中职数学拓展模块双曲线几何性质(上课)

合集下载

【高教版】中职数学拓展模块:2.2《双曲线》ppt课件(3)

【高教版】中职数学拓展模块:2.2《双曲线》ppt课件(3)

巩 固 知 识 典 型 例 题
解题关键是判断双 曲线的焦点在哪个数 轴.方法是观察标准 方程中含x项与含y项的 系数的符合,如果含x 项(或含y项)的系数 为正数,那么焦点在x 轴(或y轴)上,并且 该项的分母为a2 .
例2 求下列双曲线的焦点坐标和焦距.
x2 y2 1;(2) y 2 x2 4. (1) 144 25
从实验中发现:笔尖(即
点M)在移动过程中,与两个 定点F1、F2 的距离之差的绝对 值始终保持不变(等于拉链两 边的长度之差).
M
我们将平面内到两个定点 F1、F2 的距离之差的绝对值为 常数(小于 F1 F2 )的点的轨迹(或集合)叫做双曲线. 这两
动 脑 思 考 探 索 新 知
个定点叫做双曲线的焦点,两焦点的距离叫做焦距. 实验画出的图形就是双曲线.下面我们根据实验的步骤 来研究双曲线的方程. 取过焦点 F1、F2的直线为x轴,线段 F1F2 的垂直平分线为y 轴,建立平面直角坐标系,如 图,设双曲线的焦距为2c,则 两个焦点 F1、F2 的坐标分别为 (-c,0),(c,0).
第2章
椭圆、双曲线、抛物线
2.2
双曲线
我们先来做一个实验. 取一条两边长度不等的拉链(如图),将拉链的两边分别 固定在两个定点F1、F2 (拉链两边的长度之差小于 F1、F2的距离)
创 设 情 境 兴 趣 引 入
上,把铅笔尖固定在拉链锁口处,慢慢拉开拉链,使铅笔尖慢 慢移动,画出图形的一部分;再将拉链的两边交换位置分别固 定在 F1、F2 处,用同样的方法 可以画出图形的另一部分.
设M(x,y)为双曲线上的任意一点,M与两个焦点F1、F2 的距离之差的绝对值为2a,则
MF1 MF2 2a,

中职数学拓展模块双曲线几何性质(上课)

中职数学拓展模块双曲线几何性质(上课)

2
3
关于x轴、y轴、原点对称 关于x轴、y轴、原点对称
4
5
6
例3求双曲线 9x2 16 y 2 144 的实轴长、虚轴长、 焦点坐标、顶点坐标、离心率与渐近线方程。
例4已知双曲线的一个焦点为(6,0),渐近线 2 5 x, 求双曲线的标准方程。 方程 y= 5
例5已知双曲线的两个顶点坐标为(0,-4),
F2
X
F1
0
范围 对称性 顶点
|x|a,|y|≤b
对称轴:x轴,y轴 对称中心:原点
|x| ≥ a,yR
对称轴:x轴,y轴 对称中心:原点 (-a,0) (a,0) 实轴:2a 虚轴:2b e=
c (e1) a
(-a,0) (a,0) (0,b) (0,-b) 长轴:2a 短轴:2b
c e= a
x a 或 x a, y R
y a 或 y a, x R
关于x轴、y轴、原点对称
A1(- a,0),A2(a,0)
关于x轴、y轴、原点对称
A1(0,-a),A2(0,a)
c e a
(e 1)
b y x a
c e a
(e 1)
a y x b
椭圆与双曲线的性质比较:
y=
b x a
结论:
x2 y2 x2 y2 双曲线 2 2 ( 0) 渐近线方程 2 2 0. a b a b
B2
. .
B2 A2
图形
. .
F1(-c,0)
F1
y
y
F2
A1 A2
O
F2(0,c)
B1
B1 F2(c,0)
F2
x

《3.2.2 双曲线的几何性质》教学设计教学反思-2023-2024学年中职数学高教版21拓展模块一

《3.2.2 双曲线的几何性质》教学设计教学反思-2023-2024学年中职数学高教版21拓展模块一

《双曲线的几何性质》教学设计方案(第一课时)一、教学目标1. 知识与技能:掌握双曲线的几何性质,包括开口方向、焦点位置、离心率等,能够运用双曲线知识解决相关问题。

2. 过程与方法:通过观察、分析、探究双曲线的几何性质,提高观察、分析和解决问题的能力。

3. 情感态度与价值观:培养数学兴趣和探究精神,增强对数学与生活的联系认识。

二、教学重难点1. 教学重点:掌握双曲线的几何性质,如开口方向、焦点位置、离心率等。

2. 教学难点:如何引导学生观察、分析、探究双曲线的几何性质,提高解决问题的能力。

三、教学准备1. 准备教学用具:黑板、白板、投影仪等教学设备,以及双曲线标准图象。

2. 制作课件:包括双曲线标准图象以及相关问题的示例和解答。

3. 搜集资料:收集与双曲线几何性质相关的实际应用案例,用于课堂讲解和讨论。

四、教学过程:本节课是双曲线的几何性质第一课时,是在学生学习了椭圆性质的基础上进行学习的,学习目的是通过类比学习,培养学生自主学习和探究的能力。

为了达成目标,结合本节课内容,我设计如下五个环节:1. 创设情境,引入课题以刘翔跨栏的视频情境为切入点,请学生回想如何计算位移与时间。

将刘翔百米跨栏比赛的视频进行回顾剪辑,给学生展示赛前与比赛结束的栏杆间距和所用时间,引导学生回忆计算位移的方法。

教师给出实际问题:在离地面3米高处要安装一个灯箱,离地面5米高处再安装一个灯箱,如果要求灯箱与地面距离差不超过2米,问两条灯箱的位置应如何设置?请用数学语言描述这个问题。

学生尝试用学过的知识解决这个问题。

通过类比问题,引入双曲线概念和简单几何性质。

设计意图:以刘翔跨栏视频创设情境,有利于激发学生的学习兴趣和求知欲,让学生体会到数学与体育的关系无处不在,同时也自然地引入课题。

2. 自主学习,合作探究将学生分成小组,结合课件通过多媒体网络自学教材内容,对双曲线的定义及几何性质进行自主探究,解决在自学中遇到的疑难问题。

在此过程中教师巡回指导,帮助学生解决疑难问题。

《3.2.2 双曲线的几何性质》学历案-中职数学高教版21拓展模块一上册

《3.2.2 双曲线的几何性质》学历案-中职数学高教版21拓展模块一上册

《双曲线的几何性质》学历案(第一课时)一、学习主题本课学习主题为《双曲线的几何性质》。

双曲线是中职数学课程中的重要内容,它不仅在数学本身有着广泛的应用,而且在物理、工程等领域也有着重要的意义。

本课将围绕双曲线的定义、性质、几何图像以及相关计算进行学习。

二、学习目标1. 知识与技能:理解双曲线的定义和标准方程,掌握双曲线的基本几何性质;能利用双曲线的性质解决简单的数学问题。

2. 过程与方法:通过观察双曲线的图像,培养学生利用数形结合的思想理解数学概念的能力;通过解决实际问题,培养学生应用数学知识解决实际问题的能力。

3. 情感态度与价值观:通过本课学习,激发学生对数学的兴趣和好奇心,培养他们认真、严谨的学习态度和良好的学习习惯。

三、评价任务1. 知识评价:通过课堂提问、随堂测验等方式,评价学生对双曲线定义、性质及标准方程的理解程度。

2. 能力评价:通过课堂练习、小组讨论等形式,评价学生利用双曲线知识解决实际问题的能力。

3. 过程评价:通过观察学生在课堂上的表现,评价他们的学习态度和学习习惯,包括参与度、合作能力、探究精神等。

四、学习过程1. 导入新课:通过回顾之前学习的内容(如直线、圆等),引出双曲线的概念,为学习新知做铺垫。

2. 新课学习:首先介绍双曲线的定义和标准方程,然后通过具体例子讲解双曲线的几何性质。

在此过程中,可以结合图像和动画,帮助学生更好地理解双曲线的形状和性质。

3. 课堂练习:布置相关练习题,让学生运用所学知识解决问题。

教师巡视指导,及时解答学生疑问。

4. 小组讨论:分组进行讨论,让学生分享自己的解题思路和方法,互相学习、互相启发。

5. 总结归纳:对本次课的学习内容进行总结归纳,强调重点和难点内容。

五、检测与作业1. 课堂检测:通过课堂小测验或作业的方式,检测学生对双曲线知识的掌握情况。

2. 课后作业:布置相关练习题和思考题,让学生巩固所学知识并拓展思维。

六、学后反思1. 学生反思:引导学生对本次课的学习过程进行反思,总结自己的收获和不足。

中职数学 拓展模块 第2章 椭圆、双曲线和抛物线

中职数学 拓展模块 第2章 椭圆、双曲线和抛物线
(1)6x2 10 y2 60; (2) x2 y2 1; 16 9
(3) x2 y2 1. 95
2.求适合下列条件的椭圆的标准方程: (1)长轴长为20,离心率为 3/5 ; (2)a=4,b=1,焦点在y轴上. 3.方程x2+2y2-2x+12y+15=0表示的图形是不是椭圆?如果 是,求出它的对称中心坐标、对称轴方程以及离心率.
9 16 y2 x2 (4) 1; 93 (5) y2 x2 1. 9 16
2.2 双曲线
练一练
2.求下列双曲线的标准方程:
(1)以椭圆 x2 y2 1 的焦点为顶点,顶点为焦点;
8
(2)过点(3,9
5
2)且
c
10 ;
a3
(3)经过点(3,2 7) 和(6 2,7).
2.2 双曲线
2.2.2 双曲线的性质
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/
第2章 椭圆、双曲线和抛物线
2.2 双曲线
2.2.1 双曲线的定义与标准方程
在画板上选取两定点F1,F2,将拉 链(拉链的两边等长)拉开一段,其中 一边固定在F1处,在另一边上截取一段A F2(并使A F2小于F1,F2之间的距离), 而后固定在F2处,把笔尖放在拉链口处 (即点M处),于是随着拉链的逐渐打 开或闭拢,笔尖就徐徐画出一条曲线; 同理,将拉链的两边交换位置,可画出 另外一支曲线,如图2-6所示.
可得椭圆的标准方程为 (2-1)
2.1 椭圆
我们把方程(2-1)叫作椭圆的标准方程 .它 表示椭圆的焦点在x轴上,且焦点为F1(-c,0), F2(c,0),其中c>0,

【语文版】中职数学拓展模块:2.2《双曲线的标准方程和性质》课件(1)

【语文版】中职数学拓展模块:2.2《双曲线的标准方程和性质》课件(1)

数,可得到另一条曲线.
结论 平面内与两个定点 F1、F2 的距离的差的绝对值等于常 数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲 线的焦点,两焦点间的距离叫做双曲线的焦距.
研一研·问题探究、课堂更高效
2.2.1
问题 2 双曲线的定义中强调平面内动点到两定点的距离差
的绝对值为常数,若没有绝对值,则动点的轨迹是什么?
答案 若没有绝对值,动点的轨迹就成了双曲线的一支.
本 讲
问题 3 双曲线的定义中,为什么要限制到两定点距离之差
栏 目
的绝对值为常数 2a,2a<|F1F2|?
开 关
答案 只有当 2a<|F1F2|时,动点的轨迹才是双曲线;当 2a
=|F1F2|时,动点的轨迹是两条射线;当 2a>|F1F2|时,满足条
数符号决定了焦点所在的坐标轴.当 x2 系数为正时,焦点在 x
轴上;当 y2 系数为正时,焦点在 y 轴上.而与分母的大小无关.
两种形式可统一表示为 mx2+ny2=1(mn<0).
本 问题 3 如图,类比椭圆中 a,b,c 的意义,你能在 y 轴上
讲 栏
找一点 B,使|OB|=b 吗?



答案 以双曲线与 x 轴的交点 A 为圆心,以线 段 OF2 为半径画圆交 y 轴于点 B.
焦点在 y 轴上
本 讲 栏 目
标准 方程
xa22-by22=1 (a>0,b>0)
ay22-xb22=1 (a>0,b>0)


焦点 F1(-c,0),F2(c,0) F1(0,-c),F2(0,c)
焦距
|F1F2|= 2c ,c2= a2+b2

《双曲线》中职数学(拓展模块)2.2ppt课件1【人教版】

《双曲线》中职数学(拓展模块)2.2ppt课件1【人教版】
发电厂冷却塔的外形
回顾椭圆的画法:
想想双曲线怎样画?
取一条定长的细绳,把它的两端都固定在图板上。
M
M
F1
F2
|MF1|+|MF2|=2a
y M
F1 O F2
x
F1
F2
|MF2|-|MF1|=常数(右边) |MF1|-|MF2|=2a |MF1|-|MF2|=常数}(左边) |MF2|-|MF1|= 2a
即: 2a >2c ( a >c)
y
M
x
F1
O F2
|MF1|-|MF2|=2a |MF2|-|MF1|= 2a
2.推导双曲线标准
| |MF1|-|MF2| | =2a
或|MF1|-|MF2|=±2a
y
F1 (-c,0) O
M
x F2 (c,0)
2.3-2
由定义可知,双曲线就是集合
P={M||MF1|-|MF2|=2a}.
M F2 (c,0x)
编者语
• 要如何做到上课认真听讲?

我们都知道一个人的注意力集中时间是有限的,一节课45分钟如何保持时时刻刻都能认真听讲不走神呢?

1、往前坐

坐的位置越靠后,注意力就越难集中。老师不会注意到你的事实可以让你不再紧张,放心去做别的事情。坐在后面,视线分散,哪怕你是在看老师,如果有人移动,你的视线就会飘到那个同学的后脑勺上去,也就无法集中注意力。 而且,坐在后面很
x2
y2
a2 c2 a2 1.
由双曲线的定义可知2c>2a, 即c>a所以c2-a2>0.类比椭圆标准方 程的建立过程,
y
M
x F1(0) O F2 (c,0)

人教版中职数学(拓展模块)2.2《双曲线》ppt课件3

人教版中职数学(拓展模块)2.2《双曲线》ppt课件3
的点的轨迹是什么呢?
①如图(A), |MF1|-|MF2|=常数
②如图(B),
|MF2|-|MF1|=常数 由①②可得:
| |MF1|-|MF2| | = 常数
(差的绝对值)
上面 两条合起来叫做双曲线
双曲线在生活中 ☆.☆
双曲线定义
平面内与两个定点F1,F2的距离的差的绝对值 等于常数(小于︱F1F2︱)的点的轨迹叫做双曲线.
则 S△F1MF2=12r1r2sin 60°=9 3.
方法感悟
1.对双曲线定义的理解
双曲线定义中||PF1|-|PF2||=2a(2a<|F1F2|),不要漏了绝 对值符号,当2a=|F1F2|时表示两条射线.
解题时,也要注意“绝对值”这一个条件,若去掉定义中的 绝对值则轨迹仅表示双曲线的一支.
83
为3
.
2. y2-2x2=1的焦点为(0,
6 2
)
、焦距是6 .
3.方程(2+)x2+(1+)y2=1表示双曲线的充要条件 是 -2<<-1 .
练习巩固:
下列方程各表示什么曲线? (1) (x 3)2 y2 (x 3)2 y2 4
方程表示的曲线是双曲线
(2) (x 3)2 y2 (x 3)2 y2 5
此即为 焦点在x 轴上的 双曲线 的标准
方程
若建系时,焦点在y轴上呢?
y
y
M
M
F2 x
F1 O F2 x
O
b2 1
(a 0,b 0)
问题
1、如何判断双曲线的焦点在哪个轴上?
看 x2 , y2 前的系数,哪一个为
正,则在哪一个轴上
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y=
b x a
结论:
x2 y2 x2 y2 双曲线 2 2 ( 0) 渐近线方程 2 2 0. a b a b
B2
. .
B2 A2
图形
. .
F1(-c,0)
F1
y
y
F2
A1 A2
O
F2(0,c)
B1
B1 F2(c,0)
F2
x
A1 O F1
x F1(0,-c)
方程 范围 对称性 顶点 离心率 渐近线
3 (0,4),离心率为 ,求双曲线的标准方程 2
及其渐近线方程。
小结:
知识要点:
x2 y2 b 1. 2 2 1的渐近线是 y= x. a b a y2 x2 a 2. 2 2 1的渐近线是 y= x. a b b
技法要点:
x2 y2 x2 y2 双曲线 2 2 ( 0) 渐近线方程 2 2 0. a b a b
B2
. .
B2 A2
2 2 2 2
图形
. .
F1(-c,0)
F1
y
y
F2
A1 A2
O
F2(0,c)
B1
B1 F2(c,0)
F2
x
A1 O F1
x F1(0,-c)
方程 范围 对称性 顶点 离心率 渐进线
x2 y2 1 ( a 0 b 0) a 2 b2
y x 1 (a 0 ,b 0 ) a b
2
3
关于x轴、y轴、原点对称 关于x轴、y轴、原点对称
4
5
6
例3求双曲线 9x2 16 y 2 144 的实轴长、虚轴长、 焦点坐标、顶点坐标、离心率与渐近线方程。
例4已知双曲线的一个焦点为(6,0),渐近线 2 5 x, 求双曲线的标准方程。 方程 y= 5
例5已知双曲线的两个顶点坐标为(0,-4),
( 0< e < 1 )
离心率 渐近线

y=±
b x a
如何记忆双曲线的渐进线方程? y
0
x
可以直接由双曲线方程推出渐近线方程? 双曲线方程
x2 y2 2 0 2 a b
x2 y 2 2 1 (a 0 ,b 0 ) 中,把1改为0,得 2 a b
x y x y ( )( ) 0 a b a b x y x y 0或 0. a b a b
x a 或 x a, y R
y a 或 y a, x R
关于x轴、y轴、原点对称
A1(- a,0),A2(a,0)
关于x轴、y轴、原点对称
A1(0,-a),A2(0,a)
c e a
(e 1)
b y x a
c e a
(e 1)
a y x b
x a 或 x a, y R
y a 或 y a, x R
关于x轴、y轴、原点对称
A1(- a,0),A2(a,0)
关于x轴、y轴、原点对称
A1(0,-a),A2(0,a)
c e a
(e 1)
b y x a
c e a
(e 1)
a y x b
椭圆与双曲线的性质比较:
③c
2 2 2
B2
. .
B2 A2
2 2 2 2
图形
. .
F1(-c,0)
F1
y
y
F2
A1 A2
O
F2(0,c)
B1
B1 F2(c,0)
F2
x
A1 O F1
x F1(0,-c)
方程 范围 对称性 顶点 离心率 渐近线
x2 y2 1 ( a 0 b 0) a 2 b2
y x 1 (a 0 ,b 0 ) a b
双曲线的性质
两种标准方程的特点
y
M
M o
y
F2
F1
F2
x
F1
x
y x x y 1 a 0 , b 0 1 a 0 , b 0 2 2 a b a 2 b2 ① 方程用“—”号连接。 ② a , b 大小不定。
2 2
2
2
a b 。 如何确定焦点位置?? 2 ④如果 x 的系数是正的,则焦点在 x 轴上; 2 如果 y 的系数是正的,则焦点在 y 轴上。
椭 圆 方程 a b c关系
x y 2 a2 b
2 2
双曲线
x2 a
2
1 ( a> b >0)

y2 b
2
ห้องสมุดไป่ตู้ ( a、b >0)
c 2 a 2 b 2 (a> b>0)
y
M
c 2 a 2 b 2 (a> 0 b>0)
Y p F2 X
图象
F1
0
F2
X
F1
0
y
图象
F1
0
Y
M
p
F2 X
F2
X
F1
0
范围 对称性 顶点
|x|a,|y|≤b
对称轴:x轴,y轴 对称中心:原点
|x| ≥ a,yR
对称轴:x轴,y轴 对称中心:原点 (-a,0) (a,0) 实轴:2a 虚轴:2b e=
c (e1) a
(-a,0) (a,0) (0,b) (0,-b) 长轴:2a 短轴:2b
c e= a
相关文档
最新文档