737NG液压系统介绍讲课教案

737NG液压系统介绍讲课教案
737NG液压系统介绍讲课教案

737N G液压系统介绍

液压A系统

液压A系统将液压供到以下飞机系统:

?左反推

?起落架收放

?前轮转弯

?备用刹车

?主飞行操纵

?飞行扰流板(4)

?地面扰流板(4)

液压B系统

液压B系统将液压供到以下飞机系统:

右反推

正常刹车

主飞行操纵

飞行扰流板(4)

后缘襟翼

前缘襟翼和缝翼

备用液压系统

备用液压系统向以下飞机系统提供备用液压:

?备用方向舵

?两个反推

?前缘襟翼和缝翼

如果1#燃油箱的燃油少于250加仑(1675磅/760公斤),操作电动泵不可以超过两分钟。

当以下情况同时出现时,备用系统会自动工作:

a.1个飞行操纵电门在“ON”位,且飞行操纵的压力低

b.后缘襟翼未收上

c.飞机在空中或轮速超过60节。

在以下情况同时出现时,PTU会自动工作:

?飞机在空中

?后缘襟翼位置在0~15单位之间

?B系统发动机驱动泵输出低压

A系统油箱有一个竖管,用于EDP(20%)。油箱底部的油口用于供给EMDP液压油。

B系统油箱有一个竖管,用于EDP和EMDP(?%)。油箱底部的口用于给PTU供油。

与备用油箱相连的加油和平衡管在72%。

76%加油

A系统的地面勤务接头组件位于左冲压空气舱的后壁板。

B系统的地面勤务接头组件位于右冲压空气舱的后壁板。

加液压油或检查油箱油量时,为得到正确的结果,飞机应在如下状态:

?飞行操纵——中立

?前缘襟翼和缝翼——收上

?后缘襟翼——收上

?扰流板——放下

?起落架——放下

?反推——收回

?液压A、B系统——关闭

?刹车蓄压器——2800psi以上

如果间歇地操作EMDP,用以下程序:

?在5分钟的周期内,任何一个泵起动不得超过5次

再次起动泵之前需等待30秒。

如果需要在5分钟内操作泵5次以上,那么需要做以下工作之一:

?在第5次起动之后连续让泵工作5分钟(监控过热警告灯)

将泵关掉,让它冷却30分钟以上。

EDP通常在打开位,位置指示器不能超控,拉起灭火手柄关闭,放下打开。EDP正常输出压力2850psi,最大2950-3075psi

EMDP正常输出压力2700psi

当系统压力超过正常值达到3500psi 时,释压活门开始打开以保护系统。

液压系统简介剖析

液压原理培训教材 第一章液压系统简述 一、液压传动的工作原理 1、液压传动是以液体为工作截止来传递动力的 2、液压传动用液体的压力能来传递动力,它与液体动能的液力传 动是不相同的。 3、液压传动中的工作介质是在受控制,受调节的状态下进行工作 的,因此液压传动和液压控制常常难以截然分开。 二、液压传动的组成部分 1、动力装置―――把机械能转换成油液液压能的装置,最常见的形式就是液压泵,它给液压系统提供压力油。 2、执行装置―――把油液的液压能转换成机械能的装置,它可以是作直线运动的液压缸,也可以是作回转运动的液压马达。 3、控制调节装置―――对系统中油液的压力、流量、或流动方向进行控制或调节的装置,例如溢流阀,节流阀、换向阀、先导阀等,这些元件的不同组合形成了不同功能的液压系统。 4、辅助装置―――上述部分以外的其它装置,例如油箱、滤油器、油管等。 三、液压传动的控制方式 液压传动的“控制方式”有两种不同的涵义,一种指对传动部分的操控调节方式,另一种是指控制部分本身结构组成形式。 液压传动的操纵调节方式可以概略的分为手动式,半自动式、和

全自动式。而液压系统中控制部分的结构组成形式有开环和闭环式的两种。如平台的液压猫头就是开式的手动控制系统。而顶驱机械手的液压控制系统为闭环控制。 四、液压传动的优缺点 优点: 1、在同等体积下,液压装置能比电气装置产生出更多的动力。在 同等功率下,液压装置的体积小,重量轻,结构紧凑。液压马达的体积和重量只有同等功率电机的12%左右。 2、液压装置工作比较平稳。 3、液压装置能在大范围内实现无极调速,它还可以在运动状态下 进行调速。 4、液压装置易于实现自动化。当液压控制和电气控制。电子控制 或气动控制结合起来使用的时候,整个传动装置能实现很复杂的顺序动作。接收远程控制。 5、液压装置易于实现过载保护。 6、由于液压元件已实现标准化,系列化和通用化。液压装置的设 计、制作和使用都比较方便。 7、用液压装置实现直线运动比机械传动简单。 缺点: 1、液压传动不能保证严格的传动比,这是由于液压油的可压缩 性和泄漏等原因造成的。 2、液压传动在工作过程中有较大的能量损失)摩擦损失、泄漏

第九章典型液压系统及实例 习题答案

9.2 写出图9-2所示液压系统的动作循环表,并评述这个液压系统的特点。 图9-2 [解答] 系统动作循环见下表,这个系统的主要特点是:用液控单向阀实现液压缸差动连接;回油节流调速;液压泵空运转时在低压下卸荷。 lYA 2Y^ 3YA 快进 + - + 工进 + - - 停留 + - - 快退 - + - 停止 - - - 电 磁 铁 工 作 循 环

习题解答 9.1 试写出图9.9所示液压系统的动作循环表,并评述这个液压系统的特点。 解答:该液压系统的动作循环表如下: 1YA 2YA3YA 动作顺序快进+-+ 工进+-- 停留+-- 快退-+- 停止--- 这是单向变量泵供油的系统,油泵本身可变速,工 进过程中,可以通过调速阀配合调速。执行机构为活塞杆固定的工作缸。通过三位五通电液换向阀换向。实现快进、工进、停留、快退、停止的工作过程如下:

快进时:1YA通电,液压油进入工作缸的左腔,推动缸筒向左运动,由于3YA也通电,液控单向阀有控制油,工作缸右腔的油经过三位阀也进入工作缸左腔,油缸实现差动快进。 工进时:3YA断电,油缸右腔的回油经调速阀回油箱,缸筒以给定的速度工进,可实现稳定调速。 工进到终点,缸筒停留短时,压力升高,当压力继电器发出动作后,1YA断电,2YA通电,泵来的压力油经液控单向阀进入缸筒右腔,推动缸筒快速退回。退回至终点停止。 9.2 图9.8所示的 压力机液压系统, 能实现“快进、慢 进、保压、快退、 停止”的动作循环, 试读懂此系统图, 并写出:包括油路 流动情况的动作循 环表。

解答:

10左→9 → 11 ; 停止-- 9.3 图9.11所示的 液压系统,如按规定的 顺序接受电器信号,试 列表说明各液压阀和 两液压缸的工作状态。 1YA2YA 动作顺序1-+2--3+-4++5+-6-- 解答:

典型液压系统教案

第八章典型液压系统 一个机器设备的液压系统无论有多复杂,都是由若干个基本回路组成的,基本回路的特性也就决定了整个系统的性能。要想真正读懂一个液压系统,就必须按照一定的读图方法和步骤进行。 1)认真分析该液压主机的工作原理、性能特点,研究清楚这台主机对其液压系统的工作要求。 2)根据主机对液压系统执行元件动作循环具体要求,从油源到执行元件按油路的走向初步阅读液压系统原理图,寻找它们的连接关系,读图时按照先控制油路后主油路的读图顺序进行。 3)按系统中组成的基本回路来分解系统的功能,并根据系统各执行元件间的同步、互锁、顺序动作和防干扰等逻辑关系的要求,全面读懂液压系统原理图。 4)分析液压系统各功能要求的实现方法和系统性能优劣,总结归纳出系统的特点。 第一节组合机床动力滑台液压系统 一、概述 组合机床是一种在制造领域中用途广泛的半自动专用机床。组合机床由通用部件(如动力头、动力滑台、床身、立柱等)和专用部件(如专用动力箱、专用夹具等)两大类部件组成,有卧式、立式、倾斜式、多面组合式多种结构形式。卧式组合机床的结构原理如图8—1、组合机床照片组所示。 组合机床的进给运动由动力滑台的运动实现。动力滑台按驱动方式不同分为液压滑台和机械滑台两种形式,它们各有优缺点,分别应用于不同运动与控制要求的加工场合。由于动力滑台在驱动动力头进行机械加工的过程中有多种运动和负载变化要求,因此,控制动力滑台运动的液压系统必须具备换向、速度换接、调速、压力控制、自动循环、功率自动匹配等多种功能。 二、液压动力滑台的工作原理 YT4543型动力滑台是一种使用广泛的通用液压动力滑台,该滑台由液压缸驱动,在电气和机械装置的配合下可以实现多种自动加工工作循环。该动力滑台液压系统最高工作压力可达6.3MPa,属于中低压系统。 YT4543型动力滑台的液压系统图和系统的动作循环表如图8-2和表8-1所示。由图可见,该液压系统能够实现“快进——工进——停留——快退——停止”的自动工作循环,其工作情况如下1)快进人工按下自动循环起动按钮,液压缸7处于差动连接状态,实现液压缸7快速运动。此时,系统中油液流动的情况为 进油路泵14→单向阀13→换向阀12(左位)→行程阀8(右位)→缸7(左腔); 回油路缸7(右腔)→换向阀12(左位)→单向阀3→行程阀8(右位)→缸7(左腔)。 2)一工进滑台快进到预定位置时行程挡块压下行程阀8,系统进入容积节流调速工作方式,使系统第一次工作进给开始。由于压力的反馈作用,叶片泵14输出流量与调速阀4的流量自动匹配。此时,系统中油液流动情况为: 进油路泵14→单向阀13→换向阀12(左位)→调速阀4→电磁阀9(右位)→缸7(左腔); 回油路缸7右腔→换向阀12(左位)→顺序阀2→背压阀1→油箱。 3)二工进滑台第一次工作进给结束时,装在滑台前侧面的另一个行程挡块压下一行程开关,系统仍然处于容积节流调速状态,第二次工作进给开始。此时,系统中油液流动情况为进油路泵14→单向阀13→换向阀12(左位)→调速阀4→调速阀10→缸7左腔; 回油路缸7右腔→换向阀12(左位)→顺序阀2→背压阀1→油箱。 4)进给终点停留 5)快退系统中油液的流动情况为 进油路泵14→单向阀13→换向阀12(右位)→缸7右腔; 回油路缸7左腔→单向阀6→换向阀12(右位)→油箱。 6)停止此时,系统中油液的流动情况为

液压系统的设计计算教案11

第11 次课教学整体设计

教学过程(教学设计实施步骤及时间分配) 步骤1:复习巩固、检查课后搜集的资料(10分钟) 一、复习调速回路概念及功能 二、复习速度变换回路。 三、检查预习情况。 步骤2:本节课学习任务、情境设计(5分钟) 本节课主要学习液压系统设计,通过学习液压系统设计有关方面的知识,了解液压系统设计步骤和方法。 步骤3-1:讲授知识(30分钟) 第4章液压系统的设计计算 液压系统的设计主要是根据工作机器提出的技术要求,同时设计时考虑可靠性、安全性及经济性等因素。 液压系统的设计步骤一般为:工作机器的基本技术分析,主要参数的确定,液压系统功能设计,选择液压元件,绘制工作图(液压装置的设计与计算),编制技术文件。这些步骤相互关联,彼此影响,因此常常需要交叉进行。 4.1 液压系统设计 一、工作机器的基本技术分析 在液压系统设计时,首先应明确工作机器的基本技术要求。其具体内容是:①工作机的用途、结构、总体布局;②工作机的工作循环及运动方式;③液压执行元件的负载及运动速度; ④工作机各执行元件的动作顺序或互锁要求;⑤液压系统的性能、效率、自动化程度、工作环境等方面的要求;⑥液压装置的重量、外形尺寸、经济性等方面的规定或限制。 二、主要参数确定 主要参数是指液压执行元件的工作压力和最大流量。主要参数的确定又依据液压系统的工作状况,因此,需要对液压系统进行工况分析。 1.液压系统工况分析工况分析是指执行元件的运动速度和负载变化的分析,这是为了满足工作机动作和承载的要求。液压系统承受的负载由工作机的规格而定,可由样机通过实验测定,也可以由理论分析确定。当用理论分析确定系统的实际负载时,必须仔细考虑它所有的组成项目。例如:工作负载(切削力、挤压力、弹性塑性变形抗力、重力等)、惯性负载和阻力负载(摩擦力、背压力)等,并把它们绘制成相应的负载图和速度图,如图4-1所示。 2.主要参数确定主要参数依赖于机器的形式,执行元件的形式可以根据工作机所要实现的运动种类和性质而定。 执行元件的工作压力可以根据最大负载来选取,也可以根据工作机的类型来选取。 在液压系统中,工作压力选得小些,对系统的可靠性、低速平稳性和降低噪声都是有利的,但是结构尺寸相对较大,因为执行元件当压力选定后,液压缸的截面尺寸便可以由推力来确定。 最大流量则由执行元件速度图中的最大速度计算出来。这与执行元件结构参数有关。 液压系统执行元件各个阶段的压力和流量工况如图4-2 所示。它是在执行元件结构参数确定后,根据设计任务要求,算出不同阶段中的实际工作压力、流量作出的工况分析图,它显示了液压系统整个工作循环中这两个参数的变化情况。当系统中包含多个执行元件时,其工况图

机械机电毕业设计_液压系统设计计算实例

液压系统设计计算实例 ——250克塑料注射祝液压系统设计计算 大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时,因螺杆外装有电加热器,而将料熔化成粘液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔之中,经一定时间的保压冷却后,开模将成型的塑科制品顶出,便完成了一个动作循环。 现以250克塑料注射机为例,进行液压系统设计计算。 塑料注射机的工作循环为: 合模→注射→保压→冷却→开模→顶出 │→螺杆预塑进料 其中合模的动作又分为:快速合模、慢速合模、锁模。锁模的时间较长,直到开模前这段时间都是锁模阶段。 1.250克塑料注射机液压系统设计要求及有关设计参数 1.1对液压系统的要求 ⑴合模运动要平稳,两片模具闭合时不应有冲击; ⑵当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。注射后,注射机构应保持注射压力,使塑料充满型腔; ⑶预塑进料时,螺杆转动,料被推到螺杆前端,这时,螺杆同注射机构一起向后退,为使螺杆前端的塑料有一定的密度,注射机构必需有一定的后退阻力; ⑷为保证安全生产,系统应设有安全联锁装置。 1.2液压系统设计参数 250克塑料注射机液压系统设计参数如下: 螺杆直径40mm 螺杆行程200mm 最大注射压力153MPa 螺杆驱动功率5kW 螺杆转速60r/min 注射座行程230mm 注射座最大推力27kN 最大合模力(锁模力) 900kN 开模力49kN 动模板最大行程350mm 快速闭模速度0.1m/s 慢速闭模速度0.02m/s 快速开模速度0.13m/s 慢速开模速度0.03m/s 注射速度0.07m/s 注射座前进速度0.06m/s 注射座后移速度0.08m/s 2.液压执行元件载荷力和载荷转矩计算 2.1各液压缸的载荷力计算 ⑴合模缸的载荷力 合模缸在模具闭合过程中是轻载,其外载荷主要是动模及其连动部件的起动惯

第一章液压传动概述教案

第一章液压传动概述 本章难点:压力取决于负载 它所介绍的内容,是机械工程技术人员必须掌握,不可缺少的基础技术知识。研究以有压流体(压力油和压缩空气)为传动介质来实现各种机械传动和自动控制的学科。 一部完整的机器由原动机部分、传动机构及控制部分、工作机部分(含辅助装置)组成。原动机包括电动机、内燃机等。工作机即完成该机器之工作任务的直接工作部分,如剪床的剪刀、车床的刀架等。由于原动机的功率和转速变化范围有限,为了适应工作机的工作力和工作速度变化范围变化较宽,以及性能的要求,在原动机和工作机之间设置了传动机构,其作用是把原动机输出功率经过变换后传递给工作机。一切机械都有其相应的传动机构借助于它达到对动力的传递和控制的目的。 传动机构通常分为机械传动、电气传动和流体传动机构。 流体传动是以流体为工作介质进行能量转换、传递和控制的传动。它包括液压传动、液力传动和气压传动。 液压传动和液力传动均是以液体作为工作介质进行能量传递的传动方式。液压传动主要是利用液体的压力能来传递能量;而液力传动则主要是利用液体的动能来传递能量。 气压传动,其做工的介质是空气体;液压传动,其做工的介质是机油(或其它的液体)。气压传动的结构简单,该介质(空气)不需要成本;液压传动结构复杂点,且需要其它的材料作为介质,成本会高点。但液压传动的密封性能好,所以传动的力矩会大点,做工性能会好些。 1.1 液压技术的发展 本章是学习液压与气压传动的启蒙章节,主要阐述了本课的一些重要概念、并通过液压千斤顶简化模型的分析深入理解液压传动的工作原理和液压系统的基本组成,最后介绍液压传动的优缺点和应用领域。 首先介绍什么是传动?传动的类型有哪些? 引导学生举生活中常见的实例说明以下五种传动,使学生对传动及其类型有所认识和掌握。 机械传动———自行车,缝纫机; 电传动————电动门,声控灯,音乐喷泉; 气压传动———公交车的车门; 液压传动———千斤顶,液压挖掘机; 液压传动是以液体作为工作介质来进行能量传递的一种传动形式,它通过能量转换装置(如液压泵),将原动机(如电动机)的机械能转变为液体的压力能,然后通过封闭的管道、控制元件等,由另一能量转换装置(如液压缸或马达)将液体的压力能转变为机械能,以驱动负载和实现执行机构所需的直线或旋转运动。 因此,以液体作为工作介质,并以其压力能进行能量传递的方式,即为液压传动。 注意几点: ①工作条件:密封系统 ②工作介质:受压的流体 ③传动方式:传递运动和动力 1.1.1 液压技术发展的历史

液压增压器实际应用案例大全图解

液压增压器应用行业图解一、模具合模应用 注塑机、压铸机等设备在作业时,其容腔内压力与容腔截面投影面积的乘积,再乘以1.2-1.5的安全系数,即为设备最小合模力,即F=KPA,F为最小合模力,P为材料注塑压力,A为注塑面投影面积。和般注塑机锁模液压压力为液压主系统压力的1.5-3倍。常用的高低压泵组方案,要求主系统压力等级按最高压力设计。一方面,因主系统压力余量大,在性能上造成了很大的浪费;另一方面,系统工作压力越高,其故障率也会越高,用户使用中的维修工作也就越多,增加了使用成本。德思宏液压增压器在设计上非常完美地解决了这些问题。 我们可以在模具开合油缸的入口加装大流量的液控单向阀,将液压增压器与该单向阀并联。当油缸快速动作时,大流量液压油可以通过液控单向阀而不影响其动作性能。油缸完成快进后,该单向阀两端实现压力平衡,低压油经过增压器后转换成高压油输入油缸,实现锁模功能。当油缸内压力达到设定值后,增压器将自动停止工作,因泄漏造成的压力下降,会由增压器自动补压以维持锁模力不变。

二、机床夹具应用 随机床自动化技术的普及,液压夹具使用越来越广泛。使用液压增压器的机床夹具,可以在无须加装高压泵的情况下得到液压超高压。我们可以将增压器与夹具做成一个集合体,夹具直接使用机床主液压系统6MPa的液压油。因夹具在快速动作方面不会有太大的流量需求,所以无需增压保护回路,只要在增压器P口加装精密过滤器即可达到其使用要求。系统中仅增压器一个高压部件,使用成本实现最小化,同时达到了最好的工作可靠性的最高的安全性

。 三、救援工具应用 救援工具要求重量轻、体积小,方便携带,并且可靠性高,安全性高。 现用超高压泵直接提供超高压液压油,超高压泵现存在的问题有: 1)使用寿命短,一般可累计工作时间仅1000小时左右; 2)安全性不高,外接管路都是超高压软管,因频繁拖动容易造成安全隐串,超高压快插接头频繁使用后也是一个危险源; 3)成本高,系统里所有元器件,包括换向阀、过滤器、管路、压力表等都是超高压器件,造价是低压系统的3倍以上。 使用液压增压器,因增压器体积小,可以安装在液压剪的尾部,所有液压胶管、液压站等全部使用低压器件,可靠性更高、安全性更好、成本更低。因使用低压泵后发热量变小,体积可以做的更小,重量可以更轻。

液压传动——液压传动系统设计与计算

第九章液压传动系统设计与计算 液压系统设计的步骤大致如下: 1.明确设计要求,进行工况分析。 2.初定液压系统的主要参数。 3.拟定液压系统原理图。 4.计算和选择液压元件。 5.估算液压系统性能。 6.绘制工作图和编写技术文件。 根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。 第一节明确设计要求进行工况分析 在设计液压系统时,首先应明确以下问题,并将其作为设计依据。 1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。 2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。 3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。 图9-1位移循环图 在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 一、运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L—t 图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v—t(或v—L) 工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动,

液压系统原理

一、概述 由电机、进口叶片泵、单向阀、溢流阀、耐震压力表,精滤器、冷却器、空气滤清器等元件组成.油箱额定容积,电机功率(或),其流量升分,,调压范围~。 二、液压系统工作原理 参见《液压系统原理图》,油液由油泵从油箱内吸入,经单向阀后分为二路,一路经电磁阀(用于自动手动转换)向电液伺服阀供油,另一路流向手动电磁阀,当伺服阀被脏物所堵时即可用手动方法对油缸进行操控,油缸速度由双单向节流阀调定.油泵的出油同时经压力表和溢流阀,系统的压力由溢流阀调定,压力表上可反映所调定的工作压力.溢流阀、伺服阀的回油经冷却器、精滤器后回油箱。 精滤器由滤油器和电接点压差表组成,过滤精度为μ.电接点压差表是防止纸质滤芯被堵后背压升高而造成其破裂的保护装置.当滤油器进出油口压差达到时其表针指示会进入红色报警区域,并会接通触点。用户可通过触点自接报警装置,触点容量为。?油液温度由温度计显示.当油温达到℃时应接通冷却水,使其进入冷却器进行循环冷却。系统正常运行时,油温应控制在℃以下.

常闭式盘式制动器液压站液压回路分析 盘式制动器具有结构紧凑、可调性好、动作灵敏、重量轻、惯性小、安全程度高、通用性好等优点,而且盘式制动器成对使用,制动时主轴不承受轴向附加力。在正常制动时,可以将制动器分成两组,先投入一组工作,间隔一定时间后,投入第二组,即实现了二级制动,二级制动使制动时产生的制动减速度不致过大。只有在安全制动时才考虑二组同时投入制动,产生最大的制动力矩。如果有一组产生故障时,也仍然还有一组制动器在工作,不致使制动器的作用完全失效。 由于盘式制动器的上述优点,它被广泛地应用于矿井提升设备的制动系统中。例如,多绳摩擦式提升机和单绳缠绕式提升机采用的都是这种常闭式的盘式制动器。 图为用于型提升机的盘式制动器液压站液压回路。泵排出的压力油经滤油器手动换向阀、二级安全制动阀(正常工作时带电),通过、管进入制动缸,使盘闸松开,提升机在运行过程中,为保持盘闸处于松开状态,液压系统处于开泵保压状态。此时泵排出的液压油全部通过溢流阀流回油箱。工作制动时是通过调节电液调压装置的电流降低系统的压力,使盘闸产生制动力

典型液压传动系统实例分析

第四章典型液压传动系统实例分析 第一节液压系统的型式及其评价 一、液压系统的型式 通常可以把液压系统分成以下几种不同的型式。 1.按油液循环方式的不同分 按油液循环方式的不同,可将液压系统分为开式系统和闭式系统。 (1)开式系统 如图4.1所示,开式系统是指液压泵1从油 箱5吸油,通过换向阀2给液压缸3(或液压马 达)供油以驱动工作机构,液压缸3(或液压马 达)的回油再经换向阀回油箱。在泵出口处装溢 流阀4。这种系统结构较为简单。由于系统工作 完的油液回油箱,因此可以发挥油箱的散热、沉 淀杂质的作用。但因油液常与空气接触,使空气 易于渗入系统,导致工作机构运动的不平稳及其 它不良后果。为了保证工作机构运动的平稳性, 在系统的回油路上可设置背压阀,这将引起附加 的能量损失,使油温升高。 在开式系统中,采用的液压泵为定量泵或单 向变量泵,考虑到泵的自吸能力和避免产生吸空 现象,对自吸能力差的液压泵,通常将其工作转 速限制在额定转速的75%以内,或增设一个辅助 泵进行灌注。工作机构的换向则借助于换向阀。 换向阀换向时,除了产生液压冲击外,运动部件 的惯性能将转变为热能,而使液压油的温度升高。 图4.1 开式系统 但由于开式系统结构简单,因此仍为大多数工程 机械所采用。 (2)闭式系统 如图4.2所示。在闭式系统中,液压泵的进油管直接与执行元件的回油管相联,工作液体在系统的管路中进行封闭循环。闭式直系统结构较为紧凑,和空气接触机会较少,空气不易渗入系统,故传动的平稳性好。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了在开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,由于闭式系统工作完的油液不回油箱,油液的散热和过滤的条件较开式系统差。为了补偿系统中的泄漏,通常需要一个小容量的补油泵进行补油和散热,因此这种系统实际上是一个半

液压传动系统设计与计算

液压传动系统设计与计算 第九章液压传动系统设计与计算 液压系统设计的步骤大致如下: 1.明确设计要求,进行工况分析。 2.初定液压系统的主要参数。 3.拟定液压系统原理图。 4.计算和选择液压元件。 5.估算液压系统性能。 6.绘制工作图和编写技术文件。 根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。第一节明确设计要求进行工况分析 在设计液压系统时,首先应明确以下问题,并将其作为设计依据。 1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。 2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。 3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。 位移循环图图9-1 在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 一、运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L—t 图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v—t(或v—L) 工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第中实线所示,液压缸开始作匀加速运动,然后匀速运动,9-2一种如图

液压教案共40个

教案编号 1 课题液压传动的基本原理及组成授课人徐磊课型新授 课时 2 教具 PPT教案 原设计者王成前授课时间 教学目标1、掌握液压传动的基本原理及组成。 1、掌握液压传动的基本原理及组成。 教学重点 教学难点液压传动原理组成分类 教学过程(复习提问、精讲设计、课前或中预习内容及要求、设计当堂测试和作业、随堂小结等) <一>组织教学 端正姿势,清点人数。 <二>导入语: 生活中事例导入。公交车自动门,挖掘机,推土机等机械的传动是常见的液压传动 <三>新授: 第一节液压传动的基本原理及组成 一、液压传动的基本原理

图10.1是常见的液压千斤顶的工作原理图。它由手动柱塞泵和液压缸以及管路、管接头等构成一个密封的连通器,其间充满着油液。 关闭放油阀8,向上提起杠杆手柄1,活塞3随之上升,油腔4密封容积增大,产生局部真空,油箱6中的油液在大气压作用下,推开单向阀5中的钢球并通过吸油管道进入油腔4,实现吸油(图10.1b);当杠杆手柄1下压时,活塞3随之下移,油腔4密封容积减小,油液受到外力挤压产生压力,单向阀5关闭,单向阀7的钢球被顶开,油液压入油腔10,实现压油(图10.1c)。然后推动活塞11和重物上移。反复提压杠杆手柄1,能不断地实现吸油和压油,压力油将不断被压入油腔10,使活塞和重物不断上移,达到起重的目的。 若将放油阀8旋转90°,油腔中的油液在重物G的作用下,流回油箱,活塞11就下降并恢复到原位。 通过对液压千斤顶工作过程的分析可知,液压传动的工作原理是以油液作为工作介质,依靠密封容积的变化来传递运动,依靠油液内部的压力来传递动力。液压传动装置实质上是一种能量转换装置,即实现机械能→液压能→机械能的能量转换。 二、液压传动系统的组成 由上例可知,一般液压传动系统除油液外,应由下列几个部分组成(以图10.1为例)。 1、动力部分(液压泵)将输入的机械能转换为液压能,是系统的能源。 如1、2、3、5、7组成的手动柱塞泵。 2、执行部分(液压缸或液压马达)将液压能转换为机械能,输出直线运动 或旋转运动。如11、12组成的液压缸。 3、控制部分(液压阀) 4、辅助部分 三、液压传动的优点 易于获得很大的力和力矩

第九章典型液压系统及实例 习题答案

GAGGAGAGGAFFFFAFAF 9.2 写出图9-2所示液压系统的动作循环表,并评述这个液压系统的特点。 图9-2 [解答] 系统动作循环见下表,这个系统的主要特点是:用液控单向阀实现液压缸差动连接;回油节流调速;液压泵空运转时在低压下卸荷。 电磁铁动作顺序: lYA 2Y^ 3YA 快进 + - + 电 磁 铁 工 作 循 环

工进+-- 停留+-- 快退-+- 停止---习题解答 GAGGAGAGGAFFFFAFAF

9.1 试写出图9.9所示液压系统的动作循环表,并评述这个液压系统的特点。 解答:该液压系统的动作循环表如下: 这是单向变量泵供油的系统,油泵本身可变速,工进过程中,可以通过调速阀配合调速。执行机构为活塞杆固定的工作缸。通过三位五通电液换向阀换向。实现快进、工进、停留、快退、停止的工作过程如下:快进时:1YA通电,液压油进入工作缸的左腔,推动缸筒向左运动,由于3YA也通电,液控单向阀有控制油, GAGGAGAGGAFFFFAFAF

工作缸右腔的油经过三位阀也进入工作缸左腔,油缸实现差动快进。 GAGGAGAGGAFFFFAFAF

工进时:3YA断电,油缸右腔的回油经调速阀回油箱,缸筒以给定的速度工进,可实现稳定调速。 工进到终点,缸筒停留短时,压力升高,当压力继电器发出动作后,1YA断电,2YA通电,泵来的压力油经液控单向阀进入缸筒右腔,推动缸筒快速退回。退回至终点停止。 9.2 图9.8所示的 压力机液压系统,能 实现“快进、慢进、 保压、快退、停止” 的动作循环,试读懂 此系统图,并写出: 包括油路流动情况的 动作循环表。 解答: 1YA2YA7油流过程 GAGGAGAGGAFFFFAFAF

液压系统介绍

第一章介质系统基础知识 2250项目的介质系统主要包括如下几个部分:高压除鳞水系统、液压系统、气动系统、稀油润滑系统、干油润滑系统、氮气添加装置和废油、新油中央存储设备。介质系统分布于整条热轧线的从加热炉到地下卷取机的各个区域设备中,对于整条热轧生产线的正常、可靠、安全运行起着至关重要的作用。 在介质系统的几个部分中,液压系统是最具代表性的系统,其他系统的主要工作原理都可以由液压系统来推演、转化出来。因此,这里主要以液压系统作为代表对介质系统的一些基础知识作一下简单的介绍。 1.1 液压系统简介 如图1-1和1-2所示,为一个简化了的工作台往复运动的液压系统。从图中可以看出, 液压系统包括1、油箱2、过滤器3、液压泵4、溢流阀5、手动换向阀6、节流阀7、换向阀8、液压缸等元件以及连接这些元件的管路。 液压泵3由电动机驱动,从油箱1中吸油,其输出的压力油在图1-1所示的状态下流经手动换向阀5——节流阀6——换向阀7进入液压缸8的左腔。液压缸8的活塞在压力油的推动下经活塞杆带动工作台右行。这时液压缸右腔的油液经换向阀7流回油箱。 当工作台右行至其左档块10碰到换向阀操作杆11时,换向阀阀芯12就被向左拉,成为图1-2所示状态。此时压力油经过换向阀7后进入液压缸的右腔,工作台反向左行,液压缸8左腔的油液经过换向阀7流回油箱。此后,当工作台左行至其右档块9碰到换向阀的操作杆11时,换向阀阀芯12又会被拉回到右位,液压系统恢复到图1-1的状态,工作台又向右移动。如此循环动作,实现了往复运动。

液压系统中节流阀6的通流面积是可调的,通过调节通流面积可以调节通过节流阀的流量,从而使流入液压缸的油液流量改变,这样就实现了工作台往复速度的调节。由于节流阀通流面积可以无级调节,因此也可以实现工作台速度的无级调节。 当用节流阀6调节进入液压缸的流量时,从液压泵输出的压力油除了通过节流阀6输向液压缸以外,其多余的流量通过溢流阀4流回油箱。因为只有当溢流阀进口处的压力升高到能够克服溢流阀4中的弹簧预调压力时,此阀才被打开而让油液流回油箱。当溢流阀被开启并维持一定的溢流量时,其进口处的油液压力保持在溢流阀的预调压力值上。所以,溢流阀在溢流时起到了控制油液压力的作用。 当工作台需要停止时,拨动手动换向阀5的手柄13,使阀处于左位,状态如图1-3所示。此时液压泵输出的油液直接经过手动换向阀5流回油箱。

液压与气压传动第10周教案

教师课堂教学备课纸 任课教师签名:教研室主任审阅签名:

第四节流量控制阀及速度控制回路 一、节流阀 1.节流特性 (1)流量特性节流阀的流量特性取决于节流口的结构形式,节流口通常有三种基本形式:薄壁小孔、细长小孔和厚壁小孔,可用小孔的流量公式来q=KAΔp m表示。 (2)流量稳定性当节流阀的通流截面积调定后,要求流量q能保持稳定不变,以使执行元件获得稳定的速度。实际上通过节流口的流量q还受其他因素的影响。 1)压差对流量的影响。节流阀两端压差Δp变化时,三种结构形式的节流口中,通过薄壁小孔的流量受到压差改变的影响最小。 2)温度对流量的影响。油温影响到油液粘度,对于细长小孔,油温变化时,流量也会随之改变。 3)节流口的堵塞。节流阀的节流口可能因油液中的杂质或由于油液氧化后析出的胶质、沥青等引起局部堵塞,严重时会完全堵塞而出现断流现象。 2.节流阀 图5-28所示为一种普通节流阀,这种节流阀的节流口为轴向三角槽式。阀的进出油口可互换,节流阀能正常工作的最小流量限定值称为节流阀的最小稳定流量。轴向三角槽式节流口的最小稳定流量为30~50ml/min。它影响执行元件的最低速度值。 图5-28 节流阀 二、调速阀 调速阀是由定差减压阀与节流阀串联而成的组合阀。节流阀调节通过的流量,定差减压阀能自动保持节流阀前后的压力差为定值,使通过节流阀的流量不受负载变化的影响。 图5-29所示为调速阀的工作原理图,调速阀的进口压力p1由溢流阀调节,工作时基本保持恒定。压力油由P1进入调速阀后,先经过定差减压阀的阀口后压力降为p2,然后经节流阀流出,其压力为p3。节流阀前后的压力油分别作用在定差减压阀阀芯的两端。

液压传动系统的概论.

液压传动技术的历史进展与趋势 从公元前200多年前到17世纪初,包括希腊人发明的螺旋提水工具和中国出现的水 轮等,可以说是液压技术最古老的应用。 自17世纪至19世纪,欧洲人对液体力学、液体传动、机构学及控制理论与机械制造 做出了主要贡献,其中包括:1648年法国的B.帕斯卡(B. Pascal提出的液体中压力传递的基本定律;1681年D ?帕潘(D . Papain)发明的带安全阀的压力釜;1850年英国工程师威廉姆?乔治?阿姆斯特朗(William George Armstrong)关于液压蓄能器的发明;19世纪中叶英国工程师佛莱明(F. Jin詹金所发明的世界上第一台蒸气喷射器差压 补偿流量控制阀;1795年英国人约瑟夫?布瑞釉Bramah)登记的第一台液压机 的英国专利;这些贡献与成就为20世纪液压传动与控制技术的发展奠定了科学与工艺基础。 19世纪工业上所使用的液压传动装置是以水作为工作介质,因其密封问题一直未能很好解决以及电气传动技术的发展和竞争,曾一度导致液压技术停滞不前,卷板机。此种情况直至1905年美国人詹涅(Ja nney)首先将矿物油代替水作液压介质后才开始改观折弯机。20世纪30年代后,由于车辆、航空、舰船等功率传动的推动,相继出现了斜轴式及弯轴式轴向柱塞泵、径向和轴向液压马达;1936年Harry Vickers发明了先导控制压力阀为标志的管式系列液压控制元件。第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制系统,从而使液压技术得到了迅猛发展。 20世纪50年代,随着世界各国经济的恢复和发展,生产过程自动化的不断增长,使 玻璃冷却器技术很快转入民用工业,在机械制造、起重运输机械及各类施工机械、船舶、航空等领域得到了广泛发展和应用。同期,德国阿亨工业大学TH Aache n)在仿形刀架方面,美国麻省理工学院(MIT)Blackburn、Lee及Shearer等学者在电液伺服阀方面的研究取得

737NG液压系统介绍讲课教案

737N G液压系统介绍

液压A系统 液压A系统将液压供到以下飞机系统: ?左反推 ?起落架收放 ?前轮转弯 ?备用刹车 ?主飞行操纵 ?飞行扰流板(4) ?地面扰流板(4) 液压B系统 液压B系统将液压供到以下飞机系统: 右反推 正常刹车 主飞行操纵 飞行扰流板(4) 后缘襟翼 前缘襟翼和缝翼 备用液压系统 备用液压系统向以下飞机系统提供备用液压: ?备用方向舵 ?两个反推 ?前缘襟翼和缝翼 如果1#燃油箱的燃油少于250加仑(1675磅/760公斤),操作电动泵不可以超过两分钟。 当以下情况同时出现时,备用系统会自动工作: a.1个飞行操纵电门在“ON”位,且飞行操纵的压力低 b.后缘襟翼未收上 c.飞机在空中或轮速超过60节。 在以下情况同时出现时,PTU会自动工作: ?飞机在空中 ?后缘襟翼位置在0~15单位之间 ?B系统发动机驱动泵输出低压

A系统油箱有一个竖管,用于EDP(20%)。油箱底部的油口用于供给EMDP液压油。 B系统油箱有一个竖管,用于EDP和EMDP(?%)。油箱底部的口用于给PTU供油。 与备用油箱相连的加油和平衡管在72%。 76%加油 A系统的地面勤务接头组件位于左冲压空气舱的后壁板。 B系统的地面勤务接头组件位于右冲压空气舱的后壁板。 加液压油或检查油箱油量时,为得到正确的结果,飞机应在如下状态: ?飞行操纵——中立 ?前缘襟翼和缝翼——收上 ?后缘襟翼——收上 ?扰流板——放下 ?起落架——放下

?反推——收回 ?液压A、B系统——关闭 ?刹车蓄压器——2800psi以上 如果间歇地操作EMDP,用以下程序: ?在5分钟的周期内,任何一个泵起动不得超过5次 再次起动泵之前需等待30秒。 如果需要在5分钟内操作泵5次以上,那么需要做以下工作之一: ?在第5次起动之后连续让泵工作5分钟(监控过热警告灯) 将泵关掉,让它冷却30分钟以上。 EDP通常在打开位,位置指示器不能超控,拉起灭火手柄关闭,放下打开。EDP正常输出压力2850psi,最大2950-3075psi EMDP正常输出压力2700psi 当系统压力超过正常值达到3500psi 时,释压活门开始打开以保护系统。

(完整word版)液压系统设计方法

液压系统设计方法 液压系统是液压机械的一个组成部分,液压系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 液压系统的设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 ⑴确定液压执行元件的形式; ⑵进行工况分析,确定系统的主要参数; ⑶制定基本方案,拟定液压系统原理图; ⑷选择液压元件; ⑸液压系统的性能验算: ⑹绘制工作图,编制技术文件。 1.明确设计要求 设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 ⑴主机的概况:用途、性能、工艺流程、作业环境、总体布局等; ⑵液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; ⑶液压驱动机构的运动形式,运动速度; ⑷各动作机构的载荷大小及其性质; ⑸对调速范围、运动平稳性、转换精度等性能方面的要求; ⑹自动化程度、操作控制方式的要求; ⑺对防尘、防爆、防寒、噪声、安全可靠性的要求; ⑻对效率、成本等方面的要求。 2.进行工况分析、确定液压系统的主要参数 通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为

确定系统及各执行元件的参数提供依据。 液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。压力决定于外载荷。流量取决于液压执行元件的运动速度和结构尺寸。 2.1载荷的组成和计算 2.1.1液压缸的载荷组成与计算 图1表示一个以液压缸为执行元件的液压系统计算简图。各有关参数已标注在图上,其中F W是作用在活塞杆上的外部载荷。F m是活塞与缸壁以及活塞杆与导向套之间的密封阻力。 作用在活塞杆上的外部载荷包括工作载荷F g,导轨的摩擦力F f和由于速度变化而产生的惯性力F a。 ⑴工作载荷F g 常见的工作载荷有作用于活塞杆轴线上的 重力、切削力、挤压力等。这些作用力的方向 如与活塞运动方向相同为负,相反为正。 ⑵导轨摩擦载荷F f 对于平导轨 F f=μ(G+F N) 对于V型导轨 F f=μ(G+F N)/sin(α/2) 式中G——运动部件所受的重力(N); F N——外载荷作用于导轨上的 正压力(N); μ——摩擦系数,见表2—1; α——V型导轨的夹角,一般为90°。表2—1摩擦系数μ

《液压与气压传动》课程教案

桂林电子科大职业学院教案主讲人:赵鲁燕 主讲科目:模具设计与制造基础 开课单位:桂电职院机电工程系

第1讲第1章绪论 教学目标: 1、掌握液压与气压传动的相关概念; 2、通过举例掌握液压与气压传动的工作原理和系统及其传动的特点; 3、了解液压与气压传动的应用。 教学重点: 1、液压与气压传动工作原理 2、液压与气压传动的系统组成及应用 教学难点: 液压与气压传动实例应用 教学方法:讲授 教学时间:90分钟。 使用教材: 张勤徐钢涛主编全国高职高专教育“十一五”规划教材。 教学步骤: 一、导入(10分钟) 介绍液压与气压传动目前应用领域及未来发展前景,本门课程的性质与任务;本门课程的教学的基本要求和教学安排、考试方式。 二、授课主要内容 1.1液压与气压传动的工作原理(30分钟) 1)液压与气压传动的基本概念 2)举例说明液压与气压传动原理 3)液压传动的基本特点 1.2液压与气压传动系统的组成与实例(30分钟) 1)液压与气压传动系统的实例: 案例:机床工作台液压系统结构有原理;气动剪切机的工作原理图 2)液压与气压传动系统的组成及各组成部分的功用 1.3液压与气压传动的优缺点(10分钟) 1)液压传动的优缺点 2)气压传动的优缺点 1.4液压与气压传动的应用(5分钟) 三、总结:(5分钟)

第2讲第2章液压流体力学基础 教学目标: 1、了解液压油的物理化学性能;正确选择液压油 2、了解液体处于相对平衡状态下的力学规律及其实际应用 3、了解液压力时流速和压力的变化规律 教学重点: 1、液压油的性质 2、液体静力学基本方程; 3、连续性方程和伯努利方程 教学难点: 实际流体的伯努利方程 教学方法:讲授 教学时间:90分钟。 使用教材: 张勤徐钢涛主编全国高职高专教育“十一五”规划教材。教学步骤: 一、导入(5分钟) 前课回顾复习,引入本次课程主题 二、授课主要内容 2.1液压油(20分钟) 1)液压油的物理性质 ①液体的密度: ②液体的粘性:动力粘度、运动粘度、相对粘度及粘温曲线分析 ③液体的可压缩性 ④其他性质 2)液压油的要求和选用 2.2液体静力学(30分钟) 1)液体静压力及其特性: 2)液体静力学基本方程: (2-10) pdAρ+ = p dA ghdA (2-11) = p pρ+ gh 3)压力的表示方法及单位: ①绝对压力;相对压力;真空度概念

最新10液压传动系统的设计和计算汇总

10液压传动系统的设 计和计算

10 液压传动系统的设计和计算 本章提要:本章介绍设计液压传动系统的基本步骤和方法,对于一般的液压系统,在设计过程中应遵循以下几个步骤:①明确设计要求,进行工况分析; ②拟定液压系统原理图;③计算和选择液压元件;④发热及系统压力损失的验算;⑤绘制工作图,编写技术文件。上述工作大部分情况下要穿插、交叉进行,对于比较复杂的系统,需经过多次反复才能最后确定;在设计简单系统时,有些步骤可以合并或省略。通过本章学习,要求对液压系统设计的内容、步骤、方法有一个基本的了解。 教学内容: 本章介绍了液压传动系统设计的内容、基本步骤和方法。 教学重点: 1.液压元件的计算和选择; 2.液压系统技术性能的验算。 教学难点: 1.泵和阀以及辅件的计算和选择; 2.液压系统技术性能的验算。 教学方法: 课堂教学为主,充分利用网络课程中的多媒体素材来表示设计的步骤及方法。 教学要求:

初步掌握液压传动系统设计的内容、基本步骤和方法。 10.1 液压传动系统的设计步骤 液压传动系统的设计是整机设计的一部分,它除了应符合主机动作循环和静、动态性能等方面的要求外,还应当满足结构简单,工作安全可靠,效率高,经济性好,使用维护方便等条件。液压系统的设计,根据系统的繁简、借鉴的资料多少和设计人员经验的不同,在做法上有所差异。各部分的设计有时还要交替进行,甚至要经过多次反复才能完成。下面对液压系统的设计步骤予以介绍。 10.1.1 明确设计要求、工作环境,进行工况分析 10.1.1.1 明确设计要求及工作环境 液压系统的动作和性能要求主要有:运动方式、行程、速度范围、负载条件、运动平稳性、精度、工作循环和动作周期、同步或联锁等。就工作环境而言,有环境温度、湿度、尘埃、防火要求及安装空间的大小等。要使所设计的系统不仅能满足一般的性能要求,还应具有较高的可靠性、良好的空间布局及造型。 10.1.1.2 执行元件的工况分析 对执行元件的工况进行分析,就是查明每个执行元件在各自工作过程中的速度和负载的变化规律,通常是求出一个工作循环内各阶段的速度和负载值。必要时还应作出速度、负载随时间或位移变化的曲线图。下面以液压缸为例,液压马达可作类似处理。 就液压缸而言,承受的负载主要由六部分组成,即工作负载,导向摩擦负载,惯性负载,重力负载,密封负载和背压负载,现简述如下。 (1)工作负载w F

相关文档
最新文档