第3章双变量模型假设检验

合集下载

经济计量学第三讲双变量回归模型的区间估计及其假设检验

经济计量学第三讲双变量回归模型的区间估计及其假设检验

决策准则:
5. 如果 t > tc 或 -t < - tc , 则拒绝 Ho
or | t | > | tc |
接受域
拒绝 H0 区域
( ) bˆ 2 -
t
c
a
* Se
2, n-2
bˆ 2
b2
东北财经大学数量经济系
拒绝 H0 区域
( ) bˆ 2
+
tc a 2,
*
n-2
Se
bˆ 2
第三节 双变量回归的假设检验(4)
t = 0.5091 - 0.3 = 0.2091 = 5.857 0.0357 0.0357
东北财经大学数量经济系
第三节 双变量回归的假设检验(7)
One-Tailed t-test (cont.)
2. 查表得知
tc 0.05, 8
where
tc 0.05 ,
8
=1.860
a = 0.05
3. 比较 t 和临界值 t
sˆ 2
Pr[(n - 2)
s 2 (n - 2)
sˆ 2
] =1-a
2 a/2
2 1-a / 2
东北财经大学数量经济系
第三节 双变量回归的假设检验(1) 第三节 双变量回归的假设检验
一、假设检验的基本问题 1.假设检验的基本思想 2.基本概念
二、假设检验的置信区间方法
东北财经大学数量经济系
一、正态性假定 1.正态性假定的含义 2.随机干扰项做正态假定的理由
二、在正态假定下OLS估计量的性质
东北财经大学数量经济系
第一节 正态性假定:经典正态线性回归模型(2)
三、最大似然法 1.双变量回归模型的最大似然估计 — 似然函数 — 最大似然法的基本思想 — 回归系数和随机干扰项的ML估计量

计量经济学 第3章 双变量模型:假设检验

计量经济学 第3章 双变量模型:假设检验

假设检验的前提是什么?
本章框图 一、古典假设
回归结果好坏? 三、高斯马尔科夫定理
二、估计量的分布问题
四、 假设 检验
七、正态性检验
方法 统计量 显著性
结论
五、拟合优度 六、预测
一、OLS估计需要的基本假设有哪些?
一、OLS估计需要的基本假设有哪些?
一、OLS估计需要的基本假设有哪些
一、OLS估计需要的基本假设有哪些?
十三、案例2股票价格和利率
理论和假说 变量选择 数据6-13 散点图 估计和结果 结论的经济意义
十四、案例3房价和贷款利率
理论和假说 变量选择 数据6-6 散点图 估计和结果 结论的经济意义
十五、案例4古董和拍卖价格
理论和假说 变量选择 数据6-14 散点图 估计和结果 结论的经济意义
第3章 双变量模型:模型检验
引子、样本回归参数的估计问题
引子、样本回归参数的估计问题
结论:
样本回归系数随样本变化。 样本回归系数是随机变量,如何描述? 样本回归系数和总体回归参数是什么关系 基于什么条件下,利用最小二乘估计的得
到的样本回归系数可以用来作为总体回归 参数的估计? 根据什么说明:总体回归函数的模型设定 是正确的。
习题讨论
习题讨论
习题讨论
习题讨论
习题讨论
习题讨论
习题讨论
五、显著性检验方法的原理是什么
五、显著性检验方法的原理是什么
五、显著性检验方法的原理是什么
五、显著性检验方法的原理是什么
六、样本回归函数拟合数据好坏的标准是什么?
六、样本回归函数拟合数据好坏的标准是什么?
六、样本回归函数拟合数据好坏的标准是什么?
七、判决系数的性质有哪些?

第3章 双变量模型-假设检验(1)

第3章 双变量模型-假设检验(1)


n
Xi X Yi Y b2 2 X X i 参数估计量的计算公式为: b1 Y b2 X
消费支出Y 3000 2500 2000 1500 1000 500 0 0
可支配收入X 1000 2000 3000 4000
小结:用EXCEL和Eviews实现最小二乘法
随机误差项ui的方差2的估计
由于随机项ui不可观测,只能从ui的估计——残差ei出发, 对随机项ui的方差2进行估计。
由数理统计的基本原理可以证明,2的最小二乘估计量为
ˆ
2
2 e i
n2

2 e i
2 2 2 2 e y b x i i 2 i 2 ˆ n 2 n 2
第3章 双变量模型参数的统计检验
一、线性回归模型的基本假设
二、普通最小二乘估计量的方差与标准误
三、OLS估计量的概率分布
四、变量的显著性检验
五、参数的置信区间
§3.1 线性回归模型的基本假设
回归分析的主要目的是要通过样本回归函数(模型)SRF 尽可能准确地估计总体回归函数(模型)PRF。
估计方法有多种,其种最广泛使用的是普通最小二乘法 (ordinary least squares, OLS)。
为保证参数估计量具有良好的性质,使用普通最小二乘法 通常对模型要提出若干基本假设。
线性回归模型的基本假设
假设1、解释变量X是确定性变量,不是随机变量 假设2、随机误差项具有零均值、同方差和不序列相关性
如果假设1、2 满足,则假设 3也满足; 如果假设4满 足,则假设2 也满足
E(ui)=0
量中,OLS估计量是具有最小方差的最优线性无偏估计量。

[农学]B03 假设检验:双变量模型

[农学]B03 假设检验:双变量模型
1 1 1

i
ˆ ) Var( ˆ ) / Se( 1 1
ˆ ) Se( 0
ˆ ) 2 [ X 2 / n ( X X )2 ] Var( i i 0
2 ( X X ) i
2 2 X /[ n ( X X ) ] i i
5
计量经济学
一、误差项的概率分布
1、进行OLS估计时,对误差项的概率分布没 有假定。对误差项的假定仅仅是:均值为0、没 有自相关且方差相等,有了这些假定,无论误 差项的分布为何,OLS估计量均为BLUE。 2、如果研究的目的只是估计参数,OLS方法 就可达到目的。但是,OLS估计量是误差项的 线性函数,所以OLS估计量的概率分布依赖于 误差项分布的假设。没有分布假设,就不可能 对估计的参数做出有意义的评价,也不可能进 行假设检验。
计量经济学
2、正态变量经过线性变换后仍为正态变量。 3、分布函数仅涉及两个参数:均值和方差。许 多现象都大致服从正态分布。 4、对于小样本或有限容量的样本,正态性假定 有助于推导出OLS估计量的精确概率分布,而且 2 能够用t、F和 分布来对回归模型的性质进行统 计检验。 ◎当样本容量较小时,应注意正态性假定是否 适当。当样本容量大到合理程度时,或许能够放 松正态性假定。
4
计量经济学
第2节

OLS估计的精度:标准误
一、标准误(Standard Error)
1、OLS估计量是样本的函数,评价估计量 的可信度或精度的工具是标准误。 在CLRM假定下,OLS估计量的标准误为: ˆ ) E( ˆ )2 2 / ( X X )2 Var(
18
计量经济学
五、关于假设检验的说明

第3章_双变量模型:假设检验

第3章_双变量模型:假设检验
Yi = b1 + b2 X i + ui (一元线性) 一元线性)
Yi = b1 + b2 X 2i + b3 X 3i + L + ui
(多元线性) 多元线性)
2. 解释变量X与扰动项u不相关假定 解释变量X与扰动项u
当X是非随机变量,即确定性变量时,该条件 是非随机变量,即确定性变量时, 自动满足; 自动满足; 是随机变量时,该假定要求X 不相关。 当X是随机变量时,该假定要求X与u不相关。
Yi = b1 + b2 X i + ei
ˆ Yi = b1 + b2 Xi
E ( Y X i )= B1+ B2 X i
Yi = B1+B2 X i + ui
双变量模型:假设检验 双变量模型:
X是
非随机的 随机误差项u是 随机的 Y 的生成是在随机误差项( 上加上一个非随机项( 由于Y的生成是在随机误差项( u)上加上一个非随机项( X),因而Y也 就变成了随机变量。 就变成了随机变量。 于是必须对yi的分布做一番讨论 的分布做一番讨论。 于是必须对yi的分布做一番讨论。 所有这些意味着:只有假定随机误差项是如何生成的, 假定随机误差项是如何生成的 所有这些意味着:只有假定随机误差项是如何生成的,才能判定样本 回归函数对真实回归函数拟合的好坏。 回归函数对真实回归函数拟合的好坏。
(博 彩 支 ) 最 小 二 乘 准 则
Y 出
Yi
ˆ SRF : Yi = b1 + b2 X i
e1
e3
e2
e4
X4
X
1
X
2
X
3
X(收入 收入) 收入
B1、B2的估计

双变量模型之假设检验

双变量模型之假设检验

ˆ 2 ei2 yi2 ˆ12 xi2 4590020 0.7772 7425000 13402
n2
n2
10 2
Sˆ0 ˆ 2
X
2 i
n
xi2 13402 53650000 /10 7425000 98.41
t
ˆ0 0
因此,定义 拟合优度:回归平方和ESS/总离差平方和TSS
2020/2/10
qcc
9
2、可决系数R2统计量

R2 ESS 1 RSS
TSS
TSS
称 R2 为(样本)可决系数/判定系数 (coefficient of determination)。
可决系数的取值范围:[0,1]
R2越接近1,说明实际观测点离样本线 越近,拟合优度越高。
R 2

ˆ12


xi2 yi2
在例收入-消费支出例中,
R2 ˆ12
xi2 yi2

(0.777)2 7425000 0.9766
4590020
注:可决系数是一个非负的统计量。它也是
随着抽样的不同而不同。为此,对可决系数
的统计可靠性也应进行检验。
2020/2/10
2020/2/10
qcc
15
二、变量的显著性检验
回归分析是要判断解释变量X是否是被解释变量Y 的一个显著性的影响因素。
在一元线性模型中,就是要判断X是否对Y具有显 著的线性影响。这就需要进行变量的显著性检验。
变量的显著性检验所应用的方法是数理统计学中的 假设检验。
计量經濟学中,主要是针对变量的参数真值是否为 零来进行显著性检验的。

古扎拉蒂《经济计量学精要》(第4版)笔记和课后习题详解-双变量模型:假设检验(圣才出品)

古扎拉蒂《经济计量学精要》(第4版)笔记和课后习题详解-双变量模型:假设检验(圣才出品)

第3章双变量模型:假设检验3.1 复习笔记一、古典线性回归模型古典线性回归模型假定如下:假定1:回归模型是参数线性的,但不一定是变量线性的。

回归模型形式如下:Y i=B1+B2X i+u i这个模型可以扩展到多个解释变量的情形。

假定2:解释变量X与扰动误差项u不相关。

但是,如果X是非随机的(即为固定值),则该假定自动满足。

即使X值是随机的,如果样本容量足够大,也不会对分析产生严重影响。

假定3:给定X,扰动项的期望或均值为零。

即E(u|X i)=0(3-1)假定4:u i的方差为常数,或同方差,即var(u i)=σ2(3-2)假定5:无自相关假定,即两个误差项之间不相关。

即:cov(u i,u j)=0,i≠j(3-3)无自相关假定表明误差u i是随机的。

由于假定任何两个误差项不相关,所以任何两个Y值也是不相关的,即cov(Y i,Y j)=0。

由于Y i=B1+B2X i+u i,则给定B值和X值,Y 随u的变化而变化。

因此,如果u是不相关的,则Y也是不相关的。

假定6:回归模型是正确设定的。

换句话说,实证分析的模型不存在设定偏差或设定误差。

这一假定表明,模型中包括了所有影响变量。

二、普通最小二乘估计量的方差与标准误有了上述假定就能够估计出OLS估计量的方差和标准误。

由此可知,教材式(2-16)和教材式(2-17)给出的OLS估计量是随机变量,因为其值随样本的不同而变化。

这种抽样变异性通常由估计量的方差或其标准误(方差的平方根)来度量。

教材式(2-16)和式(2-17)中OLS估计量的方差及标准误是:(3-4)(3-5)(3-6)(3-7)其中,var表示方差,se表示标准误,σ2是扰动项u i的方差。

根据同方差假定,每一个u i具有相同的方差σ2。

一旦知道了σ2,就很容易计算等式右边的项,从而求得OLS估计量的方差和标准误。

根据下式估计σ2:(3-8)其中,σ∧2是σ2的估计量,是残差平方和,是Y的真实值与估计值差的平方和,即()122212var ibiXbn xσσ==∑∑1se()b=()22222varbibxσσ==∑()2se b=22ˆ2ienσ=−∑2ie∑n -2称为自由度,可以简单地看作是独立观察值的个数。

计量经济学第3章习题作业

计量经济学第3章习题作业
出参数估计量,所要求的最小样本容量为( )
A n ≥ k +1 B n ≤ k +1 C n ≥ 30 D n ≥ 3(k +1)
6. 对于 Yi =βˆ0 + βˆ1Xi +ei ,以σˆ 表示估计标准误差,r 表示相关系数,则有( ) A σˆ=0时,r=1
B σˆ=0时,r=-1
C σˆ=0时,r=0
7. 简述变量显著性检验的步骤。 8. 简述样本相关系数的性质。 9. 试述判定系数的性质。
五、综合题
1. 为了研究深圳市地方预算内财政收入与国内生产总值的关系,得到以下数据:
年份
地方预算内财政收入 Y
国内生产总值(GDP)X
(亿元)
(亿元)
1990
21.7037
171.6665
1991
27.3291
184.7908
1436.0267
2000
225.0212
1665.4652
2001
265.6532
1954.6539
要求:
(1)建立深圳地方预算内财政收入对 GDP 的回归模型;
(2)估计所建立模型的参数,解释斜率系数的经济意义;
(3)对回归结果进行检验;
(4)若是 2005 年的国内生产总值为 3600 亿元,确定 2005 年财政收入的预测值和预

A 可靠性
B 合理性
C 线性
D 无偏性
E 有效性
5. 剩余变差是指(

A 随机因素影响所引起的被解释变量的变差
B 解释变量变动所引起的被解释变量的变差
C 被解释变量的变差中,回归方程不能做出解释的部分
D 被解释变量的总变差与回归平方和之差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档