10秒钟内能否将这消息序列无失真地传送完?解答:消息是一个二元序列,且为等概率分布,即P(0)=P(1)=1/2,故信源的熵为H(X)=1(bit/symbol)。
则该消息序列含有的信息量=14000(bit/symbol)。
下面计算该二元对称信道能传输的最大的信息传输速率: 信道传递矩阵为:信道容量(最大信息传输率)为:C=1-H(P)=1-H(0.98)≈0.8586bit/symbol得最大信息传输速率为:Rt ≈1500符号/秒× 0.8586比特/符号 ≈1287.9比特/秒 ≈1.288×103比特/秒此信道10秒钟内能无失真传输得最大信息量=10× Rt ≈ 1.288×104比特 可见,此信道10秒内能无失真传输得最大信息量小于这消息序列所含有的信息量,故从信息传输的角度来考虑,不可能在10秒钟内将这消息无失真的传送完。
2、若已知信道输入分布为等概率分布,且有如下两个信道,其转移概率矩阵分别为:试求这两个信道的信道容量,并问这两个信道是否有噪声?1100.980.020.020.98P ⎡⎤=⎢⎥⎣⎦111122221111222212111122221111222200000000000000000000000000000000P P ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11222211122222log 4(00)1/()log 42/log 8(000000)2/(),H bit symbol H X bit symbol C C H bit symbol H X C =-===>=-==1解答:(1)由信道1的信道矩阵可知为对称信道故C 有熵损失,有噪声。
信息论与编码试题集与答案(新)

0.柑应的编码器转移概率矩阵[/<vA)]-; 7・已知用户A 的RSA 公开密钥(匕八)=(3,55),“ = 5凶=11,贝I]0(”)=40 ,他的秘密密钥(仆)=(27・55)。
若用户B 向用户A 发送加=2的加密消息,则该加密后的消息为& 二、判断题 1.可以用克劳夫特不等式作为唯一可译码存在的判据。
(«〉2. 线性码一定包含全零码。
(«)3•算术编码是一种无失頁•的分组信源编码,苴基本思想是将一企精度数值作为序列的 编码,是以另外一种形式实现的最佳统讣匹配编码。
(X)4. 某一信源,不管它是否输出符号,只要这些符号具有某些概率特性,就有信息虽。
(X)5. 离散平稳有记忆信源符号序列的平均符号爛随着序列长度L 的增大而增大。
(X 〉6. 限平均功率最大:W 定理指出对于相关矩阵一定的随机矢MX.当它是正态分布时具有最大墻。
(V)7.循环码的码集中的任何一个码字的循环移位仍是码字。
(5/ )&信道容量是信道中能够传输的最小信息量。
(X)9. 香农信源编码方法在进行编码时不需要预先计算每个码字的长度。
10. 在已知收码R 的条件下找出可能性最大的发码Cj 作为译码估计值,法叫做最佳译码。
(«) 三、计算题某系统(7, 4)码£ =(5©5 q Cj c, c, Co) = (g nt, “ 叭 c,系为:為=竹 + /Mj +' C, = /«3 ++ /ZljC 0= W, +Z», + 加0 求对应的生成矩阵和校验矩阵: 计算该码的最小距离: 列出可纠差错图案和对应的伴随式: 若接收码字/?=! 110011,求发码。
1・在无失真的信源中,信源输出由 H(X)来度量:在有失竟的信源中,信源输出由_ R(D)来度量• 2•要使通信系统做到传输信息有效、可靠和保密,必须首先信源编码, 然后—加密—编码,再_ 信道 编码.最后送入信逍。
信息论与编码期末考试题----学生复习

《信息论基础》参考答案一、填空题1、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
2、信源的剩余度主要来自两个方面,一是信源符号间的相关性,二是信源符号的统计不均匀性。
3、三进制信源的最小熵为0,最大熵为bit/符号。
4、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r (S))。
5、当R=C或(信道剩余度为0)时,信源与信道达到匹配.6、根据信道特性是否随时间变化,信道可以分为恒参信道和随参信道。
7、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。
8、若连续信源输出信号的平均功率为,则输出信号幅度的概率密度是高斯分布或正态分布或时,信源具有最大熵,其值为值。
9、在下面空格中选择填入数学符号“”或“"(1)当X和Y相互独立时,H(XY)=H(X)+H(X/Y)=H(Y)+H(X)。
(2)(3)假设信道输入用X表示,信道输出用Y表示.在无噪有损信道中,H(X/Y)〉 0, H(Y/X)=0,I(X;Y)<H(X)。
二、若连续信源输出的幅度被限定在【2,6】区域内,当输出信号的概率密度是均匀分布时,计算该信源的相对熵,并说明该信源的绝对熵为多少.=2bit/自由度该信源的绝对熵为无穷大.三、已知信源(1)用霍夫曼编码法编成二进制变长码;(6分)(2)计算平均码长;(4分)(3)计算编码信息率;(2分)(4)计算编码后信息传输率;(2分)(5)计算编码效率。
(2分)(1)编码结果为:(2)(3)(4)其中,(5)四、某信源输出A、B、C、D、E五种符号,每一个符号独立出现,出现概率分别为1/8、1/8、1/8、1/2、1/8。
如果符号的码元宽度为0。
5。
计算:(1)信息传输速率。
(2)将这些数据通过一个带宽为B=2000kHz的加性白高斯噪声信道传输,噪声的单边功率谱密度为。
试计算正确传输这些数据最少需要的发送功率P。
解:(1)(2)五、一个一阶马尔可夫信源,转移概率为.(1) 画出状态转移图。
信息论与编码试卷与答案

一、概念简答题(每题5分,共40分)1.什么是平均自信息量与平均互信息,比较一下这两个概念的异同?答:平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2.简述最大离散熵定理。
对于一个有m个符号的离散信源,其最大熵是多少?答:最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
最大熵值为。
3.解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的概率分布、信道的传递概率间分别是什么关系?答:信息传输率R指信道中平均每个符号所能传送的信息量。
信道容量是一个信道所能达到的最大信息传输率。
信息传输率达到信道容量时所对应的输入概率分布称为最佳输入概率分布。
平均互信息是信源概率分布的∩型凸函数,是信道传递概率的U型凸函数。
4.对于一个一般的通信系统,试给出其系统模型框图,并结合此图,解释数据处理定理。
答:通信系统模型如下:数据处理定理为:串联信道的输入输出X、Y、Z组成一个马尔可夫链,且有,。
说明经数据处理后,一般只会增加信息的损失。
5.写出香农公式,并说明其物理意义。
当信道带宽为5000Hz,信噪比为30dB时求信道容量。
.答:香农公式为,它是高斯加性白噪声信道在单位时间内的信道容量,其值取决于信噪比和带宽。
由得,则6.解释无失真变长信源编码定理。
.答:只要,当N足够长时,一定存在一种无失真编码。
7.解释有噪信道编码定理。
答:当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8.什么是保真度准则?对二元信源,其失真矩阵,求a>0时率失真函数的和?答:1)保真度准则为:平均失真度不大于允许的失真度。
2)因为失真矩阵中每行都有一个0,所以有,而。
二、综合题(每题10分,共60分)1.黑白气象传真图的消息只有黑色和白色两种,求:1)黑色出现的概率为0.3,白色出现的概率为0.7。
信息论与编码考试题(附答案版)

1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln(2 ⅇ 2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
信息论与编码考题标准答案

信 息 论 与 编 码 考题与标准答案第一题 选择题1.信息是( b )a. 是事物运动状态或存在方式的描述b.是事物运动状态或存在方式的不确定性的描述c.消息、文字、图象d.信号 2.下列表达式哪一个是正确的(e )a. H (X /Y )=H (Y /X )b. )();(0Y H Y X I <≤c.)/()(),(X Y H X H Y X I -=d. )()/(Y H Y X H ≤e. H (XY )=H (X )+H (Y /X )3.离散信源序列长度为L ,其序列熵可以表示为( b )a. )()(1X LH X H =b.c. ∑==Ll lXH X H 1)()(d. )()(X H X H L =4.若代表信源的N 维随机变量的取值被限制在一定的范围之内,则连续信源为( c ),具有最大熵。
a. 指数分布b. 正态分布c. 均匀分布d. 泊松分布 5.对于平均互信息);(Y X I ,下列说法正确的是( b )a. 当)(i x p 一定时,是信道传递概率)(i j x y p 的上凸函数,存在极大值b. 当)(i x p 一定时,是信道传递概率)(i j x y p 的下凸函数,存在极小值c.当)(i j x y p 一定时,是先验概率)(i x p 的上凸函数,存在极小值d.当)(i j x y p 一定时,是先验概率)(i x p 的下凸函数,存在极小值 6.当信道输入呈( c )分布时,强对称离散信道能够传输最大的平均信息量,即达到信道容量 a. 均匀分布 b. 固定分布 c. 等概率分布 d. 正态分布7.当信道为高斯加性连续信道时,可以通过以下哪些方法提高抗干扰性(b d ) a. 减小带宽 b. 增大发射功率 c. 减小发射功率 d.增加带宽第二题 设信源 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡6.04.0)(21x x X p X 通过一干扰信道,接收符号为Y={y 1,y 2},信道传递矩阵为⎥⎦⎤⎢⎣⎡43416165 求:(1) 信源 X 中事件 x 1 和 x 2 分别含有的自信息量。
信息论与编码期末考试题(全套)

(一)一、判断题共 10 小题,满分 20 分.1. 当随机变量X 和Y 相互独立时,条件熵)|(Y X H 等于信源熵)(X H . ( )2. 由于构成同一空间的基底不是唯一的,所以不同的基底或生成矩阵有可能生成同一码集.( ) 3.一般情况下,用变长编码得到的平均码长比定长编码大得多. ( )4. 只要信息传输率大于信道容量,总存在一种信道编译码,可以以所要求的任意小的误差概率实现可靠的通信.( ) 5. 各码字的长度符合克拉夫特不等式,是唯一可译码存在的充分和必要条件. ( ) 6. 连续信源和离散信源的熵都具有非负性.( )7. 信源的消息通过信道传输后的误差或失真越大,信宿收到消息后对信源存在的不确 定性就越小,获得的信息量就越小. 8. 汉明码是一种线性分组码. ( ) 9. 率失真函数的最小值是0.( )10.必然事件和不可能事件的自信息量都是0.( )二、填空题共 6 小题,满分 20 分.1、码的检、纠错能力取决于 .2、信源编码的目的是 ;信道编码的目的是 .3、把信息组原封不动地搬到码字前k 位的),(k n 码就叫做 .4、香农信息论中的三大极限定理是 、 、 . 5、设信道的输入与输出随机序列分别为X 和Y ,则),(),(Y X NI Y X I N N =成立的条件 .6、对于香农-费诺编码、原始香农-费诺编码和哈夫曼编码,编码方法惟一的是 .7、某二元信源01()1/21/2X P X ⎡⎤⎧⎫=⎨⎬⎢⎥⎣⎦⎩⎭,其失真矩阵00a D a ⎡⎤=⎢⎥⎣⎦,则该信源的max D = . 三、本题共 4 小题,满分 50 分.1、某信源发送端有2种符号i x )2,1(=i ,a x p =)(1;接收端有3种符号iy )3,2,1(=j ,转移概率矩阵为1/21/201/21/41/4P ⎡⎤=⎢⎥⎣⎦. (1) 计算接收端的平均不确定度()H Y ; (2) 计算由于噪声产生的不确定度(|)H Y X ; (3) 计算信道容量以及最佳入口分布. 2、一阶马尔可夫信源的状态转移图如右图所示, 信源X 的符号集为}2,1,0{. (1)求信源平稳后的概率分布; (2)求此信源的熵;(3)近似地认为此信源为无记忆时,符号的概率分布为平稳分布.求近似信源的熵)(X H 并与H ∞进行比较. 4、设二元)4,7(线性分组码的生成矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000101010011100101100001011G . (1)给出该码的一致校验矩阵,写出所有的陪集首和与之相对应的伴随式;(2)若接收矢量)0001011(=v ,试计算出其对应的伴随式S 并按照最小距离译码准则试着对其译码. (二)一、填空题(共15分,每空1分)1、信源编码的主要目的是 ,信道编码的主要目的是 。
信息论与编码考试题(附答案版)

1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln (2πⅇσ2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息论与编码试题集与答案考试必看信息论与编码试题集与答案考试必看在无失真的信源中,信源输出由H(X)来度量;在有失真的信源中,信源输出由R(D)来度量。
1.要使通信系统做到传输信息有效、可靠和保密,必须首先信源编码,然后_____加密____编码,再______信道_____编码,最后送入信道。
2.带限AWGN波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是;当归一化信道容量C/W趋近于零时,也即信道完全丧失了通信能力,此时Eb/N0为-1.6dB,我们将它称作香农限,是一切编码方式所能达到的理论极限。
3.保密系统的密钥量越小,密钥熵H(K)就越小,其密文中含有的关于明文的信息量I(M;C)就越大。
4.已知n=7的循环码,则信息位长度k为3,校验多项式h(x)=。
5.设输入符号表为X={0,1},输出符号表为Y={0,1}。
输入信号的概率分布为p=(1/2,1/2),失真函数为d(0,0)=d(1,1)=0,d(0,1)=2,d(1,0)=1,则Dmin=0,R(Dmin)=1bit/symbol,相应的编码器转移概率矩阵[p(y/x)]=;Dmax=0.5,R(Dmax)=0,相应的编码器转移概率矩阵[p(y/x)]=。
6.已知用户A的RSA公开密钥(e,n)=(3,55),,则40,他的秘密密钥(d,n)=(27,55)。
若用户B向用户A发送m=2的加密消息,则该加密后的消息为8。
二、判断题1.可以用克劳夫特不等式作为唯一可译码存在的判据。
(Ö)2.线性码一定包含全零码。
(Ö)3.算术编码是一种无失真的分组信源编码,其基本思想是将一定精度数值作为序列的编码,是以另外一种形式实现的最佳统计匹配编码。
(×)4.某一信源,不管它是否输出符号,只要这些符号具有某些概率特性,就有信息量。
(×)5.离散平稳有记忆信源符号序列的平均符号熵随着序列长度L的增大而增大。
(×)6.限平均功率最大熵定理指出对于相关矩阵一定的随机矢量X,当它是正态分布时具有最大熵。
(Ö)7.循环码的码集中的任何一个码字的循环移位仍是码字。
(Ö)8.信道容量是信道中能够传输的最小信息量。
(×)9.香农信源编码方法在进行编码时不需要预先计算每个码字的长度。
(×)10.在已知收码R的条件下找出可能性最大的发码作为译码估计值,这种译码方法叫做最佳译码。
(Ö)三、计算题某系统(7,4)码其三位校验位与信息位的关系为:(1)求对应的生成矩阵和校验矩阵;(2)计算该码的最小距离;(3)列出可纠差错图案和对应的伴随式;(4)若接收码字R=1110011,求发码。
解:1.2.dmin=33.SE0000000000001000000101000000101000000 10010100010001110010000011010000011010000004.RHT=[0 01]接收出错E=0000001R+E=C=1110010(发码)四、计算题已知的联合概率为:求,,,解:0.918bit/symbol=1.585bit/symbol0.251bit/symbol五、计算题一阶齐次马尔可夫信源消息集,状态集,且令,条件转移概率为,(1)画出该马氏链的状态转移图;(2)计算信源的极限熵。
解:(1)(2)→H(X|S1)=H(1/4,1/4,1/2)=1.5比特/符号H(X|S2)=H(1/3,1/3,1/3)=1.585比特/符号H(X|S3)=H(2/3,1/3)=0.918比特/符号比特/符号六、计算题若有一信源,每秒钟发出2.55个信源符号。
将此信源的输出符号送入某一个二元信道中进行传输(假设信道是无噪无损的,容量为1bit/二元符号),而信道每秒钟只传递2个二元符号。
(1)试问信源不通过编码(即x1®0,x2®1在信道中传输)(2)能否直接与信道连接?(3)若通过适当编码能否在此信道中进行无失真传输?(4)试构造一种哈夫曼编码(两个符号一起编码),(5)使该信源可以在此信道中无失真传输。
解:1.不能,此时信源符号通过0,1在信道中传输,2.55二元符号/s2二元符号/s2.从信息率进行比较,2.55*=1.841*2可以进行无失真传输3.1.56二元符号/2个信源符号此时1.56/2*2.55=1.989二元符号/s2二元符号/s 七、计算题两个BSC信道的级联如右图所示:(1)写出信道转移矩阵;(2)求这个信道的信道容量。
解:(1)(2)信息理论与编码试卷A答案中南大学考试试卷200--2010学年上学期期末考试试题时间100分钟信息论基础课程32学时学分考试形式:闭卷专业年级:通信07级总分100分,占总评成绩70%注:此页不作答题纸,请将答案写在答题纸上一填空题(本题20分,每小题2分)1无失真信源编码的中心任务是编码后的信息率压缩接近到1限失真压缩中心任务是在给定的失真度条件下,信息率压缩接近到2。
2信息论是应用近代数理统计方法研究信息的传输、存储与处理的科学,故称为3;1948年香农在贝尔杂志上发表了两篇有关的“通信的数学理论”文章,该文用熵对信源的4的度量,同时也是衡量5大小的一个尺度;表现在通信领域里,发送端发送什么有一个不确定量,通过信道传输,接收端收到信息后,对发送端发送什么仍然存在一个不确定量,把这两个不确定量差值用6来表示,它表现了通信信道流通的7,若把它取最大值,就是通信线路的8,若把它取最小值,就是9。
3若分组码H阵列列线性无关数为n,则纠错码的最小距离dmin为10。
二简答题(本题20分,每小题4分)1.根据信息理论当前无失真压宿在压宿空间和速度两个方向还有研究价值吗?2.我们知道,“猫”(调制解调器的俗称)是在模拟链路上传输数字数据的设备,它可以在一个音频电话线上传输二进制数据,并且没有太高的错误率。
现在,我们上网用的“猫”的速度已可达到56Kbps了,但是,如果你用网络蚂蚁或其它软件从网上下载东西时,你会发现很多时候网络传输的速度都很低,远低于56Kbps(通常音频电话连接支持的频率范围为300Hz到3300Hz,而一般链路典型的信噪比是30dB)(摘自中新网)3.结合信息论课程针对”信息”研究对象,说明怎样研究一个对象.4.用纠错编码基本原理分析由下列两种生成矩阵形成线性分组码的优劣(1)(2)5.新华社电,2008年5月16日下午6时半,离汶川地震发生整整100个小时。
虚弱得已近昏迷的刘德云被救援官兵抬出来时,看到了自己的女儿。
随即,他的目光指向自己的左手腕。
女儿扑上去,发现父亲左手腕上歪歪扭扭写着一句话:“我欠王老大3000元。
”请列出上面这段话中信号、消息、信息。
三计算编码题(本题60分)1.从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%。
(10分)(1)若问一位女士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量?从计算的结果得出一个什么结论?(2)如果问一位女士,问她回答(是或否)前平均不确定性和回答(是或否)后得到的信息量各为多少?2.黑白气象传真图的消息只有黑色和白色两种,即信源X={黑,白}。
设黑色出现的概率为P(黑)=0.5,白色出现的概率为P(白)=0.5。
(10分)(1)假设图上黑白消息出现前后没有关联,求信源的H∞熵;(2)假设消息只前后有关联,其依赖关系为P(白/白)=0.8,P(黑/白)=0.2,P(白/黑)=0.4,P(黑/黑)=0.6,求信源的H∞熵;(3)比较上面两个H∞的大小,并说明其物理含义。
3.离散无记忆信源P(x1)=8/16;P(x2)=3/16;P(x3)=4/16;P(x4)=1/16;(10分)(1)计算对信源的逐个符号进行二元定长编码码长和编码效率;(2)对信源编二进制哈夫曼码,并计算平均码长和编码效率。
(3)你对哈夫曼码实现新信源为等概的理解。
4.设二元对称信道的传递矩阵为若P(0)=3/4,P(1)=1/4,求该信道的信道容量及其达到信道容量时的输入概率分布;并说明物理含义。
(10分)5.设信源通过一干扰信道,接收符号为Y={y1,y2},信道转移矩阵为,求:(10分)(1)收到消息yj(j=1)后,获得的关于xi(i=2)的信息量;(2)信源X和信宿Y的信息熵;信道疑义度H(X/Y)和噪声熵H(Y/X);(3)接收到信息Y后获得的平均互信息量。
6二元(7,4)汉明码校验矩阵H为:(10分)(1)写出系统生成矩阵G,列出错误形式和伴随矢量表,你能发现他们之间有什么联系,若没有这个表怎么译码,(2)若收到的矢量0000011,请列出编码后发送矢量、差错矢量、和编码前信息矢量。
一、填空题(每空2分,共20分)1.设X的取值受限于有限区间[a,b],则X服从均匀分布时,其熵达到最大;如X的均值为,方差受限为,则X服从高斯分布时,其熵达到最大。
2.信息论不等式:对于任意实数,有,当且仅当时等式成立。
3.设信源为X={0,1},P(0)=1/8,则信源的熵为比特/符号,如信源发出由m个“0”和(100-m)个“1”构成的序列,序列的自信息量为比特/符号。
4.离散对称信道输入等概率时,输出为等概分布。
5.根据码字所含的码元的个数,编码可分为定长编码和变长编码。
6.设DMS为,用二元符号表对其进行定长编码,若所编的码为{000,001,010,011,100,101},则编码器输出码元的一维概率0.747,0.253。
二、简答题(30分)1.设信源为,试求(1)信源的熵、信息含量效率以及冗余度;(2)求二次扩展信源的概率空间和熵。
解:(1)(2)二次扩展信源的概率空间为:X\X1/163/163/169/162.什么是损失熵、噪声熵?什么是无损信道和确定信道?如输入输出为,则它们的分别信道容量为多少?答:将H(X|Y)称为信道的疑义度或损失熵,损失熵为零的信道就是无损信道,信道容量为logr。
将H(Y|X)称为信道的噪声熵,噪声熵为零的信道就是确定信道,信道容量为logs。
3.信源编码的和信道编码的目的是什么?答:信源编码的作用:(1)符号变换:使信源的输出符号与信道的输入符号相匹配;(2)冗余度压缩:是编码之后的新信源概率均匀化,信息含量效率等于或接近于100%。
信道编码的作用:降低平均差错率。
4.什么是香农容量公式?为保证足够大的信道容量,可采用哪两种方法?答:香农信道容量公式:,B为白噪声的频带限制,为常数,输入X(t)的平均功率受限于。
由此,为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。