电力系统电气主接线的形式和要求
电气主接线各种连接方式优缺点与实际应用

电气主接线各种连接方式优缺点与实际应用电气主接线主要是指在发电厂、变电所、电力系统中,为满足预定的功率传送和运行等要求而设计的、表明高压电气设备之间相互连接关系的传送电能的电路。电路中的高压电气设备包括发电机、变压器、母线、断路器、隔离刀闸、线路等。它们的连接方式对供电可靠性、运行灵活性及经济合理性等起着决定性作用。一般在研究主接线方案和运行方式时,为了清晰和方便,通常将三相电路图描绘成单线图。在绘制主接线全图时,将互感器、避雷器、电容器、中性点设备以及载波通信用的通道加工元件(也称高频阻波器)等也表示出来。1电气主接线接线要求对一个电厂而言,电气主接线在电厂设计时就根据机组容量、电厂规模及电厂在电力系统中的地位等,从供电的可靠性、运转的灵活性和方便性、经济性、发展和改建的可能性等方面,经综合比较后确认。它的接线方式能够充分反映正常和事故情况下的供供电情况。电气主接线又称电气一次接线图。电气主接线应满足以下几点要求:(1)运转的可靠性:主接线系统应当确保对用户供电的可靠性,特别就是确保对关键负荷的供电。(2)运行的灵活性:主接线系统应能灵活地适应各种工作情况,特别是当一部分设备检修或工作情况发生变化时,能够通过倒换开关的运行方式,做到调度灵活,不中断向用户的供电。在扩建时应能很方便的从初期建设到最终接线。(3)主接线系统还应当确保运转操作方式的便利以及在确保满足用户技术条件的建议下,努力做到经济合理,尽量减少占地面积,节省投资。2电气主接线常见8种接线方式优缺点分析2.1线路变压器国光电器线线路变压器组接线就是线路和变压器直接相连,是一种最简单的接线方式。线路变压器组接线的优点是断路器少,接线简单,造价省。相应2器将被迫停运,对变电所的供电负荷影响较大。其较适合用于正常二运一备的城区中心变电所,如上海中心城区就有采用。2.2桥形接线桥形接线采用4个回路3台断路器和6个隔离开关,是接线中断路器数量较少、也是投资较省的一种接线方式。根据桥形断路器的位置又可分为内桥和外桥两种接线。由于变压器的可靠性远大于线路,因此中应用较多的为内桥接线。若为了在检修断路器时不影响和变压器的正常运行,有时在桥形外附设一组隔离开关,这就成了长期开环运行的四边形接线。2.3多角形接线多角形接线就是将断路器和隔离开关相互连接,且每一台断路器两侧都有隔离开关,由隔离开关之间送出回路。多角形接线所用设备少,投资省,运行的灵活性和可靠性较好。正常情况下为双重相连接,任何一台断路器检修都不影响供电,由于没母线,在相连接的任一部分故障时,对电网的运转影响都较小。其最主要的缺点就是回去路数受到限制,因为当环形接线中存有一台断路器检修时就要开环运转,此时当其它电路出现故障就要导致两个电路停水,不断扩大了故障停水范围,且开环运转的时间越短,这一缺点就愈小。环中的断路器数量越多,开环检修的机会就越大,所通常只改采四角(边)形接线和五角形接线,同时为了可靠性,线路和变压器使用对角相连接原则。四边形的维护接线比较复杂,一、二次电路滤除操作方式较多。2.4单母线分段接线单母线分段接线就是将一段母线用断路器分成两段,它的优点就是接线直观,投资省,操作方式便利;缺点就是母线故障或检修时必须导致部分电路停水。2.5双母线接线双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔绝控制器相连接至两组(一次/二次)母线上,且两组母线都就是工作线,而每一回路都可以通过母线联络断路器同列运转。与单母线相比,它的优点是供电可靠性大,可以轮流检修母线而不使供电中断,当一组母线故障时,只要将故障母线上的回路倒换到另一组母线,就可迅速恢复供电,另外还具有调度、扩建、检修方便的优点;其缺点是每一回路都增加了一组隔离开关,使配电装置的构架及占地面积、投资费用都相应增加;同时由于配电装置的复杂,在改变运行方式倒闸操作时容易发生误操作,且不宜实现自动化;尤其当母线故障时,须短时切除较多的电源和线路,这对特别重要的大型发电厂和变电站是不允许的。2.6双母线拎旁路接线双母线带旁路接线就是在双母线接线的基础上,增设旁路母线。其特点是具有双母线接线的优点,当线路(主变压器)断路器检修时,仍有继续供电,但旁路的倒换操作比较复杂,增加了误操作的机会,也使保护及自动化系统复杂化,投资费用较大,一般为了节省断路器及设备间隔,当出线达到5个回路以上时,才增设专用的旁路断路器,出线少于5个回路时,则采用母联兼旁路或旁路兼母联的接线方式。2.7双母线分段拎旁路接线双母线分段带旁路接线就是在双母线带旁路接线的基础上,在母线上增设分段断路器,它具有双母线带旁路的优点,但投资费用较大,占用设备间隔较多,一般采用此种接线的原则为:(1)当设备相连接的出入线总数为12~16回去时,在一组母线上设置分段断路器;(2)当设备连接的进出线总数为17回及以上时,在两组母线上设置分段断器。2.83/2(4/3)断路器接线3/2(4/3)断路器接线就是在每3(4)个断路器中间送出2(3)回回路,一般只用于500kv(或重要220kv)电网的母线主接线。它的主要优点是:(1)运转调度有效率,正常时两条母线和全部断路器运转,成多路环状供电;(2)检修时操作方便,当一组母线停支时,回路不需要切换,任一台断路器检修,各回路仍按原接线方式霆,不需切换;(3)运转可信,每一回路由两台断路器供电,母线出现故障时,任何电路都不停电。2/3(4/3)断路器接线的缺点就是采用设备较多,特别就是断路器和电流互感器,投资费用小,维护接线繁杂。。
第二章 电气主接线

3/2接线
第二章 电气主接线
2-2 电气主接线的基本形式
4、4/3接线:
4/3接线
第二章 电气主接线
2-2 电气主接线的基本形式
5、变压器母线接线:变压器 是高可靠设备,可以直 接接入母线。即使变压 器故障,只断开一条母 线,另一条母线继续工 作。出现采用双母线双 断路器和3/2接线。该 接线可靠性很高,适合 远距离大容量、对系统 稳定和供电可靠性要求 较高的变电所。
第二章 电气主接线
2-3 发电厂和变电所主变压器的选择
4、调压方式: 空载调压:调整范围±5%。只能停电调压。大多数场合,不 适合重要场合。 有载调压:调整范围30%。可以带负载改变电压。用于潮流 交换、联络的变压器。 5、冷却方式:油冷、水冷、风冷。具体有: 油循环自然风冷 油循环强迫风冷 强迫油循环风冷 强迫油循环水冷 强迫油循环导向冷却 水内冷 干式变压器
第二章 电气主接线
2-3 发电厂和变电所主变压器的选择
3、降压变电所: 降压变电所直接面对用户,要留有充分的发展裕量。一般按 照5~10年发展规划考虑。 两台原则。重要的变电所,要考虑两台以上原则。 70%原则。其中一台退出运行时,其它变压器要满足一二类 负荷供电和送出70%以上的容量。 总结:发电厂和变电所变压器容量、台数的选择,要综合考虑多 种因素:电压等级、接线方式、传输容量、接入系统方式、 负荷性质等因素有关。一般的,对于较重要负荷,要考虑2台 以上变压器,容量按70%原则确定。
第二章 电气主接线
2-2 电气主接线的基本形式
对单母线接线的改进方式:单母 线分段和单母线加旁路。 单母线分段:用分段断路器QF1 (或采用隔离开关QS)进行分段。 可减少停电范围,可明显提高供 电可靠性和灵活性。重要用户可 采取双电源进线,满足I、II类供 电负荷。 虽然分段越多,停电影响范围越 小,但使用断路器也越多,增加 投资,运行复杂。一般以2~3段 为宜。
电气主接线的基本接线形式讲义(改)

QS43
QF4
② 可以组成各种运行方式: 单母线, 单母线分段,
双母线;
QS11 QS12 QS21 QS22 QS31 QS32 QS41 QS42 QS02 ③ 电源和负荷可以任意分
W2
配到某一组母线上;
QF0
W1
④ 母线故障影响范围缩小,且只是
QS51 QS52
QS61 QS62
QS01
L1 L2 L3 L4
由于断路器具有灭弧装置,而隔离 开关没有,所以在操作时,隔离开
QS12
关应遵循“先通后断”的原则:
QF1
接通电路时,应先合上隔离开关,而
QS11
后合上断路器;
W
开断电路时,应先断开断路器,而后
断开隔离开关。
此外,隔离开关可在等电位状态下
T1
T2
进行操作。
一、单母线接线
W3
QS13
QS14
QF1
W2 QS11 W1
QS12
QSc1
QSc2 QFc
T1
QSp1
QSp3
QFp
QSp3
QFp QSp2 QSp1 QSp2 QSp1
QSp3
QSp4 QSp2
优点:节省一台断路器。
缺点:可靠性有所降低:
T2
检修期间双母线变成单母线;
增加了隔离开关的倒闸操作。
二、双母线接线
§4.1 对电气主接线的基本要求
包括可靠性、灵活性和经济性三个方面。 1. 保证必要的供电可靠性 2. 具有一定的灵活性和方便性 3. 具有发展和扩建的可能性 4. 具有经济性
§4.2 主接线的基本接线形式
电气主接线的类型
有母线型:
电力系统主接线图讲解

桥式连接
外桥接线
线路——变压器单元接线
母
不分段双母线接线
母 单元连接 发电机——变压器单元接线
线
分段双母线接线
双母线 双母线带旁路母线接线
线
发电机——变压器扩大单元接线
多角形连接
双断路器双母线接线
金品一台质半断•高路器追接线求
我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆ 有汇流母线
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
电气主接电线气图主的接基线的本基形本式形式:有母线接线和无母线接线。母线
是汇流线,用以汇集电能和分配电能的,是发电厂和变电所的
重要装置。电气主接线的类型如下:
不分段单母线接线
内桥接线
单母线 分段单母线接线
有
无 分段单母线带旁路母线接线
在接通电路时,应先合断路器两侧的隔离开关,再合 断路器;切断电路时,应先断开断路器,在断开两侧的隔 离开关。
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
不分段单母线接线的优点是:接线简单、操作方便、 设备少、经济性好;并且,母线便于向两端延伸,扩建方 便。
缺点是(1)可靠性差。出现回路的断路器进行检修 时,该回路要停电,直至断路器修好,也可能是长期停电 ;母线或母线隔离开关检修或故障时,所有回路都要停止 工作,也就是造成全厂或全所长期停电。
如果正常运行时,QFd是接通的,则当任一端母线 出现故障时,母线继电器保护会断开连在母线上的断 路器和分段断路器QFd。这样另一段母线仍能继续工作 。如果一条母线上的电源断开了,那么该母线上的出 线可以通过分段断路器从另一条母线上得到供电。
浅述电气主接线基本要求和基本形式

浅述电气主接线基本要求和基本形式摘要:电气主接线主要是指在发电厂变电所的电力系统中,为满足预定的功率传送和运行等要求而设计的、表明高压电气设备之间相互连接关系的传送电能的电路、电路中的高压电气设备包括发电机、变压器、母线、断路器、隔离刀闸、线路等,它们的连接方式对供电可靠性、运行灵活性及经济合理性等起着决定性作用。
关键词:电气主接线一、对主接线的基本要求发电厂和变电站的电气主接线是由电气设备及其连接线所组成的,用以汇总和分配电能的电路。
它包括向系统和用户供电的主接线和供给发电厂、变电站本身用电的厂(所)用电接线。
主接线的连接方式,对供电可靠性、运行灵活性、检修方便性以及经济合理性等起着决定性的作用。
圊此,曲:拟定发电厂、变电站电气主接线时,有以下具体要求。
1.供电可靠性供电可靠性要根据筮电厂和变电站在系统中的地位与作用、发电厂和变电站的近期和远景发展规模、出线回路数多少和负荷重要性以及大系统的稳定性等因素全面考虑,特别是一些新建的大型区域主力电厂和一些超高压枢纽变电站。
其容量都很大,在系统中占有非常重萼的地位,无论什么原因造成发电厂停机或变电站失压,都将给国民经济造成难以估计的损失。
所以在主接线设计时,要根据系统及用户的要求,保证与之相适应的供电可靠性。
提高可靠性的措施很多,如将母线分段,设置备用母线、备用变压器或备用线路等。
适当地增加断路器数目也可提高可靠性。
提高可靠性的还有另一些措施,如采用自动重合闸装置,备用电源自动投入装置,变电站按周波下降自动减负荷装量和水轮机组按周波下降自动启动装置等。
2.良好的电能质量电压和频率是电能质量的基本指标,而电气接线图的制定,对两个指标有着极其重要的影响。
有螳接线可能按某种方式运行时,不能保证电能质量;又有一些接线可能在某一元件故障时,迫使一个或几个其他元件一同退出运行,或使回路阻抗增大,或使电厂一部分容量被封锁,从而使其电力系统频率或某一部分的电压下降,甚至发生不稳定的现象。
电气主接线的基本要求和设计原则

电气主接线的基本要求和设计原则电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。
标签:主接线;要求;原则1 对电气主接线的基本要求1.1 可靠性供电可靠性是电力生产和分配的首要要求,停电会对国民经济各部门带来巨大的损失,往往比少发电能的损失大几十倍,导致产品报废、设备损坏、人身伤亡等。
因此,主接线的接线形式必须保证供电可靠。
因事故被迫中断供电的机会越小,影响范围越小,停电时间越短,主接线的可靠程度就越高。
研究主接线可靠性应注意的问题如下:(1)考虑变电所在电力系统中的地位和作用。
变电所是电力系统的重要组成部分,其可靠性应与系统要求相适应。
(2)变电所接入电力系统的方式。
现代化的变电所都接入电力系统运行。
其接入方式的选择与容量大小、电压等级、负荷性质以及地理位置和输送电能距离等因素有关。
(3)变电所的运行方式及负荷性质。
电能生产的特点是发电、变电、输电、用电同一时刻完成。
而负荷类、类、的性质按其重要性又有类之分。
当变电所设备利用率较高,年利用小时数在以上,主要供应类、类负荷用电时,必须采用供电较为可靠的接線形式。
(4)设备的可靠程度直接影响着主接线的可靠性。
电气主接线是由电气设备相互连接而组成的,电气设备本身的质量及可靠程度直接影响着主接线的可靠性。
因此,主接线设计必须同时考虑一次设备和二次设备的故障率及其对供电的影响。
随着电力工业的不断发展,大容量机组及新型设备投运、自动装置和先进技术的使用,都有利于提高主接线的可靠性,但不等于设备及其自动化元件使用得越多、越新、接线越复杂就越可靠。
相反,不必要的接线设备,使接线复杂、运行不便,将会导致主接线可靠性降低。
因此,电气主接线的可靠性是一次设备和二次设备在运行中可靠性的综合。
1.2 灵活性电气主接线应能适应各种运行状态,并能灵活地进行运行方式的转换。
不仅正常运行时能安全可靠地供电,而且在系统故障或电气设备检修及故障时,也能适应调度的要求,并能灵活、简便、迅速地倒换运行方式,使停电时间最短,影响范围最小。
电气接线标准

6、一台半断路器接线 (1)接线特点分析
3个断路器构成1串,接在 两母线间,引出2条出线 可靠性:高 灵活性:高 操作:避免用隔离开关进行大量倒闸 操作调度和扩建 经济性:大 一次投资:每串增加联络断路器。 (2)进出线布置原则 电源和负荷配对成串 只有两串时,交叉布置 (3)适用范围:330~500KV配电装置
16
两线连接不能铰接,用胶带包裹,应该使用接线帽或者对接接头。 17
电气元件无特殊要求,均应垂直固定安装 18
接线应排列整齐,清晰,美观,使用扎带扎好,并且剪去多余的扎带.导线绝缘良好, 无损伤柜门上的线束通常是使用缠绕管保护。
19
控制线路的接线线端处理必须使用专用铜接头和与其匹配的标准压接工具。剥 除绝缘层时,不得损坏线芯,线芯和绝缘层端面应整齐并尽可能垂直于线芯轴心 线。线芯上不得有油污、残渣等。剥除导线绝缘应采用专用剥线工具,不得损伤 未剥除的绝缘,切口应平整。导线与电器元件间采用螺栓连接、插接、焊接或压 接等,均应牢固可靠 。
4
(3)接线特点分析 可靠性:差 断路器故障或检修 母线(或母线隔离开关)故障或检修 灵活性: 操作:方便 调度:不方便。电源只能并列运行 扩建:方便 经济性:好 、一次投资:设备少
(4)适用范围 出线回路少,没有重要负荷的发电厂和变电站中。
5
2、单母线分段接线 (1)接线特点分析(与单母线比较)
13
三、电气接线实际应用
1、电线的选用
❖ 选用导线首先要保证导线的截面能够承载正常的工作电流,同时要考虑到由 于周围环境温度的影响,要留足余量。
❖ AC 380V 黑色
❖ AC 220V 红色
❖ DC 24V
普蓝色
❖ DC 12V
电气主接线讲解

电气一次的图形符号
避雷器 (F)
电压互感器 (TV)
接地刀闸 隔离开关 (QE) (QS)
断路器 (QF)
有载调压 变压器 (T)
电流互感器 带电显示 (TA)
电气一次的图形符号
过电压保护器 (TBP)
跌落式 熔断器 (FF)
接触器 (KM)
熔断器 (FU)
手车式 断路器 (QF)
电压表 (PV)
4)可靠性是发展的:新设备、先进技术的使用
5)衡量主接线运行可靠性评判标准是:
①线路、母线【包括母线侧隔离刀闸】等故障或 检修时,停电范围的大小和停电时间的长短,能否保 证对一类、二类负荷的供电。
②断路器QF检修时,停运出线回数的多少和停电 时间的长短,能否保证对重要用户的供电。
③发电厂、变电所全停的可能性。
2、电气主接线的作用:
• 是电气运行人员进行各种操作和事故处理 的重要依据。
• 表明了发电机、变压器、断路器和线路等 电气设备的数量、规格、连接方式及可能 的运行方式。
• 直接关系到电力系统的安全、稳定、灵活 和经济运行。
3、电气主接线图: 就是用国家规定的电气设备图形与文字符
号,详细表示电气主接线组成的电路图。电 气主接线图一般用单线图表示(即用单相接线 表示三相系统),但对三相接线不完全相同的 局部图面 (如各相中电流互感器的配置)则应画 成三线图。
④大型机组突然停电,对电力系统稳定运行的影 响与后果。
2、具有运行、维护的灵活性和方便性 灵活性:运行方式的灵活性。
方便性:①操作的方便性,简便、安全,不易发生误 操作;②调度的方便性;③扩建的方面性。
3、经济性:与可靠性是一对矛盾 在满足技术要求【可靠、灵活】的前提下,采用 最经济的方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统电气主接线的形式和要求
1、主接线的基本要求
(1)可靠性电气接线必须保证用户供电的可靠性,应分别按各类负荷的重要性程度安排相应可靠程度的接线方式。
保证电气接线可靠性可以用多种措施来实现。
(2)灵活性电气系统接线应能适应各式各样可能运行方式的要求。
并可以保证能将符合质量要求的电能送给用户。
(3)安全性电力网接线必须保证在任何可能的运行方式下及检修方式下运行人员的安全性与设备的安全性。
(4)经济性其中包括最少的投资与最低的年运行费。
(5)应具有发展与扩建的方便性在设计接线方时要考虑到5~10年的发展远景,要求在设备容量、安装空间以及接线形式上,为5~10年的最终容量留有余地。
2、单母线接线
(1)单母不分段
每条引入线和引出线的电路中都装有断路器和隔离开关,
电源的引入与引出是通过一根母线连接的。
单母线不分段接线适用于用户对供电连续性要求不高的
二、三级负荷用户。
2)单母线分段接线
单母线分段接线是由电源的数量和负荷计算、电网的结构来决定的。
单母线分段接线可以分段运行,也可以并列运行。
用隔离开关、负荷开关分段的单母线接线,适用于由双回路供电的、允许短时停电的具有二级负荷的用户。
用断路器分段的单母线接线,可靠性提高。
如果有后备措施,一般可以对一级负荷供电。
3)带旁路母线的单母线接线
当引出线断路器检修时,用旁路母线断路器代替引出线断路器,给用户继续供电。
旁路断路器一般只能代替一台出线断路器工作,旁路母线一般不能同时连接两条及两条以上回路,否则当其中任一回路故障时,会使旁路断路器跳闸。
断开多条回路。
通常35kV的系统出线8回以上、110kV系统出线6回以上,220kV 系统出线4回以上,才考虑加设旁路母线。
(4)单母线分段带旁路
在正常运行时,系统以单母线分段方式运行,旁路母线不带电。
如果正常运行的
某回路断路器需退出运行进行检修,闭合旁路断路器,使旁路母线带电,合上欲检修回路旁路隔离开关,则该线路断路器可退出运行,进行检修。
这种旁路母线可接至任一段母线,在容量较少的中小型发电厂和35~110kV变电所中获得广泛应用。
3、双母线接线
(1)双母线接线
一组作为工作母线,另一组作为备用母线,在两组母线之间,通过母线联络断路器(简称为母联断路器)进行连接。
把双母线系统形成单母线分段运行方式,即正常运行时,使两条母线都投入工作,母联断路器及其两侧隔离开关闭合,全部进出线均匀分配两条母线。
这种运行方式可以有效缩小母线故障时的停电范围。
双母线接线主要优点有:
1)检修任一组母线时,不会中断供电。
2)检修任一回路的母线隔离开关时,只需断开该回路,其它回路倒换至另一组母线继续运行。
3)工作母线在运行中发生故障时,可将全部回路换接至备用母线,迅速恢复供电。
4)任一回路断路器检修时,可用母联断路器代替其工作。
5)方便试验。
需要对某回路做试验时,只需把此回路单独切换至备用母线即可。
(2)双母线带旁路接线
在双母线接线方式中,为使线路在出线断路器检修时不中断供电,可采用带旁路接线。
当110kV系统出线6回以上,220kV出线4回以上,可采用专用旁路断路器。
旁路母线可接至任一组母线。
4、一个半断路器接线
一个半断路器接线可归属于双母线类接线。
在两组母线之间,每三个断路器形成一串。
每串连接两条回路。
相当于每一个半断路器带一条回路,故称之为一个半断路器接线,也称为3/2接线。
在一个半接线的每串断路器中,位于中间的断路器称为联络断路器。
运行中两母线及全部断路器都投入工作,形成多重环状供电。
5、双母线单(双)分段带旁路接线
为进一步缩小母线故障的影响范围,对于可靠性要求较高的330~500kV超高压系统,当进出线达到6回以上时,可采用双母线单段或双分段带旁路接线。
这种接线是把工作母线分为两段,在两段工作母线之间,两工作母线与备用母线之间都设置有母联断路器。
6、变压器母线接线。
电源和负荷可以自由调配。
由于变压器是高可靠性设备,所以直接接在母线上,对母线的运行并不产生严重影响,一旦变压器故障时,接在母线上的各断路器开断,这时不会影响对用户的供电。
在出线数目很多时也可以用一台半断路器接线形式。
这种接线在远距离大容量输电系统中应用时,对系统稳定与可靠性均有良好的效果。
7、无母线接线
(1)桥式接线
对于具有双电源进线、两台变压器终端式的总降压变电所,可采用桥式接线。
它实质是连接两个35-110kV“线路─变压器组”的高压侧,其特点是有一条横联跨桥的“桥”。
根据跨接桥横连位置不同,分为内桥接线和外桥接线。
1)内桥接线的跨接桥靠近变压器侧,桥开关装在线路开关之内,变压器回路仅装隔离开关,不装断路器。
采用内桥接线可以提高改变输电线路运行方式的灵活性。
内桥接线适用于:对
一、二级负荷供电;供电线路较长;变电所没有穿越功率;负荷曲线较平稳,主变压器不经常退出工作;终端型工业企业总降压变电所。
2)外桥接线
跨接桥靠近线路侧,桥开关装在变压器开关之外,进线回路仅装隔离开关,不装断路器。
外桥接线适用于:对
一、二级负荷供电;供电线路较短;允许变电所有较稳定的穿越功率;负荷曲线变化大,主变压器需要经常操作;中间型工业企业总降压变电所,宜于构成环网。
3)角形接线
当母线闭合成环,断路器数等于进出线回路数,即构成了角形接线,一般应将同名回路相互交替布置。
一般不超过六角形。
这种接线不利于扩建,适用于最终建设规模比较明确的110kV及以上的发电厂升压站或变电所中。
(4)单元接线
将发电机、变压器及线路直接连接成一个单元称为单元接线。
单元接线主要有三种形式:即发电机线路单元及发电机线路单元等。
一般应用于下列情况:
1)同一地区有几个大型电厂能源丰富,可以合起来建一个公共的枢纽变电所时。
2)电厂地位狭窄平面布置有困难时。
3)电厂离枢纽变电所较近,直接引线比较方便时。