中考真题有理数

合集下载

中考数学复习《有理数》专项练习题-带有答案

中考数学复习《有理数》专项练习题-带有答案

中考数学复习《有理数》专项练习题-带有答案一、选择题1.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.−a可以表示正数D.0既是正数也是负数2.在数3 0 −π215110.2121121112 -8.24中,有理数有()A.1个B.2个C.3个D.4个3.2023年9月23日,第19届亚运会在杭州开幕.据报道,开幕式的跨媒体阅读播放量达到503000000次,将503000000用科学记数法表示为()A.503×106B.5.03×108C.5.03×109D.0.503×1094.下列各式中不成立的是().A.|−5|=5B.−|5|=−|−5|C.−|−5|=5D.−(−5)=55.如图,25的倒数在数轴上表示的点位于下列两个点之间()A.点E和点F B.点F和点G C.点G和点H D.点H和点I6.若|a﹣4|=|a|+|﹣4|,则a的值是()A.任意有理数B.任意一个非负数C.任意一个非正数D.任意一个负数7.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0B.ab<0C.b−a<0D.ab>08.计算(−2)2022+(−2)2023的结果是()A.−2B.2 C.−22022D.22023二、填空题9.绝对值小于5且大于2的整数是.10.−14−13(填<或>).11.在-3.6 -10% 227π 0 2这六个数中,非负有理数有个.12.若p,q互为倒数,m,n互为相反数,则pq-m-n-313= 13.若|m−2023|+(n+2024)2=0,则(m+n)2023=三、解答题14.计算题:(1)(−7)−(+5)+(−4)−(−10)(2)(12−59+712)×(−36)(3)16÷(−2)3−(−18)×(−4)(4)−13−(1−0.5)×13×[2−(−3)2]15.在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来﹣(﹣3) |﹣2| 0 (﹣1)3 -3.5 −85−2372.16.x和y互为相反数,m与n互为倒数,|a|=1,求a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013的值.17.某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:与标准质量的差/克−3−2−1.50 1 1.5 2.5袋数 1 4 3 4 3 2 3(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?18.四个有理数A、B、C、D,其中,与6相加得0的数是A,C是13的倒数.(1)如果A+C=2B,求B的值:(2)如果A×B= D,求D的值:(3)计算:(A-D)×C÷B.参考答案1.C2.D3.B4.C5.C6.C7.B8.C9.±3,±410.>11.312.−21313.-114.(1)解:(-7)-(+5)+(-4)-(-10)=(-7)+(-5)+(-4)+10=-6(2)解:(12−59+712)×(−36)= 12×(−36)−59×(−36)+712×(−36)=-18+20-21=-19(3)解:16÷(−2)3−(−18 )×(−4)=16÷(-8)- 12=(-2)- 12=-2 12(4)解:−13−(1−0.5)×13×[2−(−3)2]=-1- 12×13×(-7)=-1+ 76= 1615.解:∵−(−3)=3|−2|=2(−1)3=−1;∴在数轴上表示,如图所示:按从小到大的顺序用“<”把这些数连接起来为:−3.5<−85<(−1)3<−23<0<|−2|<−(−3)<72.16.解:∵x与y互为相反数,m与n互为倒数,|a|=1∴x+y=0,mn=1,a=±1∴a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013=a2﹣(0+1)a+02012+(﹣1)2013=a2﹣a﹣1.当a=1时,a2﹣a﹣1=12﹣1﹣1=﹣1.当a=﹣1时,a2﹣a﹣1=(﹣1)2﹣(﹣1)﹣1=1+1﹣1=1.∴a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013的值为1或﹣1.17.(1)解:(−3)×1+(−2)×4+(−1.5)×3+0×4+1×3+1.5×2+2.5×3 =−3−8−4.5+0+3+3+7.5=−2(克)即这批样品的总质量比标准总质量少,少2克;(2)解:200×20−2= 4000−2= 3998(克)3998÷20=199.9(克)即这批样品平均每袋的质量是199.9克.18.(1)解:∵与6相加得0的数是A, C是13的倒数.∴A=-6,C=3∵A+C=2B∴-6+3= 2B∴B=−32(2)解:∵A ×B=D ,且B=−32,A=-6 ∴D=-6×(−32)=9(3)解:∵A=-6,B=−32,C=3, D=9∴(A-D) ×C+B= (-6-9)×3÷(−32)=-15×3×(−23)=30。

中考数学 第1章 有理数复习题 试题

中考数学 第1章 有理数复习题 试题

卜人入州八九几市潮王学校第1篇代数篇第1章有理数1.1有理数的概念★1.1.1 a 、b 在数轴上的位置如下列图,那么在a +b ,b -2a ,a b -,b -a 中负数的个数是().(A )1(B )2(C )3(D )4★1.1.2设有理数a 、b 、c 在数轴上的对应点如下列图,那么代数式b a -+a c -+c b -=____. ★1.1.3a 、b 是有理数,有以下三式: ①a b +<a b -;②a 2+b 2+a +b +1<0;③a 2+b 2-2a -2b +1<0.其中一定不成立的是(填写上序号)★1.1.4在a 、b 、c 三个数中,有如下三个结论:甲:假设至少有两个数互为相反数,那么a +b +c =0;乙:假设至少有两个数互为相反数,那么(a +b )2+(b +c )2+(c -0)2=0; 丙:假设至少有两个数互为相反数,那么(a +b )(b +c )(c +0)=0.其中正确结论的个数是().(A )0(B )1(C )2(D )3★1.1.5数轴上有A 和B 两点,A 、B 之间的间隔为1,点A 与原点O 的间隔为3,那么所有满足条件的点B 与原点O 的间隔之和等于★★1.1.62()1a b -++(a +b -2)2=1,x +ay =1,bx -y =3,那么2(x )1y -++(x +y -2)2 =★★1.1.7求2x --10x +的最小值.★★1.1.8求1x -+2x -+3x -的最小值.★★1.1.9abcde 是一个五位数,其中a ,b ,c ,d ,e 为阿拉伯数字,且a <b <c <d ,那么a b -+b c -+c d -+d e -的最大值是★★1.1.10设x 、y 、a 都是实数,并且x =1-a ,y =(1-a )(a -1-a 2),试求x +y +a 3+1的值. ★★1.1.11数轴上有一动点a ,从原点出发沿着数轴挪动,每次只允许挪动1个单位.经过10次挪动,a 点挪动到间隔原点6个单位处,问:a 点的挪动方法有多少种?★★1.1.12圆周上有和为94的n 个整数(n >3),每个数都等于它后面(按顺时针方向)的两个数的差的绝对值.问:n 的所有可能值是多少?★★★1.1.13如下列图,数轴上标有2n +1个点,它们对应的整数是-n ,-(n -1),…,-2,-1,0,1,2,…,(n -1),n ,它们称为整点,为了确保从这些整点中可以取出2021个,使其中任意两个点之间的间隔不等于4,问:n 的最小值是多少1.2有理数的大小比较★1.2.1假设有理数a 、b 在数轴上的位置如下列图,那么以下各式中错误的选项是().(A )-ab <2(B )1b >-1a (C )a +b <-12(D )a b<一1 ★1.2.2P =999999,Q =990119,那么P 、Q 的大小关系是(). (A )P >Q (B )P =Q (C )P <Q (D )无法确定★1.2.3假设实数a 、b 、c 满足abc >0,a +b +c =0,a <-b <c ,那么a 、b 、c 的大小为().(A )a >0,b >0,c >0(B )a >0,b <0,c >0(C )a <0,b <0,c >0(D )a <0,b >0,c <0★1.2.4有四个数:a =3.852.57-,b =15341023-,c =-487325,d =-267178,它们的大小关系是(). A .d <c <b <aB .d <b <c <aC .b <c <a <dD .d <a <c <b★1.2.5假设a = 3.143.13-÷3.12,b =2.142.13-÷2.12,c =1.141.13÷(-1.12),那么a 、b 、c 的大小顺序是().(A)a>b>c(B)a>c>b(C)b>c>a(D)c>b>a★★1.2.6比较2234和5100的大小,并说明理由.1.3有理数的运算★1.3.1以下说法中,正确的个数是().(1)n个有理数相乘,当因数有奇数个时,积为负;(2)n个有理数相乘,当正因数有奇数个时,积为负;(3)n个有理数相乘,当负因数有奇数个时,积为负;(4)n个有理数相乘,当积为负数时,负因数有奇数个.(A)1(B)2(C)3(D)4★1.3.2计算:-4012×(114+109144)÷(-0.5)÷34×43-13×[(-2)2-22]=____.★1.3.3计算:(-313)2-413×(-6.5)+(-2)4÷(-6).★1.3.4计算:(-2)5÷(-6)-417×(-8.5)-(-313)2.★1.3.5设a=1÷2÷3÷4,b=1÷(2÷3÷4),c=1÷(2÷3)÷4,d=1÷2÷(3÷4),那么(b÷a)÷(c÷d)=____.★1.3.6某地区2021年2月21-28日的平均气温为-1℃,2月22-29日的平均气温为-0.5℃,2月21日的平均气温为-3C,那么2月29日的平均气温为.★★1.3.7计算:(1+111+113+117)×(111+113+117+119)-(1+111+113+117+119)×(111+113+117)=().(A)111(B)113(C)117(D)119★1.3.8计算:1+2+3+ (100)★1.3.9计算:-1+3-5+7-9+11-…-1993+1995-1997=().(A)999(B)-998(C)998(D)-999★1.3.10计算:-1-(-1)1-(-1)2-(-1)3-…-(-1)99-(-1)100.★★1.3.11计算:(12+32+52+…+992)-(22+42+62+…+1002) ★★1.3.12代数和-1×2021+2×2021-3×2021+4×2021+…-1003×1006+1004×1005的个位数字是 ★★1.3.13计算:11+(21-12)+(31-22+13)+(41-32+23-14)+…+(91-82+73-64+…+19) ★★1.3.14计算:(13-712+920-1130+1342-1556)×23×21. ★1.3.15计算:112⨯+123⨯+134⨯+…+120082009⨯. ★1.3.16求证:113⨯+124⨯+135⨯+146⨯+…+1(n 1)n +=34-232(n 1)(n 2)n +++ ★★1.3.17计算:1+112++1123+++…+11232010++++ ★★1.3.18计算:1-11(12)⨯+-1(12)(123)+⨯++-1(123)(1234)++⨯+++ ★★1.3.19计算:2-22-23-24-…-218-219+220=____. ★★1.3.20S =12-24+38-416+…+(-1)k -12k k +…+200520052-200620062,那么小于S 的最大整数是____. ★★1.3.21计算:1+3+32+33+…+32021.★★★1.3.22计算:12+22+…+n 2. ★★1.3.23比较12+24+38+416+…+2n n 与2的大小. ★★1.3.24计算:(1-2111)×(1-2112)×(1-2113)×…×(1-211994)=. ★★1.3.25m ,n 都是正整数,并且A =(1-12)×(1+12)×(1-13)×(1+13)×…×(1-1m )×(1+1m ), B =(1-12)×(1+12)×(1-13)×(1+13)×…×(1-1n )×(1+1n) (1)证明:A =12m m +,B =12n n+ (2)假设A -B =126,求m 和n 的值. ★★1.3.26算式(1+113⨯)×(1+124⨯)×(1+135⨯)×(1+146⨯)×…×(1+198100⨯)×(1+199101⨯)的整数局部为()(A )1(B )2(C )3(D )4★1.3.27按一定规律排列的一串数11,-13,23,-33,15,-25,35,-45,55,123,,,777--…中,第98个数是____________________. 1.3.28运算*按下表定义,例如3*2=1,那么(2*4)*(1*3)=()A .1B .2C .3D .41.3.29现定义两种运算“⊕〞,“⊗〞,定义,对于任意两个整数a 、b ,1a b a b ⊕=+-,1a b ab ⊗=-, 求4[(68)(35)]⊗⊕⊕⊗.。

2024年中考数学真题汇编专题二 有理数及其运算+答案详解

2024年中考数学真题汇编专题二 有理数及其运算+答案详解

2024年中考数学真题汇编专题二 有理数及其运算+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,数轴上点P 表示的数是( )A .1−B .0C .1D .22.(2024·四川遂宁·中考真题)中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( )A .60.6210⨯B .66.210⨯C .56.210´D .56210⨯3.(2024·湖南·中考真题)据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家,将4015000用科学记数法表示应为( )A .70.401510⨯B .64.01510⨯C .540.1510⨯D .34.01510⨯4.(2024·河南·中考真题)据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A .8578410⨯B .105.78410⨯C .115.78410⨯D .120.578410⨯ 5.(2024·河南·中考真题)计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭个的结果是( ) A .5a B .6a C .3a a + D .3a a6.(2024·天津·中考真题)据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯7.(2024·四川乐山·中考真题)2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( )A .8410⨯B .9410⨯C .10410⨯D .11410⨯8.(2024·广西·中考真题)广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A .90.84910⨯B .88.4910⨯C .784.910⨯D .684910⨯ 9.(2024·黑龙江绥化·中考真题)实数12025−的相反数是( ) A .2025 B .2025− C .12025− D .1202510.(2024·甘肃临夏·中考真题)据央视财经《经济信息联播》消息:甘肃天水凭借一碗香喷喷的麻辣烫成为最“热辣滚烫”的顶流.2024年3月份,天水市累计接待游客464万人次,旅游综合收入27亿元.将数据“27亿”用科学记数法表示为( )A .82.710⨯B .100.2710⨯C .92.710⨯D .82710⨯11.(2024·吉林·中考真题)长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯12.(2024·四川达州·中考真题)有理数2024的相反数是( )A .2024B .2024−C .12024D .12024− 13.(2024·重庆·中考真题)下列各数中最小的数是( )A .1−B .0C .1D .214.(2024·广东·中考真题)2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A .43.8410⨯B .53.8410⨯C .63.8410⨯D .538.410⨯15.(2024·重庆·中考真题)下列四个数中,最小的数是( )A .2−B .0C .3D .12− 16.(2024·四川德阳·中考真题)下列四个数中,比2−小的数是( )A .0B .1−C .12−D .3−17.(2024·四川广安·中考真题)下列各数最大的是( )A .2−B .12−C .0D .118.(2024·云南·中考真题)中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作( )A .100米B .100−米C .200米D .200−米19.(2024·四川广元·中考真题)将1−在数轴上对应的点向右平移2个单位,则此时该点对应的数是( )A .1−B .1C .3−D .320.(2024·四川凉山·中考真题)下列各数中:553025.827−−−+,,,,,,负数有( ) A .1个 B .2个 C .3个 D .4个21.(2024·江苏苏州·中考真题)用数轴上的点表示下列各数,其中与原点距离最近的是( )A .3−B .1C .2D .322.(2024·湖北·中考真题)在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A .10+元B .10−元C .20+元D .20−元23.(2024·湖南·中考真题)在日常生活中,若收入300元记作300+元,则支出180元应记作( )A .180+元B .300+元C .180−元D .480−元24.(2024·河北·中考真题)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D . 25.(2024·广东广州·中考真题)四个数10−,1−,0,10中,最小的数是( )A .10−B .1−C .0D .1026.(2024·贵州·中考真题)下列有理数中最小的数是( )A .2−B .0C .2D .427.(2024·浙江·中考真题)以下四个城市中某天中午12时气温最低的城市是( )A .北京B .济南C .太原D .郑州 28.(2024·四川内江·中考真题)2023年我国汽车出口491万辆,首次超越日本,成为全球第一大汽车出口国,其中491万用科学记数法表示为( )A .44.9110⨯B .54.9110⨯C .64.9110⨯D .74.9110⨯29.(2024·广西·中考真题)下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A .B .C .D .30.(2024·福建·中考真题)据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110⨯B .2696.110⨯C .46.96110⨯D .50.696110⨯31.(2024·北京·中考真题)为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯32.(2024·湖北武汉·中考真题)国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯33.(2024·浙江·中考真题)2024年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( )A .920.13710⨯B .80.2013710⨯C .92.013710⨯D .82.013710⨯34.(2024·吉林·中考真题)若()3−⨯的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1−35.(2024·内蒙古赤峰·中考真题)央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为( )A .95.210⨯B .110.5210⨯C .95210⨯D .105.210⨯36.(2024·内蒙古包头·中考真题)若,m n 互为倒数,且满足3m mn +=,则n 的值为( )A .14B .12C .2D .437.(2024·四川内江·中考真题)下列四个数中,最大数是( )A .2−B .0C .1−D .338.(2024·甘肃·中考真题)下列各数中,比2−小的数是( )A .1−B .4−C .4D .139.(2024·山东威海·中考真题)一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A .7+B .5−C .3−D .1040.(2024·内蒙古赤峰·中考真题)如图,数轴上点A ,M ,B 分别表示数a a b b +,,,若AM BM >,则下列运算结果一定是正数的是( )A .a b +B .a b −C .abD .a b −二、填空题41.(2024·黑龙江大兴安岭地·中考真题)国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为 .42.(2024·江苏连云港·中考真题)如果公元前121年记作121−年,那么公元后2024年应记作 年. 43.(2024·湖北·中考真题)写一个比1−大的数 .44.(2024·湖南·中考真题)计算:()2024−−= .45.(2024·湖北武汉·中考真题)中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2记作 ℃.46.(2024·陕西·中考真题)小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是 .(写出一个符合题意的数即可)47.(2024·黑龙江齐齐哈尔·中考真题)共青团中央发布数据显示:截至2023年12月底,全国共有共青团员7416.7万名.将7416.7万用科学记数法表示为 .48.(2024·上海·中考真题)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的 倍.(用科学记数法表示) 49.(2024·四川广元·中考真题)2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是1810−秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为秒.50.(2024·北京·中考真题)联欢会有A,B,C,D四个节目需要彩排.所有演员到场后节目彩排开始。

有理数基础题(中考题)训练

有理数基础题(中考题)训练

有理数1.如果规定收入为正,支出为负,收入500元记作+500元,那么支出237元应记作 ( ) A.-500元B.-237元C.237元D.500元2.如果零上5℃记作+5℃,那么零下7℃可记作 ( )A.-7℃B.+7℃C.+12℃D.-12℃3.在数0,2,-3,-1中,最小的数是()A.0 B.2 C.-3 D.-14.数轴上的点A到-2的距离是6,则点A表示的数为()A.4或-8 B.4 C.-8 D.6或-65.的倒数是() A.B.C. D.6.在2.5,-2.5,0,3这四个数中,最小的数是()A.2.5 B.-2.5 C.0 D.37.下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1 B.2 C.3 D.48.下列说法中错误的是()A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.如果仓库运进货物5 t记作+5 t,那么运出货物5 t记作-5 tD.一个有理数不是正数,那它一定是负数9.在,,,,中,负数的个数是()A.B.C.D.10.如果+20%表示增加20%,那么-6%表示()A.增加14%B.增加6%C.减少6%D.减少26%11.如果零上5 ℃记作+5 ℃,那么零下7 ℃可记作()A.-7 ℃B.+7 ℃C.+12 ℃D.-12 ℃12.在这四个数中,最小的数是()A.B.0 C.4 D.13.﹣2的相反数是 ( ) A. B. C. D.14.在数0,2,-3,-1.2中,属于负整数的是【】A.0 B.2 C.-3 D.-1.215.在3,-1,0,-2这四个数中,最大的数是【】A.0 B.6 C.-2 D.316.-2的绝对值是()A.-2 B.-C.D.2 .比大而比小的所有整数的和为有理数加减1.计算1-2=A.0 B.1 C.-1 D.-22.我市某天最高气温是80C,最低气温是-10C,那么当天的最大温差是0C.3.计算(2-3)+(-1)的结果是 ( )A.-2 B.0 C.1 D.24.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是()A.-3℃B.8℃C.-8℃D.11℃5.计算的结果等于A.12 B.-12 C.6 D.-66.的值是A.B.C.D.7.计算(+2)+(﹣3)所得的结果是A.B.C.D.8.计算:5+(﹣2)=A.3 B.﹣3 C.7 D.﹣79.计算﹣10﹣8所得的结果是A.﹣2 B.2 C.18 D.﹣1810.计算:0﹣7= .11.的绝对值等于A.B.C.D.12.下列计算正确的是()A.-2-(-2)=-4 B.(-2)+(-2)=-4C.0×(-2013)=-2013 D.(-6)÷(-2)=-313.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在________℃范围内保存才合适.14.-3-(-5)=________。

浙江中考数学备考专题有理数、无理数与实数含答案(精选5份)

浙江中考数学备考专题有理数、无理数与实数含答案(精选5份)

2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共36分)1.x是最大的负整数,y是最小的正整数,z是绝对值最小的数,则x−y+z的值是().A.−2B.−1C.0D.22.大于-2.5且小于3.5的整数之和为().A.-3B.2C.0D.33.下列说法中,正确的是().A.两个负数的差一定是负数B.只有0的绝对值等于它本身C.有理数可以分为正有理数和负有理数D.只有0的相反数等于它本身4.下列4个式子,计算结果最小的是()A.−5+(−12)B.−5−(−12)C.−5×(−12)D.−5÷(−1 2)5.用四舍五入法,把4.76精确到十分位,取得的近似数是()A.5B.4.7C.4.8D.4.77 6.下列说法中正确的是()A.正数都带“+”号B.不带“+”号的数都是负数C.负数一定带“−”号D.带“−”号的数都是负数7.下列说法中正确的个数有()①最大的负整数是−1;②相反数是本身的数是正数;③有理数分为正有理数和负有理数;④数轴上表示−a的点一定在原点的左边;⑤几个有理数相乘,负因数的个数是奇数个时,积为负数.A.1个B.2个C.3个D.4个8.如图,a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,−a,b,−b按照从大到小的顺序排列,正确的是()A.b>−a>a>−b B.b>a>−a>−bC.−a>b>a>−b D.−a>−b>a>b9.已知a,b满足|a+3|+(b﹣2)2=0,则a+b的值为()A.1B.5C.﹣1D.﹣5 10.7个有理数相乘的积是负数,那么其中负因数的个数最多有()A.2种可能B.3种可能C.4种可能D.5种可能11.下列对于式子(−3)2的说法,错误的是()A.指数是2B.底数是−3C.幂为−3D.表示2个−3相乘12.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是()A.2,3B.3,3C.2,4D.3,4二、填空题(每题3分,共18分)13.绝对值大于2且不大于4的非负整数有.14.﹣123的倒数等于.15.某平台进行“天宫课堂”中国空间站全程直播.某一时刻观看人数达到3790000人.用科学记数法表示3790000=.16.若|a-1|与|b+2|互为相反数,则a+b-12的值为.17.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a-b+c.18.定义运算a∗b={a b(a≤b,a≠0)b a(a>b,a≠0),若(m−1)∗(m−3)=1,则m的值为.三、计算题(共8分)19.计算(1)(−134)−(+613)−2.25+103;(2)214×(−67)÷(12−2);(3)(−34+56−712)÷(−124);(4)−14−16×[2−(−3)2].四、解答题(共5题,共35分)20.把下列各数的序号填在相应的横线上:①﹣3.14,②2π,③﹣13,④0.618,⑤﹣√16,⑥0,⑦﹣1,⑧+3,⑨227,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1).整数集合:{ ……};分数集合:{ ……};无理数集合:{ ……}.21.在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,−(−1),−1.5,−|−2|,−312.22.如果a、b互为相反数,c、d互为倒数,y+1没有倒数,x−1的绝对值等于2.那么代数式−2|a+b|+cdx+(y−1)(a+b−1)的值是多少?23.暑假《孤注一掷》成为了群众观影的首选,某市7月31日该电影首映日的售票量为1.1万张,8月1日到8月7日售票量的变化如下表(正号表示售票量比前一天多,负号表示售票量比前一天少):请根据以上信息,回答下列问题:(1)8月2日的售票量为多少万张?(2)8月7日与7月31日相比较,哪一天的售票量多?多多少万张?(3)若平均每张票价为50元,则8月1日到8月7日该市销售《孤注一掷》电影票共收入多少万元?24.2022年天猫平台“双十一”促销活动如火如荼地进行.小明发现天猫平台甲、乙、丙三家店铺在销售同一款标价均为30元的杯子,但三家的促销方式不同,具体优惠信息如下:(1)若小明想买25个该款杯子,请你帮小明分别计算一下甲、乙、丙三家店铺优惠后的实际价格,再挑选哪家店铺购买更优惠.(2)若小明想从丙店铺购买n个(n>100)该款杯子,请用含n的代数式表示优惠后购买的总价.(3)若小明想花费3000元在丙店铺来购买该款杯子,且恰好用完,则他能买多少个该款杯子?(注:假设小明均一次性购买)五、实践探究题(共3题,共23分)25.观察下列等式:第1个等式:a1=11×3=12×(1−13);第2个等式:a2=13×5=12×(13−15);第3个等式:a3=15×7=12×(15−17);…青解答下列问题:(1)按以上规律列出第5个等式:a5=.(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+⋯+a100的值.26.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为−1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为−2,点N所表示的数为4.(1)数所表示的点是【M,N】的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为−20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?27.小江同学注意到妈妈手机中的电费短信(如下左图),对其中的数据产生了浓厚的兴趣,谷85度是什么意思电费是如何计算的?第一档与第二档又有什么关系?表1:宁波市居民生活用电标准(部分修改)【解读信息】通过互联网查询后获得上表(如表1).小江家采用峰谷电价计费,谷时用电量为85度,那么峰时用电量就是227−85=142度,由于小江家年用电量处在第一档,故9月份电费为:0.568×142+0.288×85=105.136≈105.14.第一档年用电量的上限为2760度,所以截至9月底小江家已经用电2760-581=2179度.不难发现,第二档所有电价均比第一档提高0.05元/度,第三档所有电价均比第一档提高0.3元/度.【理解信息】(1)若采用普通电价计费,小江家九月份的电费为元.(精确到0.01)(2)若采用峰谷电价计费,假设某月谷时用电量与月用电量的比值为m,那么处在第一档的1度电的电费可以表示成元.(用含有m的代数式表示)(3)【重构信息】12月份,小江家谷时用电量与月用电量的比值为0.2.请根据上述对话完成下列问题:①通过计算判断:截至12月底小江家的年用电量是否仍处于第一档?②12月份谁家的用电量多,多了多少?答案解析部分1.【答案】A 2.【答案】D 3.【答案】D 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】A 8.【答案】A 9.【答案】C 10.【答案】C 11.【答案】C 12.【答案】C 13.【答案】-3,-4 14.【答案】﹣3515.【答案】3.79×106 16.【答案】−3217.【答案】2 18.【答案】1或419.【答案】(1)解:原式=(−134−214)+(−613+313)=−4−3=−7;(2)解:原式=94×(−67)÷(−32)=94×(−67)×(−23)=94×67×23=97; (3)解:原式=(−34+56−712)×(−24)=−34×(−24)+56×(−24)−712×(−24) =18−20+14=12;(4)解:原式=−1−16×[2−9]=−1−16×(−7)=−1+76=16.20.【答案】解:整数有:⑤﹣√16=﹣4,⑥0,⑦﹣1,⑧+3;分数有:①﹣3.14,③﹣13,④0.618,⑨227;无理数有:②2π,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1)21.【答案】解:如图所示,,由图可知,−312⟨−|−2|<−1.5<−(−1)<3.22.【答案】解:∵a、b互为相反数,c、d互为倒数,y+1没有倒数,x−1的绝对值等于2,∴a+b=0,cd=1,y+1=0,x−1=2或x−1=−2,解得y=−1,x=3或x=−1,当x=3时,原式=0+13+(−2)×(−1)=0+13+2=213;当x=−1时,原式=0+1−1+(−2)×(−1)=−1+2=1;综上,代数式−2|a+b|+cdx+(y−1)(a+b−1)的值是213或1.23.【答案】(1)解:1.1+0.5+0.1=1.7(万张)(2)解:8月1日:1.1+0.5=1.6(万张);8月2日:1.6+0.1=1.7(万张);8月3日:1.7-0.3=1.4(万张);8月4日:1.4-0.2=1.2(万张);8月5日:1.2+0.4=1.6(万张);8月6日:1.6-0.2=1.4(万张);8月7日:1.4+0.1=1.5(万张).1.5-1.1=0.4(万张)答:8月7日的售票量多,多0.4万张.(3)解:1.6+1.7+1.4+1.2+1.6+1.4+1.5=10.4(万张)50x10.4=520(万元)答:共收入520万元24.【答案】(1)解:甲:30×25×90%−30×3=585(元)乙:30×25−60−50×2=590(元)丙:30×10+30×90%×15=705(元)因为585<590<705,所以挑选甲店铺更优惠.(2)解:30×10+30×90%×(50−10)+30×80%×(100−50)+30×70%×(n−100)=21n+480(元)(3)解:假设花费3000元以标价30元来购买该款杯子,则能买3000÷30=100个,那么优惠后至少能买100个.由(2)可知,令21n+480=3000,n=120答:他能买120个该款杯子.25.【答案】(1)19×11=12(19−111)(2)1(2n−1)(2n+1);12(12n−1−12n+1)(3)解:a1+a2+a3+⋯+a100=12(1−13)+12(13−15)+12(15−17)+...+12(1199−1201) =12×(1−13+13−15+15−17+...+1199−1201)=12×(1−1201) =12×200201=100201.26.【答案】(1)2或10(2)解:设点P表示的数为y,分四种情况:①P为【A,B】的好点.由题意,得y−(−20)=2(40−y),解得y=20,t=(40−20)÷2=10(秒);②A为【B,P】的好点.由题意,得40−(−20)=2[y−(−20)],解得y=10,t=(40−10)÷2=15(秒);③P为【B,A】的好点.由题意,得40−y=2[y−(−20)],解得y=0,t=(40−0)÷2=20(秒);④A为【P,B】的好点由题意得y−(−20)=2[40−(−20)]解得y=100(舍).⑤B为【A,P】的好点30=2t,t=15.综上可知,当t为10秒、15秒或20秒时,P、A和B中恰有一个点为其余两点的好点.故答案为:2或10.27.【答案】(1)122.13(2)(0.568-0.28m)(3)解:①假设小江家12月的用电量未超过第一档,那么该月最多支付电费:281×(0.568−0.28×0.2)=143.872(元),∵143.872<154.55,∴小江家12月份的用电量必定超过第一档;②设小江家12月份用电量为x度,143.872+0.8×0.618(x−281)+0.2×0.338(x−281)=154.55,143.872+0.4944x−138.9264+0.0676x−18.9956=154.55解得x=300,300−275=25(度),即小江家用电量多,比小北家多用25度.2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共30分)1.-3,4,0,√2这四个数中,无理数是()A.-3B.4C.0D.√2 2.下列运算结果正确的是()A.√10÷√5=√5B.√9=±3C.(−√2)2=2D.√2+√3=√53.下列说法正确的是()A.4的平方根是2B.8的立方根是±2C.如果一个数的立方根是这个数本身,那么这个数是-1,0或1D.如果一个数的平方根是这个数本身,那么这个数是1或04.下列说法中:①立方根等于本身的是﹣1,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤π−3是负分数;其中正确的个数是()A.0个B.1个C.2个D.3个5.如图,实数-√2+1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点6.若|x−y|−|x−z|=|y−z|,则实数x、y、z之间的大小关系可能为()A.x>y>z B.z>y>x C.y>x>z D.x>z> y7.数轴上依次排列的四个点,它们表示的数分别为a,b,c,d,若|a-c|=6,|a-d|=10,|b-d|=5,则|b-c|的值为().A.6B.5C.4D.1 8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.如图,已知实数a在数轴上的对应点位置如图所示,则化简√(a−2)2的结果是()A.a﹣2B.﹣a﹣2C.1D.2﹣a 10.按顺序排列的若干个数:x1,x2,x3,……,x n(n是正整数),从第二个数x2开始,每一个数都等于1与它前面的那个数的差的倒数,即:x2=11−x1,x3=11−x2……,下列选项正确是()①若x2=5,则x7=45;②若x1=2,则x1+x2+x3+⋯+x2023=1013;③若(x1+1)(x2+1)x6=−1,则x1=√2A.①和③B.②和③C.①和②D.①②③都正确二、填空题(每题3分,共18分)11.比较大小:7-4√30.(填“<”“>”或“=”)12.已知一个立方体的体积是27cm3,那么这个立方体的棱长是cm.13.若y=√x−2+√2−x−3,则x+y的立方根是.14.若a与b互为相反数,m与n互为倒数,k的算术平方根为√2,则2022a+2021b+ mnb+k2的值为.15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1.现对72进行如下操作:72第一次→[√72]=8第二次→[√8]=2第三次→[√2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是 .16.电流通过导线时会产生热量,电流I (单位:A )、导线电阻R (单位:Ω)、通电时间t (单位:s )与产生的热量Q (单位:J )满足关系式Q =I 2Rt .已知导线的电阻为10Ω,通电2s 时间导线产生90J 的热量,则电流I 为 A .三、计算题(共6分)17.计算:(1)(√18−√12)×√3;(2)(√3+1)2−(1−√5)(√5+1).四、作图题(共9分)18.如图,正方形网格中的每个小正方形的边长都是1,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中画一个直角三角形,使它的三边长都是有理数; (2)在图2中画一个直角三角形,使它的三边长都是无理数;(3)在图3中画一个等腰三角形,使它的三边长都是无理数(和图2画的三角形不全等).五、解答题(共4题,共32分)19.把下列各数分别填在相应的括号内.﹣12,0,0.16,312,√3,﹣23√5,π3,√16,﹣√22,﹣3.14 有理数:{ }; 无理数:{ }; 负实数:{ }; 正分数:{ }.20.(1)先化简,再求值.已知a =1,b =−2,求多项式3ab −15b 2+5a 2−6ba +15a 2−2b 2的值. (2)在数轴上表示下列各数,并把这些数按从小到大顺序进行排列,用“<”连接. −1.5,−22,−(−4),0,−|−3|,√921.如图,数轴上点A ,B 分别表示数a ,b ,且a ,b 互为相反数,2a +9是27的立方根.(1)求a ,b 的值及线段AB 的长.(2)点P 在射线BA 上,它在数轴上对应的数为x. ①请用含x 的代数式表示线段BP 的长. ②当x 取何值时,BP =2AP ?22.解答下列各题:(1)计算:√(−10)2−(√15)2+√64.(2)已知点A(2,1),B(−4,a)在反比例函数y =kx(k ≠0)的图象上,试求a 的值. 六、实践探究题(共3题,共25分)23.数学活动课上,张老师说:“√2是无理数,无理数就是无限不循环小数,同学们,你能把√2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(√2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”请你解答:(1)√5的整数部分是 ,小数部分是 .(2)已知8+√3=x +y ,其中x 是一个整数,且0<y <1,请求出3x +(y −√3)2020的值.24.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4.1]=4.(1)则[11.8]= ;[−11.9]= ;(2)现对119进行如下操作:119→第一次[√119]=10→第二次[√10]=3→第三次[√3]=1,这样对119只需进行3次操作后变为1.①对15进行1次操作后变为▲ ,对200进行3次操作后变为▲ ;②对实数m恰进行2次操作后变成1,则m最小可以取到▲ ;③若正整数m进,3次操作后变为1,求m的最大值.25.阅读材料:若点M,N在数轴上分别表示实数m,n,那么M,N之间的距离可表示为|m−n|.例如|3−1|,即表示3,1在数轴上对应的两点之间的距离;同样:|5+3|= |5−(−3)|表示5,−3在数轴上对应的两点之间的距离.根据以上信息,完成下列题目:(1)已知A,B,C为数轴上三点,点A对应的数为√2,点C对应的数为1.①若点B对应的数为−2,则B,C两点之间的距离为;②若点A到点B的距离与点A到点C的距离相等,则点B对应的数是.(2)对于|x−3|+|x+4|这个代数式.①它的最小值为;②若|x−3|+|x+4|+|y−1|+|y+2|=10,则x+y的最大值为.答案解析部分1.【答案】D2.【答案】C3.【答案】C4.【答案】C5.【答案】B6.【答案】D7.【答案】D8.【答案】B9.【答案】D10.【答案】C11.【答案】>12.【答案】313.【答案】-114.【答案】215.【答案】25516.【答案】3√2217.【答案】(1)解:原式=√54−√36=3√6−6(2)3+2√3+1−1+5=8+2√3 18.【答案】(1)解:如图1所示,Rt△ABC即为所求;(2)解:如图所示,Rt△DEF即为所求;(3)解:如图所示,OPQ 即为所求.19.【答案】解:有理数:﹣12,0,0.16,312,√16,﹣3.14;无理数:√3,﹣23√5,π3,﹣√22;负实数:﹣12,﹣23√5,﹣√22,-3.14;正分数:0.16,312.20.【答案】(1)解:3ab −15b 2+5a 2−6ba +15a 2−2b 2=−3ab −17b 2+20a 2,当a =1,b =−2时,原式=−3×1×(−2)−17×(−2)2+20×12=6−68+20=−42.(2)解:如图所示:,−22<−|−3|<−1.5<0<√9<−(−4)21.【答案】(1)解:∵2a +9是27的立方根,∴2a +9=√273=3, 则a =−3.∵a ,b 互为相反数,∴b=−a=3.∴AB=3−(−3)=6(2)解:①∵点P在射线BA上,它在数轴上对应的数为x.∴线段BP=3−x②当点P在点A右侧时,∵BP=2AP,∴3−x=2(x+3),解得x=−1.当点P在点A左侧时,∵BP=2AP,∴3−x=2(−3−x),解得x=−9.综上,当x=−1或−9时,BP=2AP.22.【答案】(1)解:原式=10−15+8=3(2)解:∵点A(2,1),B(−4,a)在反比例函数y=kx(k≠0)的图象上,∴k=1×2=−4⋅a,∴a=−1 2.23.【答案】(1)2;√5-2(2)解:∵1<√3<2,∴9<8+√3<10,∵8+√3=x+y,其中x是一个整数,且0<y<1,∴x=9,y=8+√3−9=√3−1∴3x+(y−√3)2020=3×9+(√3−1−√3)2020=27+1=28.24.【答案】(1)11;-12(2)解:①3;1②4;③∵[x]=1,∴1≤x<2,∴1≤√m<2,∴1≤m<4,∴1≤√m<16,∴1≤m<256.∵3次操作,故m≥16.∴16≤m<256.∵m是整数.∴m的最大值为255.25.【答案】(1)3;2√2−1(2)7;42024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题3分,共30分)1.-3,4,0,√2这四个数中,无理数是()A.-3B.4C.0D.√2 2.下列运算结果正确的是()A.√10÷√5=√5B.√9=±3C.(−√2)2=2D.√2+√3=√53.下列说法正确的是()A.4的平方根是2B.8的立方根是±2C.如果一个数的立方根是这个数本身,那么这个数是-1,0或1D.如果一个数的平方根是这个数本身,那么这个数是1或04.下列说法中:①立方根等于本身的是﹣1,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤π−3是负分数;其中正确的个数是()A.0个B.1个C.2个D.3个5.如图,实数-√2+1在数轴上的对应点可能是()A .A 点B .B 点C .C 点D .D 点6.若|x −y|−|x −z|=|y −z|,则实数x 、y 、z 之间的大小关系可能为( )A .x >y >zB .z >y >xC .y >x >zD .x >z >y7.数轴上依次排列的四个点,它们表示的数分别为a ,b ,c ,d ,若|a -c|=6,|a -d|=10,|b -d|=5,则|b -c|的值为( ). A .6B .5C .4D .18.一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间9.如图,已知实数a 在数轴上的对应点位置如图所示,则化简√(a −2)2的结果是( )A .a ﹣2B .﹣a ﹣2C .1D .2﹣a10.按顺序排列的若干个数:x 1,x 2,x 3,……,x n (n 是正整数),从第二个数x 2开始,每一个数都等于1与它前面的那个数的差的倒数,即:x 2=11−x 1,x 3=11−x 2……,下列选项正确是( )①若x 2=5,则x 7=45;②若x 1=2,则x 1+x 2+x 3+⋯+x 2023=1013;③若(x 1+1)(x 2+1)x 6=−1,则x 1=√2 A .①和③ B .②和③ C .①和②D .①②③都正确二、填空题(每题3分,共18分)11.比较大小:7-4√3 0. (填“<”“>”或“=”)12.已知一个立方体的体积是27cm 3,那么这个立方体的棱长是 cm . 13.若y =√x −2+√2−x −3,则x +y 的立方根是 .14.若a 与b 互为相反数,m 与n 互为倒数,k 的算术平方根为√2,则2022a +2021b +mnb +k 2的值为 .15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1.现对72进行如下操作:72第一次→[√72]=8第二次→[√8]=2第三次→[√2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是.16.电流通过导线时会产生热量,电流I(单位:A)、导线电阻R(单位:Ω)、通电时间t(单位:s)与产生的热量Q(单位:J)满足关系式Q=I2Rt.已知导线的电阻为10Ω,通电2s时间导线产生90J的热量,则电流I为A.三、计算题(共6分)17.计算:(1)(√18−√12)×√3;(2)(√3+1)2−(1−√5)(√5+1).四、作图题(共9分)18.如图,正方形网格中的每个小正方形的边长都是1,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中画一个直角三角形,使它的三边长都是有理数;(2)在图2中画一个直角三角形,使它的三边长都是无理数;(3)在图3中画一个等腰三角形,使它的三边长都是无理数(和图2画的三角形不全等).五、解答题(共4题,共32分)19.把下列各数分别填在相应的括号内.﹣12,0,0.16,312,√3,﹣23√5,π3,√16,﹣√22,﹣3.14有理数:{ };无理数:{ };负实数:{ };正分数:{ }.20.(1)先化简,再求值.已知a=1,b=−2,求多项式3ab−15b2+5a2−6ba+15a2−2b2的值.(2)在数轴上表示下列各数,并把这些数按从小到大顺序进行排列,用“<”连接.−1.5,−22,−(−4),0,−|−3|,√921.如图,数轴上点A ,B 分别表示数a ,b ,且a ,b 互为相反数,2a +9是27的立方根.(1)求a ,b 的值及线段AB 的长.(2)点P 在射线BA 上,它在数轴上对应的数为x. ①请用含x 的代数式表示线段BP 的长. ②当x 取何值时,BP =2AP ?22.解答下列各题:(1)计算:√(−10)2−(√15)2+√64.(2)已知点A(2,1),B(−4,a)在反比例函数y =kx(k ≠0)的图象上,试求a 的值. 六、实践探究题(共3题,共25分)23.数学活动课上,张老师说:“√2是无理数,无理数就是无限不循环小数,同学们,你能把√2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(√2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”请你解答:(1)√5的整数部分是 ,小数部分是 .(2)已知8+√3=x +y ,其中x 是一个整数,且0<y <1,请求出3x +(y −√3)2020的值.24.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4.1]=4.(1)则[11.8]= ;[−11.9]= ;(2)现对119进行如下操作:119→第一次[√119]=10→第二次[√10]=3→第三次[√3]=1,这样对119只需进行3次操作后变为1.①对15进行1次操作后变为 ▲ ,对200进行3次操作后变为 ▲ ;②对实数m恰进行2次操作后变成1,则m最小可以取到▲ ;③若正整数m进,3次操作后变为1,求m的最大值.25.阅读材料:若点M,N在数轴上分别表示实数m,n,那么M,N之间的距离可表示为|m−n|.例如|3−1|,即表示3,1在数轴上对应的两点之间的距离;同样:|5+3|= |5−(−3)|表示5,−3在数轴上对应的两点之间的距离.根据以上信息,完成下列题目:(1)已知A,B,C为数轴上三点,点A对应的数为√2,点C对应的数为1.①若点B对应的数为−2,则B,C两点之间的距离为;②若点A到点B的距离与点A到点C的距离相等,则点B对应的数是.(2)对于|x−3|+|x+4|这个代数式.①它的最小值为;②若|x−3|+|x+4|+|y−1|+|y+2|=10,则x+y的最大值为.答案解析部分1.【答案】D2.【答案】C3.【答案】C4.【答案】C5.【答案】B6.【答案】D7.【答案】D8.【答案】B9.【答案】D10.【答案】C11.【答案】>12.【答案】313.【答案】-114.【答案】215.【答案】25516.【答案】3√2217.【答案】(1)解:原式=√54−√36=3√6−6(2)3+2√3+1−1+5=8+2√3 18.【答案】(1)解:如图1所示,Rt△ABC即为所求;(2)解:如图所示,Rt△DEF即为所求;(3)解:如图所示,OPQ 即为所求.19.【答案】解:有理数:﹣12,0,0.16,312,√16,﹣3.14;无理数:√3,﹣23√5,π3,﹣√22;负实数:﹣12,﹣23√5,﹣√22,-3.14;正分数:0.16,312.20.【答案】(1)解:3ab −15b 2+5a 2−6ba +15a 2−2b 2=−3ab −17b 2+20a 2,当a =1,b =−2时,原式=−3×1×(−2)−17×(−2)2+20×12=6−68+20=−42.(2)解:如图所示:,−22<−|−3|<−1.5<0<√9<−(−4)21.【答案】(1)解:∵2a +9是27的立方根,∴2a +9=√273=3, 则a =−3.∵a ,b 互为相反数,∴b=−a=3.∴AB=3−(−3)=6(2)解:①∵点P在射线BA上,它在数轴上对应的数为x.∴线段BP=3−x②当点P在点A右侧时,∵BP=2AP,∴3−x=2(x+3),解得x=−1.当点P在点A左侧时,∵BP=2AP,∴3−x=2(−3−x),解得x=−9.综上,当x=−1或−9时,BP=2AP.22.【答案】(1)解:原式=10−15+8=3(2)解:∵点A(2,1),B(−4,a)在反比例函数y=kx(k≠0)的图象上,∴k=1×2=−4⋅a,∴a=−1 2.23.【答案】(1)2;√5-2(2)解:∵1<√3<2,∴9<8+√3<10,∵8+√3=x+y,其中x是一个整数,且0<y<1,∴x=9,y=8+√3−9=√3−1∴3x+(y−√3)2020=3×9+(√3−1−√3)2020=27+1=28.24.【答案】(1)11;-12(2)解:①3;1②4;③∵[x]=1,∴1≤x<2,∴1≤√m<2,∴1≤m<4,∴1≤√m<16,∴1≤m<256.∵3次操作,故m≥16.∴16≤m<256.∵m是整数.∴m的最大值为255.25.【答案】(1)3;2√2−1(2)7;42024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题(每题4分,共40分)1.2023的相反数是()A.2023B.|2023|C.12023D.-2023 2.-2023的倒数是()A.2023B.12023C.-2023D.−1 20233.计算3+(−1)的结果为()A.-4B.2C.-2D.4 4.下列计算结果为5的是()A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5| 5.在4,-2,0,13四个数中,最小的为()A.4B.-2C.0D.13 6.下列计算中错误的有()个.( 1 )√9=±3;(2)﹣1﹣1=0 ;(3)(﹣1)﹣1=0;(4)(﹣1)0=1.A.1B.2C.3D.4 7.我们可用数轴直观研究有理数及其运算.如图,将物体从点A向左平移5个单位到点B,可以描述这一变化过程的算式为().A .2+(−5)B .2−(−5)C .2×(−5)D .2÷(−5)8.杭州亚运会赛会志愿者招募自启动以来,得到了社会群体和高校学生的积极响应,注册总人数超32万人.其中32万用科学记数法可表示为( ) A .32×104B .3.2×105C .3.2×106D .0.32×1069.“宁波地铁”发文称,2023年2月13日至6月30日,每天晚上8点后及法定节假日全天,宁波地铁1—5号线全线网皆可免费乘车,免费时段无需购票、刷卡、扫码,可直接进站乘车.2月17日,宁波地铁限时段免费后的首个周五,地铁客流量达到约107.6万人次.数107.6万用科学记数法表示为( ) A .1.076×105B .10.76×105C .1.076×106D .0.1076×10610.如图是某品牌鞋服店推出的优惠活动,小明看中了一双鞋子和一双原价80元的袜子,若购买这双鞋子和这双袜子所付的费用与单独购买这双鞋子所付的费用相同,则这双鞋子的原价可能是( ).A .269元B .369元C .569元D .669元二、填空题(每题5分,共30分)11.若a ,b 互为相反数,则(a +b)2= . 12.请任意写出一个介于−12到−13之间的数 .13.已知(a 2+b 2)2−a 2−b 2−6=0,求a 2+b 2的值为 .14.定义:[x]表示不大于x 的最大整数, (x)表示不小于x 的最小整数, 例如: [2.3]=2, (2.3)=3,[−2.3]=−3,(−2.3)=−2. 则[1.7]+(−1.7)= . 15.如果实数x ,y 满足方程组{x −2y =−1x +y =2,那么(2x -y )2022= .16.请用“<”符号将下面实数(−3)2,√18,−6,|−4|连接起来 .三、计算题(共10分)17.用简便运算进行计算: (1)(12−16+13)×(−24);(2)(−0.25)2019×42020;四、解答题(共3题,共40分)18.先计算,再阅读材料,解决问题: (1)计算: (13−16+12)×12 .(2)认真阅读材料,解决问题: 计算:130÷(23−110+16−25). 分析:利用通分计算 23−110+16−25的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:(23−110+16−25)÷130=(23−110+16−25)×30 =23×30−110×30+16×30−25×30 =20−3+5−12=10 . 故原式 =110. 请你根据对所提供材料的理解,选择合适的方法计算: (−152)÷(34−526+12−213) . 19.新农村建设中,某镇成立了新型农业合作社,扩大了油菜种植面积,今年2000亩油菜喜获丰收.该合作社计划租赁5台油菜收割机机械化收割,一台收割机每天大约能收割40亩油菜.(1)求该合作社按计划几天可收割完这些油菜;(2)该合作社在完成了一半收割任务时,从气象部门得知三天后有降雨,于是该合作社决定再租赁3台油菜收割机加入抢收,并把每天的工作时间延长10%,请判断该合作社能否完成抢收任务,并说明理由.20.为节约用水,某市居民生活用水按级收费,水费分为三个等级(如图);例如:某户用水量为35吨,则水费为20×2.5+(30-20)×3.45=101.75(元).(1)若某住户收到一张自来水总公司水费专用发票,其中上期抄表数为587吨,本期抄表数为617吨,请计算本期该用户应付的水费.(2)若该住户的用水量为x吨(20<x≤40),应付水费为y元,求出y关于x的函数表达式.(3)小明爸爸收到水费短信通知:2022年2月本期用水量为45吨,水费为150.5元.根据此通知求出第三级收费标准a的值.答案解析部分1.【答案】D2.【答案】D3.【答案】B4.【答案】C5.【答案】B6.【答案】C7.【答案】A8.【答案】B9.【答案】C10.【答案】C11.【答案】012.【答案】−2513.【答案】314.【答案】015.【答案】116.【答案】-6<|−4|<√18<(−3)217.【答案】(1)解:原式 =12×(−24)−16×(−24)+13×(−24) =(−12)−(−4)+(−8)=(−12)+(−8)+4=−20+4=−16或 原式 =(36−16+26)×(−24) =46×(−24) =−16(2)解:原式= (−0.25)2019×42019×4=(−0.25×4)2019×4=(−1)2019×4=(−1)×4=−4 .18.【答案】(1)解:计算: (13−16+12)×12 =13×12−16×12+12×12 =4−2+6=8(2)解:原式的倒数是: (34−526+12−213)×(−52) , =34×(−52)−526×(−52)+12×(−52)−213×(−52) , =−39+10−26+8 ,=−47 ,故原式 =−147. 19.【答案】(1)解:设该合作社按计划x 天可收割完这些油菜5×40x =2000解得:x =10答:该合作社按计划10天可收割完这些油菜;(2)解:原来一天的收割量:5×40=200(亩),现在一天的收割量:(5+3)×40×(1+10%)=352(亩),现在三天可完成的收割量:352×3=1056(亩)>1000亩.答:该合作社能完成抢收任务.20.【答案】(1)解:用水量:617−587=30(吨).水费:20×2.5+(30−20)×3.45=84.5(元).答:本期该用户应付水费84.5元.(2)解:y =2.5×20+3.45×(x −20)=3.45x −19(20<x ≤40)∴y 关于x 的函数表达式为:y =3.45x −19(20<x ≤40)(3)解:据题意可列方程:20×2.5+20×3.45+(45−40)a =150.5解得a =6.3答:a 的值为6.3.2024年浙江中考数学备考专题有理数、无理数与实数5套含答案一、选择题1.2022的倒数是()A.2022B.-2022C.12022D.−1 20222.手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(午位:dBm),则下列信号最强的是()A.-50B.-60C.-70D.-80 3.计算结果等于2的是()A.|−2|B.−|2|C.2−1D.(−2)0 4.(−2)2+22=()A.0B.2C.4D.8 5.如图,比数轴上点A表示的数大3的数是()A.-1B.0C.1D.2 6.据中国宁波网消息:2023年一季度宁波全市实现地区生产总值380180000000元,同比增长4.5%.数380180000000用科学记数法表示为()A.0.38018×1012B.3.8018×1011C.3.8018×1010D.38.018×10107.已知数轴上的点A,B分别表示数a,b,其中−1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是()A.B.C.D.8.已知M=20222,N=2021×2023,则M与N的大小关系是()A.M>N B.M<N C.M=N D.不能确定9.已知方程组{a−2b=63a−b=m中,a,b互为相反数,则m的值是()A.4B.﹣4C.0D.8 10.在某次演讲比赛中,五位评委要给选手圆圆打分,得到互不相等的五个分数。

2023年湖南省中考数学真题分类汇编:有理数(含答案)

2023年湖南省中考数学真题分类汇编:有理数(含答案)

;2023年湖南省中考数学真题分类汇编:有理数一、选择题1.(2023·常德)3的相反数是( )A.3B.―3C.13D.―132.(2023·邵阳)2023的倒数是( )A.―2023B.2023C.12023D.―120233.(2023·株洲)计算:(―4)×32=( )A.―6B.6C.―8D.8 4.(2023·岳阳)2023的相反数是( )A.12023B.―2023C.2023D.―120235.(2023·衡阳)据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为( )A.7.358×107B.7.358×103C.7358×104D.7.358×106 6.(2023·衡阳)中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作+500元,则支出237元记作( )A.+237元B.―237元C.0元D.―474元7.(2023·怀化)2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST)装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为( )A.12.2254×104B.1.22254×104C.1.22254×105D.0.122254×1068.(2023·长沙)2022年,长沙市全年地区生产总值约为1400000000000元,比上年增长4.5%.其中数据1400000000000用科学记数法表示为( )A.1.4×1012B.0.14×1013C.1.4×1013D.14×10119.(2023·张家界)12023的相反数是( )A.12023B.―12023C.2023D.―202310.(2023·郴州)―2的倒数是( )A.2B.―12C.―2D.1211.(2023·邵阳)党的二十大报告提出,要坚持以文塑旅、以旅彰文,推进文化和旅游深度融合发展.湖南是文化旅游资源大省,深挖红色文化、非遗文化和乡村文化,推进文旅产业赋能乡村振兴.湖南红色旅游区(点)2022年接待游客约165000000人次,则165000000用科学记数法可表示为( )A.0.165×109B.1.65×108C.1.65×107D.16.5×107二、填空题12.(2023·岳阳)近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为 .13.(2023·张家界)“仙境张家界,峰迷全世界”,据统计,2023年“五一”节假日期间,张家界市各大景区共接待游客约864000人次.将数据864000用科学记数法表示为 .14.(2023·常德)联合国2022年11月15日宣布,全世界人口已达80亿.将8000000000用科学记数法表示为 .三、计算题15.(2023·郴州)计算:(12)―1―3tan30°+(π―2023)0+|―2|.16.(2023·邵阳)计算:tan45°+(12)―1+|―2|.四、综合题17.(2023·长沙)我们约定:若关于x的二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2同时满足a2―c1+(b2+b1)2+|c2﹣a1|=0,b1―b22023≠0,则称函数y1与函数y2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x的二次函数y1=2x2+kx+3与y2=m x2+x+n互为“美美与共”函数,求k,m,n的值;(2)对于任意非零实数r,s,点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图像上运动,函数y1与y2互为“美美与共”函数.①求函数y2的图像的对称轴;②函数y2的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x的二次函数y1=a x2+bx+c与它的“美美与共”函数y2的图像顶点分别为点A,点B,函数y1的图像与x轴交于不同两点C,D,函数y2的图像与x轴交于不同两点E,F.当CD=EF时,以A,B,C,D为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】C8.【答案】A9.【答案】B10.【答案】B11.【答案】B12.【答案】3.783×10513.【答案】8.64×10514.【答案】8×10915.【答案】解:原式=2―3×33+1+2=2―1+1+2=4.16.【答案】解:tan45°+(12)―1+|―2|=1+2+2=5.17.【答案】(1)解:由题意可知:a2=c2,a1=c2,b1=―b2≠0,∴m=3,n=2,k=―1.答:k的值为―1,m的值为3,n的值为2.(2)解:①∵点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图像上运动,∴对称轴为x=r+s2=―2r2,∴s=―3r,∴y2=s x2―2xx+1,∴对称轴为x=――2r2s =rs=―13.答:函数y 2的图像的对称轴为x =―13.②y 2=―3r x 2―2rx +1=―(3x 2+2x)r +1,令3x 2+2x =0,解得x 1=0,x 2=―23,∴过定点(0,1),(―23,1).答:函数y 2的图像过定点(0,1),(―23,1).(3)解:由题意可知y 1=a x 2+bx +c ,y 2=c x 2―bx +a ,∴A(―b 2a ,4ac ―b 24a),B(b 2c ,4ac ―b 24c ),∴CD =b 2―4ac |a|, EF =b 2―4ac 1―1,∵CD =EF 且b 2―4ac >0,∴|a|=|c|;①若a =―c ,则y 1=a x 2+bx ―a ,y 2=―a x 2―bx +a ,要使以A ,B ,C ,D 为顶点的四边形能构成正方形,则△CAD ,△CBD 为等腰直角三角形,∴CD =2|y A |,∴b 2+4a 2|a |=2⋅|―4a 2―b 24a |,∴2b 2+4a 2=b 2+4a 2,∴b 2+4a 2=4,∴S 正=12C D 2=12⋅b 2―4ac a 2=12⋅b 2+4a 2a2=2a 2,∵b 2=4―4a 2>0,∴0<a 2<1,∴S 正>2;②若a =c ,则A 、B 关于y 轴对称,以A ,B ,C ,D 为顶点的四边形不能构成正方形,综上,以A,B,C,D为顶点的四边形能构成正方形,此时S>2.。

中考数学专题复习:有理数

中考数学专题复习:有理数

中考数学专题复习:有理数一.选择题(共10小题)1.下列各式中,结果是100的是( )A .-(+100)B .-(-100)C .-|+100|D .-|-100| 2.近似数1.7万精确到( ) A .百位B .千位C .十分位D .百分位3.将数据9899万用科学记数法表示为( )A .98.99×105B .9.899×106C .9.899×107D .0.9899×108 4.一张厚度为1mm 的足够大的正方形纸,假设能对折24次,那么折纸后的高度就远远超过珠穆朗玛峰.如果将上述正方形纸对折12次,那么折纸后的总厚度为( )A .234mmB .1×1012mmC .2×1012mmD .212mm5.A 点为数轴上表示-2的点,则距A 点4个单位长度的点所表示的数为( ) A .2 B .-6 C .2或-6 D .-4或4 6.数轴上,点A 对应的数是-6,点B 对应的数是-2,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .PQ=2OQB .OP=2PQC .3QB=2PQD .PB=PQ 7.81-的倒数的相反数是( ) A .8 B .-8 C .81 D .81-8.52的倒数是( )A .0.4B .2.5C .4D .52-9.下列计算中,结果等于5的是( )A .|(-9)-(-4)|B .|(-9)+(-4)|C .|-9|+|-4|D .|-9|+|+4|10.计算(-9)×31的结果是( )A .3B .27C .-27D .-3二.填空题(共7小题)11.如果80m 表示向东走80m ,则向西走60m 表示为________m .12.已知整数a ,b ,c ,d 的绝对值均小于5,且满足1000a+100b 2+10c 3+d 4=2021,则abcd 的值为________.13.近似数5.50万精确到________位,有________个有效数字.14.计算:35×()552-÷⎪⎪⎭⎫ ⎝⎛-=________.15.若m 、n 互为相反数,x 、y 互为倒数,则2021m+2021n-xy2022=________. 16.|2x-4|+|x+2y-8|=0,则(x-y )2021=________.17.有理数a 、b 在数轴上的位置如图所示,|a-b|-|b|化简的结果为________.三.解答题(共5小题) 18.计算:(1)-(-4)+(-1)-(+5); (2)⎪⎪⎭⎫⎝⎛-⨯⎪⎪⎭⎫ ⎝⎛-÷316525; (3)-14+|5-8|+27÷(-3)×31; (4)()36436531-⨯⎪⎪⎭⎫⎝⎛+-; (5)(5)[2-(2-2.4×32)]×[-32-(-2)3].19.在学习有理数时我们清楚,|3-(-1)|表示3与-1的差的绝对值,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离;同理|x 一5|也可以理解为x 与5两数在数轴上所对应的两点之间的距离,试探索并完成以下题目. (1)分别计算|8-(-3)|,|-3-5|的值.(2)如图,x 是1到2之间的数(包括1,2),求|x-1|+|x-2|+|x-3|的最大值.20.已知a 、b 互为相反数,m 、n 互为倒数,求3mn 8b225a 2-+-的值.21.光速约为3×108米/秒,太阳光射到地球上的时间约为5×102秒,地球与太阳的距离约是多少米?22.观察下列两个等式:2+2=2×2,3×23 =3+23,给出定义如下:我们称使等式a+b=ab 成立的一对有理数a ,b 为“有趣数对”,记为(a ,b ),如:数对(2,2),⎪⎪⎭⎫⎝⎛23,3都是“有趣数对”. (1)数对(0,0),(5,35)中是“有趣数对”的是________;(2)若(a ,43)是“有趣数对”,求a 的值; (3)若(a 2+a ,4)是“有趣数对”,求3-2a 2-2a 的值.参考答案11.-6012.±413.百31414.515.-202216.-117.-a18.(1)-2;(2)1;(3)-1;(4)-9;(5)-1.6.19.(1)11;8;(2)3.20. -521.1.5×1011米.122.(1)(0,0);(2)-3;(3)3。

中考真题有理数

中考真题有理数

有理数一、选择题1. 〔2021•省,第1题4分〕〔﹣2〕×3的结果是〔〕A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.应选:C.点评:此题考察了有理数的乘法,先确定积的符号,再进展绝对值的运算.2. 〔2021•,第1题3分〕2021的相反数是〔〕A.2021 B.﹣2021 C.D.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2021的相反数是﹣2021.应选B.点评:此题考察了相反数的概念,在一个数的前面加上负号就是这个数的相反数.3. 〔2021•,第1题3分〕在1,0,2,﹣3这四个数中,最大的数是〔〕A.1B.0C.2D.﹣3考点:有理数大小比拟.[来源:ZXXK]分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,应选:C.点评:此题考察了有理数比拟大小,正数大于0,0大于负数是解题关键.4. 〔2021•,第1题3分〕﹣的相反数是〔〕A.2B.C.﹣2 D.﹣考点:相反数.专题:计算题.分析:根据相反数的定义,只有符号不同的两个数是互为相反数,﹣的相反数为.解答:解:与﹣符号相反的数是,所以﹣的相反数是;应选B.点评:此题主要相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.5. 〔2021•XX贺州,第1题3分〕在﹣1、0、1、2这四个数中,最小的数是〔〕A.0B.﹣1 C.1D.1考点:有理数大小比拟分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣1<0<1<2,应选:B.点评:此题考察了有理数比拟大小,正数大于0,0大于负数是解题关键.6. 〔2021•XX贺州,第4题3分〕未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵〞的问题.将8450亿元用科学记数法表示为〔〕A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将8450亿元用科学记数法表示为8.45×103亿元.应选B.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7. 〔2021•XX市、市,第1题3分〕下面的数中,与﹣2的和为0的是〔〕A.2B.﹣2 C.D.考点:有理数的加法.分析:设这个数为x,根据题意可得方程x+〔﹣2〕=0,再解方程即可.解答:解:设这个数为x,由题意得:x+〔﹣2〕=0,x﹣2=0,x=2,应选:A.点评:此题主要考察了有理数的加法,解答此题的关键是理解题意,根据题意列出方程.8. 〔2021•XX市、市,第2题3分〕将6.18×10﹣3化为小数的是〔〕A.0.000618 B.0.00618 C.0.0618 D.0.618考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n〔1≤|a|<10,n为整数〕.此题把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到.解答:解:把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到为0.00618.应选B.点评:此题考察写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“复原〞成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法复原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.9.(2021资阳,第1题3分)的相反数是〔〕A.B.﹣2 C.D.2考点:相反数.专题:计算题.分析:根据相反数的定义进展解答即可.解答:解:由相反数的定义可知,﹣的相反数是﹣〔﹣〕=.应选C.点评:此题考察的是相反数的定义,即只有符号不同的两个数叫互为相反数.10.(2021年资阳,第4题3分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为〔〕A.5×1010千克B.50×109千克C.5×109千克D.0.5×1011千克考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于500亿有11位,所以可以确定n=11﹣1=10.解答:解:500亿=50 000 000 000=5×1010.应选A.点评:此题考察科学记数法表示较大的数的方法,准确确定a与n值是关键.11.(2021年XX市,第1题3分)计算〔﹣6〕×〔﹣1〕的结果等于〔〕A.6B.﹣6 C.1D.﹣1考点:有理数的乘法.分析:根据有理数的乘法运算法那么进展计算即可得解.解答:解:〔﹣6〕×〔﹣1〕,[来源:学§科§网]=6×1,=6.应选A.点评:此题考察了有理数的乘法运算,是根底题,熟记运算法那么是解题的关键.12.(2021年XX市,第4题3分)为了市民出行更加方便,XX市政府大力开展公共交通,2021年XX市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为〔〕A.160.8×107B.16.08×108C.1.608×109D.0.1608×1010考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1608000000用科学记数法表示为:1.608×109.应选:C.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.〔2021年省,第1题3分〕|﹣|=〔〕A.﹣B.C.﹣7 D.7考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣|=,应选:B.点评:此题考察了相反数,在一个数的前面加上负号就是这个数的相反数.14.〔2021年省,第6题3分〕据统计,2021年我国用义务教育经费支持了13940000名农民工随迁子女在城市里承受义务教育,这个数字用科学计数法可表示为〔〕A.1.394×107B.13.94×107C.1.394×106D.13.94×105考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:13 940 000=1.394×107,应选:A.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.〔2021•,第1题4分〕计算:〔﹣3〕+4的结果是〔〕A.﹣7 B.﹣1 C. 1 D. 7考点:有理数的加法.分析:根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.解答:解:原式=+〔4﹣3〕=1,应选:C.点评:此题考察了有理数的加法,先确定和的符号,再进展绝对值得运算.16.〔2021•,第1题3分〕﹣3的绝对值是〔〕A.﹣3 B.3C.D.考点:绝对值.专题:计算题.[来源:Z*xx*k.]分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣3|=3.故﹣3的绝对值是3.应选B.点评:考察了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.17.〔2021•,第3题3分〕2013年12月15日,我国“玉兔号〞月球车顺利抵达月球外表,月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为〔〕A.3.844×108B.3.844×107C.3.844×109D.38.44×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 400 000有9位,所以可以确定n=9﹣1=8.解答:解:384 400 000=3.844×108.应选A.点评:此题考察科学记数法表示较大的数的方法,准确确定a与n值是关键.18.〔2021年,第1题4分〕﹣2的倒数是〔〕A.2 B.C.﹣D.﹣0.2分析:根据乘积为1的两数互为倒数,即可得出答案.解:﹣2的倒数为﹣.应选C.点评:此题考察了倒数的定义,属于根底题,关键是掌握乘积为1的两数互为倒数.19.〔2021年,第4题4分〕在我国南海某海域探明可燃冰储量约有194亿立方米,数字用科学记数法表示正确的选项是〔〕A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将用科学记数法表示为:1.94×1010.应选:A.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.〔2021年,第5题4分〕以下各式计算正确的选项是〔〕A.〔a+b〕2=a2+b2B.a•a2=a3C.a8÷a2=a4D.a2+a3=a5分析:A、原式利用完全平方公式展开得到结果,即可做出判断;B、原式利用同底数幂的乘法法那么计算得到结果,即可做出判断;C、原式利用同底数幂的除法法那么计算得到结果,即可做出判断;D、原式不能合并,错误.解:A、原式=a2+b2+2ab,错误;B、原式=a3,正确;C、原式=a6,错误;D、原式不能合并,错误,应选B点评:此题考察了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法那么是解此题的关键.21.〔2021•地区,第1题3分〕计算﹣32的值是〔〕22.〔2021•地区,第16题5分〕1纳米=10﹣9米,将0.00305纳米用科学记数法表示为3.05×10﹣12米.23.〔2021•,第1题3分〕在实数﹣2,0,2,3中,最小的实数是〔〕24.〔2021•,第3题3分〕光速约为3000 000千米/秒,将数字300000用科学记数法表示为〔〕25.〔2021•襄阳,第1题3分〕有理数﹣的倒数是〔〕A.B.﹣C.D.﹣考点:倒数.分析:根据倒数的定义:乘积是1的两数互为倒数,可得出答案.解答:解:,故答案选D.点评:此题考察了倒数的知识,属于根底题,解答此题的关键是掌握倒数的定义.26.〔2021•襄阳,第3题3分〕我市今年参加中考人数约为42000人,将42000用科学记数法表示为〔〕A.4.2×104B.0.42×105C.4.2×103D.42×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将42000用科学记数法表示为:4.2×104.应选:A.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.27.〔2021•襄阳,第7题3分〕以下命题错误的选项是〔〕A.所有的实数都可用数轴上的点表示B.等角的补角相等D.两点之间,线段最短C.无理数包括正无理数,0,负无理数[来源:Z#xx#k.]考点:命题与定理.28.〔2021•,第1题3分〕以下各数中,最大的数是〔〕A.3B.1C.0D.﹣5考点:有理数大小比拟分析:根据正数都大于零,负数都小于零,正数大于负数,两个负数比拟大小,绝对值大的数反而小,再进展比拟,即可得出答案.解答:解:∵﹣5<0<1<3,故最大的数为3,故答案选A.点评:此题考察了实数的大小比拟,掌握正数都大于零,负数都小于零,正数大于负数,两个负数比拟大小,绝对值大的数反而小是此题的关键.29.〔2021•,第1题4分〕比﹣1大1的数是〔〕A.2B.1C.0D.﹣2.考点:有理数的加法分析:根据有理数的加法,可得答案.解答:解:〔﹣1〕+1=0,比﹣1大1的数,0,应选:C.点评:此题考察了有理数的加法,互为相反数的和为0.30.〔2021·,第5题3分〕算式743×369﹣741×370之值为何?()A.﹣3 B.﹣2 C.2 D.3分析:根据乘法分配律,可简便运算,根据有理数的减法,可得答案.解:原式=743×(370﹣1)﹣741×370=370×(743﹣741)﹣743=370×2﹣743=﹣3,应选:A.点评:此题考察了有理数的乘法,乘法分配律是解题关键.31.〔2021·,第7题3分〕果农贩卖的西红柿,其重量与价钱成线型函数关系,今小华向果农买一竹篮的西红柿,含竹篮秤得总重量为15公斤,付西红柿的钱250元.假设他再加买0.5公斤的西红柿,需多付10元,那么空竹篮的重量为多少公斤?()A.1.5 B.2 C.2.5 D.3分析:由加买0.5公斤的西红柿,需多付10元就可以求出西红柿的单价,再由总价250元÷西红柿的单价就可以求出西红柿的数量,进而求出结论.解:由题意,得西红柿的单价为:10÷0.5=20元,西红柿的重量为:250÷20=12.5kg,∴空竹篮的重量为:15﹣12.5=2.5kg.应选C.点评:此题考察了总价÷数量=单价的运用,总价÷单价=数量的运用,解答时求出西红柿的单价是解答此题的关键.32.〔2021·,第14题3分〕小明在网络上搜寻到水资源的数据如下:「地球上水的总储量为1.36×1018立方公尺,其中可供人类使用的淡水只占全部的0.3%.」根据他搜寻到的数据,判断可供人类使用的淡水有多少立方公尺?()A.4.08×1014B.4.08×1015C.4.08×1016D.4.08×1017分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数一样.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解:36×1018×0.3%=4.08×1015.应选:B .点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a | <10,n 为整数,表示时关键要正确确定a 的值以及n 的值.33.〔2021·,第1题3分〕21的相反数是〔〕 A. 21 B. 21- C. 2 D. 2- 考点: 相反数.分析: 根据相反数的定义,即只有符号不同的两个数互为相反数,进展求解.解答: 解:21的相反数是﹣21. 应选B .点评: 此题考察了相反数的概念.求一个数的相反数,只需在它的前面加“﹣〞号.34.〔2021•,第1题3分〕﹣3的倒数是〔 〕A .﹣3B . 3C .D .﹣分析:根据乘积为的1两个数倒数,可得到一个数的倒数.解:﹣3的倒数是﹣,应选:D .点评:此题考察了倒数,分子分母交换位置是求一个数的倒数的关键.35.〔2021·,第1题4分〕在数1,0,1,2-- 中,最小的数是【】A .1B .0C .1-D .2-【答案】D .【解析】36.〔2021•,第1题4分〕以下各数中,既不是正数也不是负数的是〔〕A.0B.﹣1 C.D.2考点:实数;正数和负数.分析:根据实数的分类,可得答案.解答:解:0既不是正数也不是负数,应选:A.点评:此题考察了实数,大于0的数是正数,小于0的数是负数,0既不是正数也不是负数.37.〔2021•,第2题4分〕轨道交通1号线、2号线建立总投资253.7亿元,其中253.7亿用科学记数法表示为〔〕A.253.7×108B.25.37×109C.2.537×1010D.2.537×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:253.7亿=253 7000 0000=2.537×1010,应选:C.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.38.〔2021•,第4题4分〕梅开场采摘啦!每框梅以5千克为基准,超过的千克数记为正数,缺乏的千克数记为负数,记录如图,那么这4框梅的总质量是〔〕A.19.7千克B.19.9千克C.20.1千克D.20.3千克考点:正数和负数分析:根据有理数的加法,可得答案.解答:解:〔﹣0.1﹣0.3+0.2+0.3〕+5×4=20.1〔千克〕,应选:C.点评:此题考察了正数和负数,有理数的加法运算是解题关键.39.〔4分〕〔2021•,第4题4分〕拒绝“餐桌浪费〞刻不容缓,据统计全国每年浪费食物总量约为千克,这个数据用科学记数法表示为〔〕A.5×1010B.0.5×1011C.5×1011D.0.5×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将用科学记数法表示为:5×1010.应选:A.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.40. 〔2021•株洲,第1题,3分〕以下各数中,绝对值最大的数是〔〕A.﹣3 B.﹣2 C.0D.1考点:绝对值;有理数大小比拟分析:根据绝对值是实数轴上的点到原点的距离,可得答案.解答:解:|﹣3|>|﹣2|>>|0|,应选:A.点评:此题考察了绝对值,绝对值是实数轴上的点到原点的距离.41.〔2021•,第1题,3分〕﹣2的相反数等于〔〕A.﹣2 B.2C.D.考点:相反数.分析:根据相反数的概念解答即可.解答:解:﹣2的相反数是﹣〔﹣2〕=2.应选B.点评:此题考察了相反数的意义,一个数的相反数就是在这个数前面添上“﹣〞号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.42. 〔2021•,第1题,3分〕以下各数中,比﹣2小的数是〔〕A.﹣3 B.﹣1 C.0D.1考点:有理数大小比拟.分析:根据题意,结合实数大小的比拟,从符号和绝对值两个方面分析可得答案.解答:解:比﹣2小的数是应该是负数,且绝对值大于2的数;分析选项可得,只有A符合.应选A.点评:此题考察实数大小的比拟,是根底性的题目.43.〔2021•,第4题3分〕第六次全国人口普查数据显示,市常驻人口约为556.82万人,此数用科学记数法表示正确的选项是〔〕[来源:学|科|网]A.556.82×104B.5.5682×102C.5.5682×106D.5.5682×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将556.82万人用科学记数法表示为5.5682×106元.故答案为:2.466 19×1013.应选:C.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.44.〔2021•,第1题3分〕比﹣1大的数是〔〕A.﹣3 B.﹣C.0D.﹣1考点:有理数大小比拟.分析:根据零大于一切负数,负数相比拟,绝对值大的反而小解答.解答:解:﹣3、﹣、0、﹣1四个数中比﹣1大的数是0.应选C.点评:此题考察了有理数的大小比拟,是根底题,熟记大小比拟方法是解题的关键.45.〔2021•,第1题3分〕实数1,﹣1,﹣,0,四个数中,最小的数是〔〕A.0B.1C.﹣1 D.﹣考点:实数大小比拟.分析:根据正数>0>负数,几个负数比拟大小时,绝对值越大的负数越小解答即可.解答:解:根据正数>0>负数,几个负数比拟大小时,绝对值越大的负数越小,可得1>0>﹣>﹣1,所以在1,﹣1,﹣,0中,最小的数是﹣1.应选:C.点评:此题主要考察了正、负数、0和负数间的大小比拟.几个负数比拟大小时,绝对值越大的负数越小,46.〔2021年,第1题3分〕在,0,﹣1,﹣这四个数中,最小的数是〔〕A.B.0C.﹣D.﹣1分析:根据正数大于0,0大于负数,可得答案.解:﹣1<﹣<0<,应选:D.点评:此题考察了有理数比拟大小,正数大于0,0大于负数是解题关键.47.〔2021年,第4题3分〕PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为〔〕A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣5分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000025=2.5×10﹣6,应选:B.点评:此题考察用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.48.〔2021•,第7题3分〕地球的外表积约为511000000km2,用科学记数法表示正确的选项是〔〕A.5.11×1010km2B.5.11×108km2C.51.1×107km2D.0.511×109km2考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于511000000有9位,所以可以确定n=9﹣1=8.解答:解:511 000 000=5.11×108.应选B.点评:此题考察科学记数法表示较大的数的方法,准确确定a与n值是关键.二.填空题1. 〔2021•省,第11题5分〕据报载,2021年我国将开展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2. 〔2021•,第8题4分〕2021年6月,阿里巴巴注资1200000000元入股恒大,将数据1200000000用科学记数法表示为1.2×109.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1200000000用科学记数法表示为:1.2×109.故答案为:1.2×109.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 〔2021•,第12题4分〕据报道,截止2021年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为6.18×108.[来源:Z.xx.k.]考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将618 000 000用科学记数法表示为:6.18×108.故答案为:6.18×108.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 〔2021•,第6题4分〕比拟大小:﹣2 >﹣3.考点:有理数大小比拟分析:此题是根底题,考察了实数大小的比拟.两负数比大小,绝对值大的反而小;或者直接想象在数轴上比拟,右边的数总比左边的数大.解答:解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.点评:〔1〕在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大.〔2〕正数大于0,负数小于0,正数大于负数.〔3〕两个正数中绝对值大的数大.〔4〕两个负数中绝对值大的反而小.5. 〔2021•XX市、市,第13题3分〕3的倒数是.考点:倒数.分析:根据倒数的定义可知.解答:解:3的倒数是.点评:主要考察倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数.6.〔2021•,第11题3分〕计算:﹣2+〔﹣3〕=﹣5 .考点:有理数的加法分析:根据有理数的加法法那么求出即可.解答:解:〔﹣2〕+〔﹣3〕=﹣5,故答案为:﹣5.点评:此题考察了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.7.〔2021·,第3题3分〕据报道,2021年4月库塘蓄水量为58500万立方米,将58500万立方米用科学计数法表示为万立方米.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将58500用科学记数法表示为4.5⨯.1085故答案为4.5⨯.8510点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.〔2021•,第13题4分〕﹣4的绝对值是4 .9. 〔2021•,第9题,3分〕﹣3的相反数是3.10. 〔2021•株洲,第10题,3分〕据教育部统计,参加2021年全国高等学校招生考试的考生约为9390000人,用科学记数法表示9390000是9.39×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将9390000用科学记数法表示为:9.39×106.故答案为:9.39×106.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11. 〔2021年,第7题,2分〕﹣2的相反数是,﹣2的绝对值是.考点:相反数的定义和绝对值的定义分析:根据相反数的定义和绝对值定义求解即可.解答:﹣2的相反数是2,﹣2的绝对值是2.点评:主要考察了相反数的定义和绝对值的定义,要求熟练运用定义解题.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12. 〔2021年,第8题,2分〕截止2021年底,中国高速铁路营运里程到达11000km,居世界首位,将11000用科学记数法表示为.考点:科学记数法的表示方法分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将11000用科学记数法表示为:1.1×104.故答案为:1.1×104.点评:此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13. 〔2021•,第9题,3分〕据统计,参加今年市初中毕业、升学统一考试的学生约36800人,这个数据用科学记数法表示为3.68×104.考点:科学记数法—表示较大的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法表示较大的数的方法,准确确定a与n值是关键.
11.(2014年天津市,第1题3分)计算(﹣6)×(﹣1)的结果等于()
ﻩA.6ﻩB.ﻩ﹣6ﻩC.1D.ﻩ﹣1
考点:ﻩ有理数的乘法.
分析:根据有理数的乘法运算法则进行计算即可得解.
解答:ﻩ解:(﹣6)×(﹣1),[来源:学§科§网]
故选B.
点评:
本题主要相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.
5.(2014•广西贺州,第1题3分)在﹣1、0、1、2这四个数中,最小的数是()
A.
0
B.
﹣1
C.
1
D.
1
考点:
有理数大小比较
分析:
根据正数大于0,0大于负数,可得答案.
解答:
解:﹣1<0<1<2,
故选:B.
点评:
中考真题有理数
———————————————————————————————— 作者:
———————————————————————————————— 日期:

有理数
一、选择题
1.(2014•安徽省,第1题4分)(﹣2)×3的结果是( )
ﻩA.ﻩ﹣5ﻩB.ﻩ1ﻩC.﹣6ﻩD.ﻩ6
考点:有理数的乘法.
考点:
科学记数法—表示较大的数.
分析:
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答:
解:将8450亿元用科学记数法表示为8.45×103亿元.

A.5×1010千克ﻩB.ﻩ50×109千克ﻩC.ﻩ5×109千克D.0.5×1011千克
考点:科学记数法—表示较大的数.
分析:ﻩ科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于500亿有11位,所以可以确定n=11﹣1=10.
解答:ﻩ解:500亿=50000000000=5×1010.
分析:根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.
解答:解:原式=﹣2×3=﹣6.
故选:C.
点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.
2.(2014•福建泉州,第1题3分)2014的相反数是()
A.
2014
B.
﹣2014
C.
D.
考点:
相反数.
分析:
根据只有符号不同的两个数互为相反数,可得一个数的相反数.
解答:
解:2014的相反数是﹣2014.
故选B.
点评:
本题考查了相反数的概念,在一个数的前面加上负号就是这个数的相反数.
3.(2014•广东,第1题3分)在1,0,2,﹣3这四个数中,最大的数是()
A.
1
B.
0
C.
2
D.
﹣3
考点:
有理数大小比较.[来源:学科网ZXXK]
分析:
根据正数大于0,0大于负数,可得答案.
=6×1,
=6.
故选A.
点评:本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.
12.(2014年天津市,第4题3分)为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()
A.ﻩ160.8×107ﻩB.ﻩ16.08×108ﻩC.ﻩ1.608×109D.ﻩ0.1608×1010
解答:
解:设这个数为x,由题意得:
x+(﹣2)=0,
x﹣2=0,
x=2,
故选:A.
点评:
此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.
8.(2014•广西玉林市、防城港市,第2题3分)将6.18×10﹣3化为小数的是()
A.
0.000618
B.
0.00618
C.
0.0618
考点:ﻩ科学记数法—表示较大的数
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.
6.(2014•广西贺州,第4题3分)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()
A.
0.845×104亿元
B.
8.45×103亿元
C.
8.45×104亿元
D.
84.5×102亿元
D.
0.618
考点:
科学记数法—原数.
分析:
科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到.
解答:
解:把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到为0.00618.
故选B.
点评:
本题考查写出用科学记数法表示的原数.
解答:
解:﹣3<0<1<2,
故选:C.
点评:
本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.
4.(2014•珠海,第1题3分)﹣ 的相反数是()
A.
2
B.
C.
﹣2
D.

考点:
相反数.
专题:
计算题.
分析:
根据相反数的定义,只有符号不同的两个数是互为相反数,﹣ 的相反数为 .
解答:
解:与﹣ 符号相反的数是 ,所以﹣ 的相反数是 ;
考点:相反数.
专题:计算题.
分析:根据相反数的定义进行解答即可.
解答:ﻩ解:由相反数的定义可知,﹣ 的相反数是﹣(﹣ )= .
故选C.
点评:ﻩ本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.
10.(2014年四川资阳,第4题3分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()
故选B.
点评:
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7.(2014•广西玉林市、防城港市,第1题3分)下面的数中,与﹣2的和为0的是()
A.

B.
﹣2
C.
D.
考点:
有理数的加法.
分析:
设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.
将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.
把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.
9.(2014四川资阳,第1题3分) 的相反数是()
ﻩA. ﻩB.ﻩ﹣2C. ﻩD.ﻩ2
相关文档
最新文档