七年级有理数中考真题汇编[解析版]

合集下载

【精选】人教版七年级上册数学 有理数中考真题汇编[解析版]

【精选】人教版七年级上册数学 有理数中考真题汇编[解析版]

一、初一数学有理数解答题压轴题精选(难)1.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.2.(1)观察发现,,,……,.=1﹣=.=1﹣=.=________.(2)构建模型=________.(n为正整数)(3)拓展应用:① =________.② =________.③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.【答案】(1)(2)(3);;20.【解析】【解答】(1) ==1﹣=,故答案为:;(2) ==1﹣=,故答案为:;(3)①原式==1﹣=,故答案为:;②原式===1﹣=,故答案为:;③设这个数为x,根据题意得:( )x= x﹣1,整理得: x= x﹣1,去分母得:( )x=x﹣4,即(1﹣ )x=x﹣4,整理得: x=x﹣4,解得:x=20,答:这个数是20.【分析】(1)各项拆项后,计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)①原式拆项后,计算即可求出值;②原式变形后拆项,计算即可求出值;③设这个数为x,根据题意列出方程,求出方程的解即可得到结果.3.已知 , , 三点在数轴上对应的位置如图如示,其中点对应的数为2,, .(1)点对应的数是________,点对应的数是________;(2)动点,分别同时从,两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点为的中点,点在上,且,设运动时间为 .①请直接用含的代数式表示点,对应的数;②当时,求的值.【答案】(1)-12;5(2)解:① 对应的数是,对应的数是;② ,,,,由,得,由,得,故当秒或秒时, .【解析】【解答】解:(1)点对应的数为,,,点对应的数是:;点对应的数是:;故点对应的数为,点对应的数是 .【分析】(1)根据点对应的数,由的长确定出点表示的数,再根据的长确定出点表示的数;(2)①根据题意表示出点、的数即可;②列出含t的、的代数式,得出方程,求出方程的解即可.4.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.5.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。

【精选】苏科版七年级数学上册 有理数中考真题汇编[解析版]

【精选】苏科版七年级数学上册 有理数中考真题汇编[解析版]

一、初一数学有理数解答题压轴题精选(难)1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求 ________.(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.【答案】(1)7(2)-3,-2,-1,0,1,2;(3)最小;3【解析】【解答】(1)原式=|5+2|=7.故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.当x<-3时,- (x+3) - (x-2) =5 ,-x-3-x+2=5,解得x=-3(范围内不成立)当-3≤x≤2时,(x+3) - (x-2) = 5,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1, 0,1,当x>2时,(x+3) + (x-2) = 5,x=2(范围内不成立) .综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,令x-3=0或x-6=0时,则x=3,x=6当x<3时,-(x-3)-(x-6)=-2x+3﹥3当3≤x≤6时,x-3-(x-6)=3,当x>6时,x-3+x-6=2x-9>3∴对于任何有理数x,有最小值为3【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.2.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.3.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .【答案】(1)72﹣1=6×8(2)(n+1)2-1=n(n+2)(3)解:===【解析】【解答】解:(1)∵第1个:22-1=1×3第2个:32-1=2×4第3个:42-1=3×5第4个:52-1=4×6第5个:62-1=5×7,∴第6个等式:72-1=6×8;故答案为:72-1=6×82)设n(n≥1)表示自然数,则第n个等式可表示为:(n+1)2-1=n(n+2);故答案为:(n+1)2-1=n(n+2);【分析】(1)根据题中所给出的例子找出规律,即可得到第六个等式.(2)根据题中所给出的例子找出规律,进行解答即可.(3)根据所得结论,进行化简,即可得到答案.4.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。

2024年中考数学真题汇编专题二 有理数及其运算+答案详解

2024年中考数学真题汇编专题二 有理数及其运算+答案详解

2024年中考数学真题汇编专题二 有理数及其运算+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,数轴上点P 表示的数是( )A .1−B .0C .1D .22.(2024·四川遂宁·中考真题)中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( )A .60.6210⨯B .66.210⨯C .56.210´D .56210⨯3.(2024·湖南·中考真题)据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家,将4015000用科学记数法表示应为( )A .70.401510⨯B .64.01510⨯C .540.1510⨯D .34.01510⨯4.(2024·河南·中考真题)据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A .8578410⨯B .105.78410⨯C .115.78410⨯D .120.578410⨯ 5.(2024·河南·中考真题)计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭个的结果是( ) A .5a B .6a C .3a a + D .3a a6.(2024·天津·中考真题)据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯7.(2024·四川乐山·中考真题)2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( )A .8410⨯B .9410⨯C .10410⨯D .11410⨯8.(2024·广西·中考真题)广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A .90.84910⨯B .88.4910⨯C .784.910⨯D .684910⨯ 9.(2024·黑龙江绥化·中考真题)实数12025−的相反数是( ) A .2025 B .2025− C .12025− D .1202510.(2024·甘肃临夏·中考真题)据央视财经《经济信息联播》消息:甘肃天水凭借一碗香喷喷的麻辣烫成为最“热辣滚烫”的顶流.2024年3月份,天水市累计接待游客464万人次,旅游综合收入27亿元.将数据“27亿”用科学记数法表示为( )A .82.710⨯B .100.2710⨯C .92.710⨯D .82710⨯11.(2024·吉林·中考真题)长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯12.(2024·四川达州·中考真题)有理数2024的相反数是( )A .2024B .2024−C .12024D .12024− 13.(2024·重庆·中考真题)下列各数中最小的数是( )A .1−B .0C .1D .214.(2024·广东·中考真题)2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A .43.8410⨯B .53.8410⨯C .63.8410⨯D .538.410⨯15.(2024·重庆·中考真题)下列四个数中,最小的数是( )A .2−B .0C .3D .12− 16.(2024·四川德阳·中考真题)下列四个数中,比2−小的数是( )A .0B .1−C .12−D .3−17.(2024·四川广安·中考真题)下列各数最大的是( )A .2−B .12−C .0D .118.(2024·云南·中考真题)中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作( )A .100米B .100−米C .200米D .200−米19.(2024·四川广元·中考真题)将1−在数轴上对应的点向右平移2个单位,则此时该点对应的数是( )A .1−B .1C .3−D .320.(2024·四川凉山·中考真题)下列各数中:553025.827−−−+,,,,,,负数有( ) A .1个 B .2个 C .3个 D .4个21.(2024·江苏苏州·中考真题)用数轴上的点表示下列各数,其中与原点距离最近的是( )A .3−B .1C .2D .322.(2024·湖北·中考真题)在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A .10+元B .10−元C .20+元D .20−元23.(2024·湖南·中考真题)在日常生活中,若收入300元记作300+元,则支出180元应记作( )A .180+元B .300+元C .180−元D .480−元24.(2024·河北·中考真题)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D . 25.(2024·广东广州·中考真题)四个数10−,1−,0,10中,最小的数是( )A .10−B .1−C .0D .1026.(2024·贵州·中考真题)下列有理数中最小的数是( )A .2−B .0C .2D .427.(2024·浙江·中考真题)以下四个城市中某天中午12时气温最低的城市是( )A .北京B .济南C .太原D .郑州 28.(2024·四川内江·中考真题)2023年我国汽车出口491万辆,首次超越日本,成为全球第一大汽车出口国,其中491万用科学记数法表示为( )A .44.9110⨯B .54.9110⨯C .64.9110⨯D .74.9110⨯29.(2024·广西·中考真题)下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A .B .C .D .30.(2024·福建·中考真题)据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110⨯B .2696.110⨯C .46.96110⨯D .50.696110⨯31.(2024·北京·中考真题)为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯32.(2024·湖北武汉·中考真题)国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯33.(2024·浙江·中考真题)2024年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( )A .920.13710⨯B .80.2013710⨯C .92.013710⨯D .82.013710⨯34.(2024·吉林·中考真题)若()3−⨯的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1−35.(2024·内蒙古赤峰·中考真题)央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为( )A .95.210⨯B .110.5210⨯C .95210⨯D .105.210⨯36.(2024·内蒙古包头·中考真题)若,m n 互为倒数,且满足3m mn +=,则n 的值为( )A .14B .12C .2D .437.(2024·四川内江·中考真题)下列四个数中,最大数是( )A .2−B .0C .1−D .338.(2024·甘肃·中考真题)下列各数中,比2−小的数是( )A .1−B .4−C .4D .139.(2024·山东威海·中考真题)一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A .7+B .5−C .3−D .1040.(2024·内蒙古赤峰·中考真题)如图,数轴上点A ,M ,B 分别表示数a a b b +,,,若AM BM >,则下列运算结果一定是正数的是( )A .a b +B .a b −C .abD .a b −二、填空题41.(2024·黑龙江大兴安岭地·中考真题)国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为 .42.(2024·江苏连云港·中考真题)如果公元前121年记作121−年,那么公元后2024年应记作 年. 43.(2024·湖北·中考真题)写一个比1−大的数 .44.(2024·湖南·中考真题)计算:()2024−−= .45.(2024·湖北武汉·中考真题)中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2记作 ℃.46.(2024·陕西·中考真题)小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是 .(写出一个符合题意的数即可)47.(2024·黑龙江齐齐哈尔·中考真题)共青团中央发布数据显示:截至2023年12月底,全国共有共青团员7416.7万名.将7416.7万用科学记数法表示为 .48.(2024·上海·中考真题)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的 倍.(用科学记数法表示) 49.(2024·四川广元·中考真题)2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是1810−秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为秒.50.(2024·北京·中考真题)联欢会有A,B,C,D四个节目需要彩排.所有演员到场后节目彩排开始。

2020-2021初中数学有理数全集汇编附答案解析

2020-2021初中数学有理数全集汇编附答案解析

2020-2021初中数学有理数全集汇编附答案解析一、选择题1.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C .绝对值最小的数是0;D .任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在2.在﹣3,﹣1,1,3四个数中,比2大的数是( )A .﹣3B .﹣1C .1D .3 【答案】D【解析】【分析】根据有理数比较大小的方法解答即可.【详解】解:比2大的数是3.故选:D .【点睛】本题考查了有理数比较大小,掌握有理数比较大小的比较方法是解题的关键.3.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a,b在数轴上的位置,可得a<-1<0<1<b,∵1<|a|<|b|,∴选项A错误;∵1<-a<b,∴选项B正确;∵1<|a|<|b|,∴选项C正确;∵-b<a<-1,∴选项D正确.故选:A.【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.4.下列四个数中,是正整数的是()A.﹣2 B.﹣1 C.1 D.1 2【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A、﹣2是负整数,故选项错误;B、﹣1是负整数,故选项错误;C、1是正整数,故选项正确;D、12不是正整数,故选项错误.故选:C.【点睛】考查正整数概念,解题主要把握既是正数还是整数两个特点.5.如果a是实数,下列说法正确的是()A.2a和a都是正数B.(-a+2可能在x轴上C.a的倒数是1aD.a的相反数的绝对值是它本身【答案】B【解析】【分析】A、根据平方和绝对值的意义即可作出判断;B、根据算术平方根的意义即可作出判断;C、根据倒数的定义即可作出判断;D、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单. 6.-6的绝对值是()A.-6 B.6 C.- 16D.16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.7.若︱2a︱=-2a,则a一定是( )A.正数B.负数C.正数或零D.负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a一定是一个负数或0.故选D8.四个有理数﹣2,1,0,﹣1,其中最小的数是( )A .1B .0C .﹣1D .﹣2【答案】D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】∵-2<-1<0<1,最小的是-2.故选D .【点睛】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.9.如图,下列判断正确的是( )A .a 的绝对值大于b 的绝对值B .a 的绝对值小于b 的绝对值C .a 的相反数大于b 的相反数D .a 的相反数小于b 的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a |,|b |,有可能|a |>|b |,|a |=|b |,|a |<|b |. 由数轴上的点表示的数右边的总比左边的大,得a <b ,由不等式的性质,得﹣a >﹣b ,故C 符合题意;故选:C .【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.11.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1; ③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;12.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007, ∴20062007a a a -+-=可化为a 2006a 2007a -+-=,∴20072006a -=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.13.下列语句正确的是( )A .近似数0.010精确到百分位B .|x-y |=|y-x |C .如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的14.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】 利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立;若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.15.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.16.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .17.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.18.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣c|+7b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c |++7b -=0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7-3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形, ∴4a =20,∴a=5,∴c =5,∴a +b +c =5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.19.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D成立.故选:D.【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.20.如果x取任意实数,那么以下式子中一定表示正实数的是( )A.x B.C.D.|3x+2|【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x可以取全体实数,不符合题意;B.≥0, 不符合题意;C. >0, 符合题意;D. |3x+2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.。

初一数学有理数试题答案及解析

初一数学有理数试题答案及解析

初一数学有理数试题答案及解析1.实数在数轴上的位置如图所示,下列各式正确的是()A.B.C.D.【答案】D.【解析】依据对数轴的认识,原点左边的数值小于0,原点右边的数值大于0;原点右边的数距离原点越远,数值越大,原点左边的数距离原点越远,数值越小.A、由在原点的左边,则,故选项错误;B、由距离原点比较远,且,位于原点右边,,则,故选项错误;C、由,则,故选项错误;D、由,则,故选项正确.故选D.【考点】数轴.2.化简【答案】.【解析】含有绝对值的实数混合运算,先去绝对值,在合并同类二次根式,求出结果.取绝对值前要分析绝对值里面式子的符号.试题解析:因为,原式==.【考点】1绝对值;2二次根式的合并;3去括号法则.3.化简:【答案】.【解析】注意去绝对值符号..【考点】绝对值.4.﹣7的绝对值是.【答案】7.【解析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.∵﹣7<0,∴|﹣7|=7.【考点】绝对值.5.计算:(1);(2)【答案】(1)-12;(2)【解析】(1)先算有理数的乘方及小括号里的,再把除化为乘,最后根据有理数的乘法法则计算即可;(2)先根据算术平方根、立方根的性质化简,再算加减即可.解:(1)(2)【考点】实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.6.如图,边长分别为1,2,3,4,……,2007,2008的正方形叠放在一起,请计算图中阴影部分的面积.【答案】2017036【解析】第一个阴影部分的面积等于第二个图形的面积减去第一个图形的面积,第二个阴影部分的面积等于第四个图形的面积减去第三个图形的面积,由此类推,最后一个阴影部分的面积等于最后一个图形的面积减去倒数第二个图形的面积.由图可得图中阴影部分的面积为:(22-1)+(42-32)+…+(20082-20072)=(2+1)(2-1)+(4+3)(4-3)+…+(2008+2007)(2008-2007)=1+2+3+4+…+2007+2008==2017036.【考点】找规律-图形的变化点评:本题规律为:每一个阴影部分的面积等于两个正方形面积的差,这样可以将阴影部分的面积看做边长为偶数的正方形的面积减去边长为奇数的正方形的面积.7.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2。

初中数学有理数真题汇编含答案解析

初中数学有理数真题汇编含答案解析

初中数学有理数真题汇编含答案解析一、选择题1.已知有理数a、b在数轴上的位置如图所示,则下列代数式的值最大的是()A.a+b B.a﹣b C.|a+b| D.|a﹣b|【答案】D【解析】【分析】根据数轴确定出a是负数,b是正数,并且b的绝对值大于a的绝对值,然后对各选项分析判断,再根据有理数的大小比较,正数大于一切负数,然后利用作差法求出两个正数的大小,再选择答案即可.【详解】由图可知,a<0,b>0,且|b|>|a|,∴−a<b,A. a+b>0,B. a−b<0,C. |a+b|>0,D. |a−b|>0,因为|a−b|>|a+b|=a+b,所以,代数式的值最大的是|a−b|.故选:D.【点睛】此题考查有理数的大小比较,数轴,解题关键在于利用绝对值的非负性进行解答.2.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.4【答案】C【解析】【分析】利用绝对值的代数意义求出a的值即可.【详解】若a为有理数,且|a|=2,那么a是2或﹣2,故选C.【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.3.如果实数a,b在数轴上的对应点的位置如图所示,那么下列结论正确的是()A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】 根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.﹣3的绝对值是( )A .﹣3B .3C .-13D .13【答案】B【解析】【分析】 根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3. 故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.6.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.7.在–2,+3.5,0,23-,–0.7,11中.负分数有( ) A .l 个B .2个C .3个D .4个【答案】B【解析】根据负数的定义先选出负数,再选出分数即可. 解:负分数是﹣23,﹣0.7,共2个. 故选B . 8.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴()()22a a b a b a a b +-=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.9.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0. 10.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .513【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥0,2(2)1y --≥0,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形, 则斜边的长为:222222+=;②当2,3均为直角边时,斜边为222313+=;③当2为一直角边,3为斜边时,则第三边是直角,长是22325-=.故选D .考点:1.非负数的性质;2.勾股定理.11.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a + 【答案】B【解析】【分析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.12.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b<0,b-a<0,∴原式=-(a+b)+(b-a)=-a-b+b-a=-2a,故选A.【点睛】.13.方程|2x+1|=7的解是()A.x=3 B.x=3或x=﹣3 C.x=3或x=﹣4 D.x=﹣4【答案】C【解析】【分析】根据绝对值的意义,将原方程转化为两个一元一次方程后求解.【详解】解:由绝对值的意义,把方程217x+=变形为:2x+1=7或2x+1=-7,解得x=3或x=-4故选C.【点睛】本题考查了绝对值的意义和一元一次方程的解法,对含绝对值的方程,一般是根据绝对值的意义,去除绝对值后再解方程.14.7-的绝对值是()A.17-B.17C.7D.7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键. 15.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D 【答案】B【解析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 、42=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.16.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为( )A .()2019,0B .()2019,1C .()2019,2D .()2020,0【答案】C【解析】 【分析】 分析点P 的运动规律,找到循环次数即可.【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位. ∴2019=4×504+3, 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.17.-14的绝对值是( ) A .-4 B .14 C .4 D .0.4【解析】【分析】直接用绝对值的意义求解.【详解】−14的绝对值是14.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.18.在﹣6,0,﹣1,4这四个数中,最大的数是()A.4 B.﹣6 C.0 D.﹣1【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A.【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.19.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【答案】C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.20.下列各组数中,互为相反数的组是()A .2-B .2-C .12-与2D .【答案】A【解析】【分析】 根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.。

语法知识—有理数的真题汇编附答案解析

语法知识—有理数的真题汇编附答案解析

一、填空题1.已知数轴上的点A 、B 分别表示数-3、+1,若点C 是线段AB 的中点,则点C 所表示的数是__________.2.比较大小:1_____﹣2(填“>,<或=”)3.分数35的相反数是__________. 4.有理数a b c d 、、、在数轴上对应点的位置如图所示,若有理数、b d 互为相反数,则这四个数有理数中,绝对值最大的是______.5.已知代数式6x 16-+与7x 18-的值互为相反数,则x =______.二、解答题6.有理数a 、b 、c 在数轴上的位置如图.(1)判断正负,用“>”或“<”填空:b ﹣c____0,a+b_____0,﹣a+c_____. (2)化简:|b ﹣c|+|﹣a|+|a+b|+|b ﹣a|﹣|a ﹣c| 7.化简并求值:2(a 2-ab)-3(23a 2-ab),其中a ,b 满足|a+2b|+(b-1)2=0. 8.已知代数式:①a 2-2ab +b 2;②(a -b )2.(1)当a 、b 满足(a -5)2+|ab -15|=0时,分别求代数式①和②的值;(2)观察(1)中所求的两个代数式的值,探索代数式a 2-2ab +b 2和(a -b )2有何数量关系,并把探索的结果写出来;(3)利用你探索出的规律,求128.52-2×128.5×28.5+28.52的值. 9.如图①,数轴上的点A 、B 分别表示数a 、b ,则点A 、B (点B 在点A 的右侧)之间的距离表示为AB =b ﹣a ,若点C 对应的数为c ,满足|a +3|+(c ﹣9)2=0. (1)写出AC 的值 .(2)如图②,点D 在点C 的右侧且距离m (m >0)个单位,点B 在线段AC 上,满足AB +AC =BD ,求AB 的值(用含有m 的代数式表示).(3)如图③,若点D 在点C 的右侧6个单位处,点P 从点A 出发以2个单位/秒的速度向右运动,同时点M 从点C 出发以1个单位/秒的速度也向右运动,当到达D 点后以原来的速度向相反的方向运动.求经过多长时间,点P 和点M 之间的距离是2个单位?10.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且()2420a b -++=,现将A 、B 两点之间的距离记作AB ,定义.AB a b =-(1)___________a b AB ===,,;(2)若点P 在数轴上对应的数是x ,当点P 在A 、B 两点之间时,42x x -++的值为_______;(3)设点P 在数轴上对应的数是x ,当PA +PB =8时,求x 的值。

初一数学有理数试题答案及解析

初一数学有理数试题答案及解析

初一数学有理数试题答案及解析1.―0.5的相反数是.【答案】0.5【解析】正数的相反数是负数,0的相反数是0,负数的相反数是正数,所以-0.5的相反数是0.5. 本题涉及了相反数,该题很简单,主要考查学生对相反数的理解和判断,除此以外,常考的还有绝对值和平方等。

2.下列计算中,正确的是()A.30+3-3=-3B.C.(2a2)3=8a5D.-a8÷a4=-a4【答案】D【解析】根据有理数的乘方法则、二次根式的性质、幂的运算法则依次分析各选项即可.A、,B、不是同类项,无法合并,C、,故错误;D.,本选项正确.本题涉及了实数的运算,计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.3.下列结论正确的有()(1)零是绝对值最小的实数;(2)π-3的相反数是3-π;(3)无理数就是带根号的数;(4)-的立方根为±;(5)所有的实数都有倒数;(6)的绝对值是。

A.5个B.4个C.3个D.2个【答案】C.【解析】(1)零是绝对值最小的实数;正确;(2)π-3的相反数是3-π,正确;(3)无理数就是带根号的数,错误;(4)-的立方根为±,错误;(5)所有的实数都有倒数,错误;(6)的绝对值是,正确.共有3个正确的,故选C.【考点】1.绝对值;2.无理数;3.立方根.4.已知两数在数轴上的位置如图所示,则化简代数式的结果是()A.1B.C.D.-1【答案】B【解析】由数轴可知,且,所以,故.5.有理数在数轴上表示的点如图所示,则的大小关系是()A.B.C.D.【答案】D【解析】由数轴可知,所以其在数轴上的对应点如图所示,则,选D.6.有理数a、b在数轴上位置如图所示,试化简.【答案】-5-2b.【解析】由有理数a、b在数轴上位置可得1<a<2,-3<b<-1.正数和零的绝对值是它本身,附属的绝对值是它的相反数,所以,︱1-3b︱=1-3b; ︱2+b︱=-(2+b),︱3b-2︱=3b-2,试题解析:原式=1-3b-4-2b+3b-2=-5-2b【考点】1.数形结合.2.绝对值.3.整式加减.7.如果数轴上的点A对应的数为,那么与A点相距3个单位长度的点所对应的有理数为_________________.【答案】或2.【解析】如果数轴上的点A对应的数为,那么与A点相距3个单位长度的点所对应的有理数为:或.【考点】实数与数轴.8.﹣|﹣|的倒数是()A.B.﹣C.2D.﹣2【答案】D【解析】根据绝对值和倒数的定义作答.解:∵﹣|﹣|=﹣,﹣的倒数是﹣2,∴﹣|﹣|的倒数是﹣2.故选:D.点评:此题主要考查了倒数与绝对值的性质,根据一个负数的绝对值是它的相反数.若两个数的乘积是1,我们就称这两个数互为倒数得出是解决问题的关键.9.利用整式乘法公式计算:2014×2012-20132=_________.【答案】【解析】2014×2012-20132=(2013+1)(2013-1)-20132=20132-1-20132=-1【考点】整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)2t-4 (4)解:当点 P 在点 C 的左边时,2t=3,则 t=1.5; 当点 P 在点 C 的右边时,2t=7,则 t=3.5. 综上所述,当 t 等于 1.5 或 3.5 秒时,P、C 之间的距离为 2 个单位长度.
【解析】【解答】解:(1)依题意得,点 C 是 AB 的中点,故点 C 表示的数是:
3.如图所示,一个点从数轴上的原点开始,先向右移动 3 个单位长度,再向左移动 5 个单 位长度,可以看到终点表示的数是﹣2,已知点 A、B 是数轴上的点,请参照图并思考,完 成下列各题.
(1)如果点 A 表示数﹣3,将点 A 向右移动 7 个单位长度,那么终点 B 表示的数是 ________,A、B 两点间的距离是________; (2)如果点 A 表示数 3,将 A 点向左移动 7 个单位长度,再向右移动 5 个单位长度,那么 终点 B 表示的数是________,A、B 两点间的距离为________; (3)如果点 A 表示数﹣4,将 A 点向右移动 16 个单位长度,再向左移动 25 个单位长度, 那么终点 B 表示的数是________,A、B 两点间的距离是________; (4)一般地,如果 A 点表示的数为 m , 将 A 点向右移动 n 个单位长度,再向左移动 p 个 单位长度,那么请你猜想终点 B 表示什么数?A、B 两点间的距离为多少? 【答案】 (1)4;7 (2)1;2 (3)﹣13;9 (4)解:一般地,如果 A 点表示的数为 m,将 A 点向右移动 n 个单位长度,再向左移动 p 个单位长度,那么请你猜想终点 B 表示 m+n﹣p,A、B 两点间的距离为|n﹣p|. 【解析】【解答】解:(1)如果点 A 表示数﹣3,将点 A 向右移动 7 个单位长度,那么终 点 B 表示的数是 4,A、B 两点间的距离是 7;(2)如果点 A 表示数 3,将 A 点向左移动 7 个单位长度,再向右移动 5 个单位长度,那么终点 B 表示的数是 1,A、B 两点间的距离为 2;(3)如果点 A 表示数﹣4,将 A 点向右移动 16 个单位长度,再向左移动 25 个单位长 度,那么终点 B 表示的数是﹣13,A、B 两点间的距离是 9; 【分析】(1)根据数轴上的点向右平移加,可得 B 点表示的数,根据数轴上两点间的距 离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得 B 点 表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右 平移加,向左平移减,可得 B 点表示的数,根据数轴上两点间的距离是大数减小数,可得 答案;(4)根据数轴上的点向右平移加,向左平移减,可得 B 点表示的数,根据数轴上 两点间的距离是大数减小数,可得答案;
=1.
故答案是:1;
( 3 )点 P 表示的数是 2t-4.
故答案是:2t-4;
【分析】(1)根据 xc=
可求解;
(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得 AB 的距离,再根据时间
=路程÷速度可求解;

(4)由题意可分两种情况讨论求解:① 当点 P 在点 C 的左边时, 由题意可列关于 t 的方 程求解; ② 当点 P 在点 C 的右边时, 同理可求解.
一、初一数学有理数解答题压轴题精选(难)
1.如图在数轴上 A 点表示数 a,B 点表示数 b,a、b 满足|a+2|+|b﹣4|=0;
(1)点 A 表示的数为________;点 B 表示的数为________; (2)若在原点 O 处放一挡板,一小球甲从点 A 处以 1 个单位/秒的速度向左运动;同时另 一小球乙从点 B 处以 2 个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看 作一点)以原来的速度向相反的方向运动,设运动的时间为 t(秒), ①当 t=1 时,甲小球到原点的距离=________;乙小球到原点的距离=________; 当 t=3 时,甲小球到原点的距离=________;乙小球到原点的距离=________; ②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接 写出甲,乙两小球到原点的距离相等时经历的时间.________ 【答案】 (1)-2 ;4
度; ①当 t=1 时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为 4-2×1=2; 当 t=3 时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为 2×3-4=2; 故答案为:3,2;5,2 【分析】(1)利用几个非负数之和为 0,则每一个数都是 0,建立关于 a,b 的方程组,解 方程组求出 a,b 的值,就可得到点 A,B 所表示的数。 (2)①根据两个小球的运动方向及速度,可以分别用含 t 的代数式表示出当 0<t≤2 时, 甲小球距离原点的距离和乙小球离原点的距离,当 t>2 时,甲小球距离原点的距离和乙小 球离原点的距离,然后将 t=1 和 t=3 分别代入相关的代数式,即可求解;②利用(2)中的 结论,分情况分别根据甲,乙两小球到原点的距离相等时经历的时间 ,建立关于 t 的方 程,解方程求出 t 的值。
2.如图,已知数轴上的点 表示的数为 ,点 表示的数为
,点 到点 、点 的
距离相等,动点 从点 出发,以每秒 个单位长度的速度沿数轴向右匀速运动,设运动
时间为 ( 大于 秒.
(1)点 表示的数是________. (2)求当 等于多少秒时,点 到达点 处? (3)点 表示的数是________(用含字母 的式子表示) (4)求当 等于多少秒时, 、 之间的距离为 个单位长度. 【答案】 (1)1 (2)解:[6-(-4)]÷2=10÷2=5(秒) 答:当 t=5 秒时,点 P 到达点 A 处.
(2)3 ;2 ;5 ;2 ;能. 理由: 当 0<t≤2 时,t+2=4-2t
解之: 当 t>2 时,t+2=2t-4 解之:t=6
∴当
或 6 时,甲乙两小球到原点的距离相等.
【解析】【解答】解:(1)∵ a、b 满足|a+2|+|b﹣4|=0, ∴ a+2=0 且 b-4=0 解之:a=-2 且 b=4, ∵ 在数轴上 A 点表示数 a,B 点表示数 b, ∴ 点 A 表示的数是-2,点 B 表示的数是 4. 故答案为:-2,4. (2)当 0<t≤2 时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个 单位长度; 当 t>2 时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长
相关文档
最新文档