数据结构习题第七章 图答案

合集下载

数据结构-期末复习题及参考答案+-+第7章图

数据结构-期末复习题及参考答案+-+第7章图

《数据结构》期末复习题及参考答案- 第7章图//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 注意:做复习题时,请结合阅读教材,钻研教材,参考课件////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////一、选择题1、以下数据结构中,哪种具有非线性结构?A.栈B.队列C.双向链表D.十字链表2、下面关于图的存储的叙述中正确的是()。

A.用邻接表法存储图,占用的存储空间大小只与图中边数有关,而与结点个数无关。

B.用邻接表法存储图,占用的存储空间大小与图中边数和结点个数都有关。

C.用邻接矩阵法存储图,占用的存储空间大小与图中结点个数和边数都有关。

D.用邻接矩阵法存储图,占用的存储空间大小只与图中边数有关,而与结点个数无关3、在图的邻接表存储结构上执行深度优先搜索遍历类似于二叉树上的()A.先根遍历B.中根遍历C.后根遍历D.按层次遍历4、图的广度优先遍历算法类似于树的()。

A. 中根遍历B. 先根遍历C. 后根遍历D. 按层次遍历5、设无向图的顶点个数为n,则该图最多有()条边。

A.n-1 B.n(n-1)/2 C.n(n+1)/2 D.06、设有n个结点的无向图,该图至少应有( )条边才能确保是一个连通图。

A.n-1 B.n C.n+1 D.nlogn;7、一个含有n个顶点的非连通图,则():A.它的边一定不大于n-1 B.它的边一定不大于nC.它的边一定小于n-1 D.它的边一定大于08、要连通具有n个顶点的有向图,至少需要()条边。

数据结构章节练习题 - 答案第7章 图

数据结构章节练习题 - 答案第7章 图

7.1选择题1.对于一个具有n个顶点和e条边的有向图,在用邻接表表示图时,拓扑排序算法时间复杂度为()A)O(n)B)O(n+e)C)O(n*n)D)O(n*n*n)【答案】B2.设无向图的顶点个数为n,则该图最多有()条边。

A)n-1B)n(n-1)/2C)n(n+1)/2【答案】B3.连通分量指的是()A)无向图中的极小连通子图B)无向图中的极大连通子图C)有向图中的极小连通子图D)有向图中的极大连通子图【答案】B4.n个结点的完全有向图含有边的数目()A)n*n B)n(n+1)C)n/2【答案】D5.关键路径是()A)AOE网中从源点到汇点的最长路径B)AOE网中从源点到汇点的最短路径C)AOV网中从源点到汇点的最长路径D)n2D)n*(n-1)D)AOV网中从源点到汇点的最短路径【答案】A6.有向图中一个顶点的度是该顶点的()A)入度B)出度C)入度与出度之和D)(入度+出度)/2【答案】C7.有e条边的无向图,若用邻接表存储,表中有()边结点。

A)e B)2eC)e-1D)2(e-1)【答案】B8.实现图的广度优先搜索算法需使用的辅助数据结构为()A)栈B)队列C)二叉树D)树【答案】B9.实现图的非递归深度优先搜索算法需使用的辅助数据结构为()A)栈B)队列C)二叉树D)树【答案】A10.存储无向图的邻接矩阵一定是一个()A)上三角矩阵B)稀疏矩阵C)对称矩阵D)对角矩阵【答案】C11.在一个有向图中所有顶点的入度之和等于出度之和的()倍A)B)1C)2D)4【答案】B12.在图采用邻接表存储时,求最小生成树的Prim 算法的时间复杂度为(A)O(n)B)O(n+e)C)O(n2)D)O(n3))【答案】B13.下列关于AOE网的叙述中,不正确的是()A)关键活动不按期完成就会影响整个工程的完成时间B)任何一个关键活动提前完成,那么整个工程将会提前完成C)所有的关键活动提前完成,那么整个工程将会提前完成D)某些关键活动提前完成,那么整个工程将会提前完成【答案】B14.具有10个顶点的无向图至少有多少条边才能保证连通()A)9B)10C)11D)12【答案】A15.在含n个顶点和e条边的无向图的邻接矩阵中,零元素的个数为()A)e B)2eC)n2-e D)n2-2e【答案】D7.2填空题1.无向图中所有顶点的度数之和等于所有边数的_____________倍。

第七章图习题答案

第七章图习题答案

第七章图习题答案基础知识:7.1 在图7.23所示的各无向图中:(1)找出所有的简单环。

(2)哪些图是连通图?对非连通图给出其连通分量。

(3)哪些图是自由树(或森林)?答:(1)所有的简单环:(同一个环可以任一顶点作为起点)(a)1231(b)无(c)1231、2342、12341(d)无(2)连通图:(a)、(c)、(d)是连通图,(b)不是连通图,因为从1到2没有路径。

具体连通分量为:(3)自由树(森林):自由树是指没有确定根的树,无回路的连通图称为自由树:(a)不是自由树,因为有回路。

(b)是自由森林,其两个连通分量为两棵自由树。

(c)不是自由树。

(d)是自由树。

7.2 在图7.24(下图)所示的有向图中:(1) 该图是强连通的吗? 若不是,则给出其强连通分量。

(2) 请给出所有的简单路径及有向环。

(3) 请给出每个顶点的度,入度和出度。

(4) 请给出其邻接表、邻接矩阵及逆邻接表。

答:(1)该图是强连通的,所谓强连通是指有向图中任意顶点都存在到其他各顶点的路径。

(2)简单路径是指在一条路径上只有起点和终点可以相同的路径:有v1v2、v2v3、v3v1、v1v4、v4v3、v1v2v3、v2v3v1、v3v1v2、v1v4v3、v4v3v1、v3v1v4、另包括所有有向环,有向环如下:v1v2v3v1、v1v4v3v1(这两个有向环可以任一顶点作为起点和终点)(3)每个顶点的度、入度和出度:D(v1)=3ID(v1)=1OD(v1)=2D(v2)=2 ID(v2)=1OD(v2)=1D(v3)=3 ID(v3)=2OD(v3)=1D(v4)=2 ID(v4)=1OD(v4)=1(4)邻接表:(注意边表中邻接点域的值是顶点的序号,这里顶点的序号是顶点的下标值-1) vertex firstedge next┌─┬─┐┌─┬─┐┌─┬─┐0│v1│─→│ 1│─→│ 3│∧│├─┼─┤├─┼─┤└─┴─┘1│v2│─→│ 2│∧│├─┼─┤├─┼─┤2│v3│─→│ 0│∧│├─┼─┤├─┼─┤3│v4│─→│ 2│∧│└─┴─┘└─┴─┘逆邻接表:┌─┬─┐┌─┬─┐0│v1│─→│ 2│∧│├─┼─┤├─┼─┤1│v2│─→│ 0│∧│├─┼─┤├─┼─┤┌─┬─┐2│v3│─→│ 1│─→│ 3│∧│├─┼─┤├─┼─┤└─┴─┘3│v4│─→│ 0│∧│└─┴─┘└─┴─┘邻接矩阵:0 1 0 10 0 1 01 0 0 00 0 1 07.3 假设图的顶点是A,B...,请根据下述的邻接矩阵画出相应的无向图或有向图。

数据结构复习题-第7章答案2014-6-16

数据结构复习题-第7章答案2014-6-16

、选择题(每小题 1 分,共 10分)1. 一个 n 个顶点的连通无向图,其边的个数至少为( C )。

A.n+l B.n C.n-l D.2n2. 下列哪一种图的邻接矩阵是对称矩阵( B )。

A. 有向图 B. 无向图 C.AOV 网 D.AOE 网5. 无 向 图 G=(V,E ), 其 中 : V={a,b,c,d,e,f}, E={(a,b ),(a,e ),(a,c ),(b,e ),(c,f ), (f,d ),(e,d )} ,由顶点 a 开始对该图进行深度优先遍历, 得到的顶点序列正确的是 ( D )。

A. a,b,e,c,d,f B. a,c,f,e,b,d C. a,e,b,c,f,d D. a,e,d,f,c,b6. 用邻接表表示图进行广度优先遍历时,通常是采用( B )来实现算法的。

A. 栈 B. 队列 C. 树 D. 图7. 以下数据结构中,哪一个是线性结构( D )。

A. 广义表 B. 二叉树 C. 图 D. 栈8. 下面哪一方法可以判断出一个有向图是否有环(回路) ( B )。

A. 最小生成树B. 拓扑排序C. 求最短路径D. 求关键路径 9. 在一个图中,所有顶点的度数之和等于图的边数的( C )倍。

10. 在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的(B )倍。

A. 1/2B. 1C. 2D. 411. 有 8 个顶点无向图最多有( B )条边。

A. 14 B. 28 C. 56 D. 11212. 有 8 个顶点无向连通图最少有( C )条边。

A. 5 B. 6 C. 7 D. 813. 有 8个顶点有向完全图有( C )条边。

A. 14 B. 28 C. 56 D. 11214. 下列说法不正确的是( A )。

A. 图的遍历是从给定的源点出发每一个顶点仅被访问一次 C. 图的深度遍历不适用于有向图B. 遍历的基本算法有两种:深度遍历和广度遍历 D •图的深度遍历是一个递归过程 二、判断题(每小题 1 分,共 10分)1. n 个顶点的无向图至多有 n (n-1) 条边。

数据结构--图---作业及部分答案

数据结构--图---作业及部分答案

数据结构习题第七章图一、选择题1、一个有n个顶点的无向图最多有( C )条边。

A、nB、n(n-1)C、n(n-1)/2D、2n2、具有4个顶点的无向完全图有( A )条边。

A、6B、12C、16D、203、具有6个顶点的无向图至少有( A )条边才能保证是一个连通图。

A、5B、6C、7D、84、设连通图G的顶点数为n,则G的生成树的边数为( A )。

A、n-1B、nC、2nD、2n-15、已知一个图,若从顶点a出发进行深度和广度优先搜索遍历,则可能得到的顶点序列分别为( D )和(B )(1)A、abecdf B、acfebd C、acebfd D、acfdeb(2)A、abcedf B、abcefd C、abedfc D、acfdeb6、采用邻接表存储的图的深度和广度优先搜索遍历算法类似于二叉树的( B )和( D )。

A、中序遍历B、先序遍历C、后序遍历D、层次遍历7、已知一有向图的邻接表存储结构如下图所示,分别根据图的深度和广度优先搜索遍历算法,从顶点v1出发,得到的顶点序列分别为( C )和( B )。

A、v1,v2,v3,v4,v5B、v1,v3,v2,v4,v5C、v1,v2,v3,v5,v4D、v1,v4,v3,v5,v28、已知一个图如下,在该图的最小生成树中各边上权值之和为( C ),在该图的最小生成树中,从v1到v6的路径为(G )。

A、31B、38C、36D、43E、v1,v3,v6F、v1,v4,v6G、v1,v5,v4,v6H、v1,v4,v3,v69、正确的AOE网必须是(C )A、完全图B、哈密尔顿图C、无环图D、强连通图10、已知一个图如下,则由该图得到的一种拓扑序列为( A )。

A、v1,v4,v6,v2,v5,v3B、v1,v2,v3,v4,v5,v6C、v1,v4,v2,v3,v6,v5D、v1,v2,v4,v6,v3,v511、下面结论中正确的是( B )A、在无向图中,边的条数是顶点度数之和。

数据结构 第7章习题答案

数据结构 第7章习题答案

第7章 《图》习题参考答案一、单选题(每题1分,共16分)( C )1. 在一个图中,所有顶点的度数之和等于图的边数的 倍。

A .1/2 B. 1 C. 2 D. 4 (B )2. 在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的 倍。

A .1/2 B. 1 C. 2 D. 4 ( B )3. 有8个结点的无向图最多有 条边。

A .14 B. 28 C. 56 D. 112 ( C )4. 有8个结点的无向连通图最少有 条边。

A .5 B. 6 C. 7 D. 8 ( C )5. 有8个结点的有向完全图有 条边。

A .14 B. 28 C. 56 D. 112 (B )6. 用邻接表表示图进行广度优先遍历时,通常是采用 来实现算法的。

A .栈 B. 队列 C. 树 D. 图 ( A )7. 用邻接表表示图进行深度优先遍历时,通常是采用 来实现算法的。

A .栈 B. 队列 C. 树 D. 图 ()8. 已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是( D )9. 已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按深度优先遍历的结点序列是A . 0 2 4 3 1 5 6 B. 0 1 3 5 6 4 2C. 0 4 2 3 1 6 5D. 0 1 2 34 6 5 ( D )10. 已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是( A )11. 已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是A .0 2 4 3 1 5 6B. 0 1 3 6 5 4 2C. 0 1 3 4 2 5 6D. 0 3 6 1 5 4 2⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡0100011101100001011010110011001000110010011011110A .0 1 3 2 B. 0 2 3 1 C. 0 3 2 1 D. 0 1 2 3(A)12. 深度优先遍历类似于二叉树的A.先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历(D)13. 广度优先遍历类似于二叉树的A.先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历(A)14. 任何一个无向连通图的最小生成树A.只有一棵 B. 一棵或多棵 C. 一定有多棵 D. 可能不存在(注,生成树不唯一,但最小生成树唯一,即边权之和或树权最小的情况唯一)二、填空题(每空1分,共20分)1. 图有邻接矩阵、邻接表等存储结构,遍历图有深度优先遍历、广度优先遍历等方法。

数据结构第七章课后习题答案

数据结构第七章课后习题答案

7_1对于图题7.1(P235)的无向图,给出:(1)表示该图的邻接矩阵。

(2)表示该图的邻接表。

(3)图中每个顶点的度。

解:(1)邻接矩阵:0111000100110010010101110111010100100110010001110(2)邻接表:1:2----3----4----NULL;2: 1----4----5----NULL;3: 1----4----6----NULL;4: 1----2----3----5----6----7----NULL;5: 2----4----7----NULL;6: 3----4----7----NULL;7: 4----5----6----NULL;(3)图中每个顶点的度分别为:3,3,3,6,3,3,3。

7_2对于图题7.1的无向图,给出:(1)从顶点1出发,按深度优先搜索法遍历图时所得到的顶点序(2)从顶点1出发,按广度优先法搜索法遍历图时所得到的顶点序列。

(1)DFS法:存储结构:本题采用邻接表作为图的存储结构,邻接表中的各个链表的结点形式由类型L_NODE规定,而各个链表的头指针存放在数组head中。

数组e中的元素e[0],e[1],…..,e[m-1]给出图中的m条边,e中结点形式由类型E_NODE规定。

visit[i]数组用来表示顶点i是否被访问过。

遍历前置visit各元素为0,若顶点i被访问过,则置visit[i]为1.算法分析:首先访问出发顶点v.接着,选择一个与v相邻接且未被访问过的的顶点w访问之,再从w 开始进行深度优先搜索。

每当到达一个其所有相邻接的顶点都被访问过的顶点,就从最后访问的顶点开始,依次退回到尚有邻接顶点未曾访问过的顶点u,并从u开始进行深度优先搜索。

这个过程进行到所有顶点都被访问过,或从任何一个已访问过的顶点出发,再也无法到达未曾访问过的顶点,则搜索过程就结束。

另一方面,先建立一个相应的具有n个顶点,m条边的无向图的邻接表。

数据结构课后习题答案第七章

数据结构课后习题答案第七章

第七章图(参考答案)7.1(1)邻接矩阵中非零元素的个数的一半为无向图的边数;(2)A[i][j]= =0为顶点,I 和j无边,否则j和j有边相通;(3)任一顶点I的度是第I行非0元素的个数。

7.2(1)任一顶点间均有通路,故是强连通;(2)简单路径V4 V3 V1 V2;(3)0 1 ∞ 1∞ 0 1 ∞1 ∞ 0 ∞∞∞ 1 0邻接矩阵邻接表(2)从顶点4开始的DFS序列:V5,V3,V4,V6,V2,V1(3)从顶点4开始的BFS序列:V4,V5,V3,V6,V1,V27.4(1)①adjlisttp g; vtxptr i,j; //全程变量② void dfs(vtxptr x)//从顶点x开始深度优先遍历图g。

在遍历中若发现顶点j,则说明顶点i和j间有路径。

{ visited[x]=1; //置访问标记if (y= =j){ found=1;exit(0);}//有通路,退出else { p=g[x].firstarc;//找x的第一邻接点while (p!=null){ k=p->adjvex;if (!visited[k])dfs(k);p=p->nextarc;//下一邻接点}}③ void connect_DFS (adjlisttp g)//基于图的深度优先遍历策略,本算法判断一邻接表为存储结构的图g种,是否存在顶点i //到顶点j的路径。

设 1<=i ,j<=n,i<>j.{ visited[1..n]=0;found=0;scanf (&i,&j);dfs (i);if (found) printf (” 顶点”,i,”和顶点”,j,”有路径”);else printf (” 顶点”,i,”和顶点”,j,”无路径”);}// void connect_DFS(2)宽度优先遍历全程变量,调用函数与(1)相同,下面仅写宽度优先遍历部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章图(考试重点章)注:参考答案只能作为参考,也可能有错,自己要学会辨别。

一、单项选择题(必须全部弄懂)1.B2.B3.B4.A5.B6.B7.B C8.B9.C10.B11. B12.A13. D14. A15.B二、填空题(必须全部弄懂)1.452. 略3. n4.35.2(N-1)6. 第I列非零元素个数7. n 2e8. 深度优先9.普里姆(prim)算法和克鲁斯卡尔(Kruskal)算法10. 不存在环11. 递增负值12. 50,经过中间顶点④13.(1)活动(2)活动间的优先关系(3)事件(4)活动边上的权代表活动持续时间14.关键路径15.(1)某项活动以自己为先决条件(2)荒谬(3)死循环16.1)V1 V4 V3 V6 V2 V5(尽管图以邻接表为存储结构,但因没规定邻接点的排列,所以结果是不唯一的。

本答案是按邻接点升序排列给出的。

)(2)① top==-1 ② top=graph[j].count ③ graph[k].count==0三、应用题1.【解答】(须掌握的基础题型)(1)顶点入度出度1 3 02 2 23 1 24 1 35 2 16 2 3(2)邻接矩阵(3)邻接表(4)逆邻接表(5)强连通分量2.略(须掌握的基础题型)3.为节省篇幅,这里仅用Kruskal 算法,构造最小生成树过程如下:(下图也可选(2,4)代替(3,4),(5,6)代替(1,5))(须掌握的重点题型)4.)(2)略(3)最小生成树6个顶点5条边:V(G)={Pe,N,Pa,L,T,M}E(G)={(L,Pa,3),(Pe,T,21),(M,N,32),(L,N,55),(L,Pe,81)}5.(1)AOE 网图略 (须掌握的题型)(2)各事件发生的最早和最晚时间如下表(事件序列:A->C->E->G->H->L->M ,完成工程所需的最短时间为445。

四、算法设计题1. void CreatAdjList(AdjList g)//建立有向图的邻接表存储结构{int n;scanf("%d",&n);for (i=1;i<=n;j++){scanf(&g[i].vertex); g[i].firstarc=null;}//输入顶点信息scanf(&v1,.&v2);while (v1 && v2)//题目要求两顶点之一为0表示结束{i=GraphLocateVertex(g2,v1);p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=j; p->next=g[i].firstarc; g[i].firstarc=p;即scanf(&v1,&v2);} }2.void AdjMatrixToAdjList( AdjMatrix gm, AdjList gl )//将图的邻接矩阵表示法转换为邻接表表示法。

{for (i=1;i<=n;i++) //邻接表表头向量初始化。

{scanf(&gl[i].vertex); gl[i].firstarc=null;}for (i=1;i<=n;i++)for (j=1;j<=n;j++)if (gm[i][j]==1){p=(ArcNode *)malloc(sizeof(ArcNode)) ;//申请结点空间。

p->adjvex=j;//顶点I的邻接点是jp->next=gl[i].firstarc; gl[i].firstarc=p; //链入顶点i的邻接点链表中}}//end[算法讨论] 算法中邻接表中顶点在向量表中的下标与其在邻接矩阵中的行号相同。

3.void DeletEdge(AdjList g,int i,j)//在用邻接表方式存储的无向图g中,删除边(i,j){p=g[i].firstarc; pre=null; //删顶点i 的边结点(i,j),pre是前驱指针while (p)if (p->adjvex==j){if(pre==null)g[i].firstarc=p->next;else pre->next=p->next;free(p);}//释放结点空间。

else {pre=p; p=p->next;} //沿链表继续查找p=g[j].firstarc; pre=null; //删顶点j 的边结点(j,i)while (p)if (p->adjvex==i){if(pre==null)g[j].firstarc=p->next;else pre->next=p->next;free(p);}//释放结点空间。

else {pre=p; p=p->next;} //沿链表继续查找}// DeletEdge[算法讨论] 算法中假定给的i,j 均存在,否则应检查其合法性。

若未给顶点编号,而给出顶点信息,则先用顶点定位函数求出其在邻接表顶点向量中的下标i和j。

4.[题目分析]有向图判断回路要比无向图复杂。

利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。

下面用0,1,2表示这三种状态。

前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶点v 和u的回路。

对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的下一邻接点的状态为1,就可以输出回路了。

void Print(int v,int start ) //输出从顶点start开始的回路。

{for(i=1;i<=n;i++)if(g[v][i]!=0 && visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。

{printf(“%d”,v); if(i==start) printf(“\n”); else Print(i,start);break;}//if}//Printvoid dfs(int v){visited[v]=1;for(j=1;j<=n;j++ )if (g[v][j]!=0) //存在边(v,j)if (visited[j]!=1) {if (!visited[j]) dfs(j); }//ifelse {cycle=1; Print(j,j);}visited[v]=2;}//dfsvoid find_cycle() //判断是否有回路,有则输出邻接矩阵。

visited数组为全局变量。

{for (i=1;i<=n;i++) visited[i]=0;for (i=1;i<=n;i++ ) if (!visited[i]) dfs(i);}//find_cycle5.[题目分析] 该题可用求每对顶点间最短路径的FLOYD算法求解。

求出每一顶点(村庄)到其它顶点(村庄)的最短路径。

在每个顶点到其它顶点的最短路径中,选出最长的一条。

因为有n个顶点,所以有n条, 在这n条最长路径中找出最短一条,它的出发点(村庄)就是医院应建立的村庄。

void Hospital(AdjMatrix w,int n)//在以邻接带权矩阵表示的n个村庄中,求医院建在何处,使离医院最远的村庄到医院的路径最短。

{for (k=1;k<=n;k++) //求任意两顶点间的最短路径for (i=1;i<=n;i++)for (j=1;j<=n;j++)if (w[i][k]+w[k][j]<w[i][j]) w[i][j]=w[i][k]+w[k][j];m=MAXINT; //设定m为机器内最大整数。

for (i=1;i<=n;i++) //求最长路径中最短的一条。

{s=0;for (j=1;j<=n;j++) //求从某村庄i(1<=i<=n)到其它村庄的最长路径。

if (w[i][j]>s) s=w[i][j];if(s<=m) {m=s; k=i;}//在最长路径中,取最短的一条。

m记最长路径,k记出发顶点的下标。

Printf(“医院应建在%d村庄,到医院距离为%d\n”,i,m);}//for}//算法结束对以上实例模拟的过程略。

在A(6)矩阵中(见下图),各行中最大数依次是9,9,6,7,9,9。

这几个最大数中最小者为6,故医院应建在第三个村庄中,离医院最远的村庄到医院的距离是6。

6.[题目分析] 对有向图进行深度优先遍历可以判定图中是否有回路。

若从有向图某个顶点v出发遍历,在dfs(v)结束之前,出现从顶点u到顶点v的回边,图中必存在环。

这里设定visited访问数组和finished数组为全局变量,若finished[i]=1,表示顶点i的邻接点已搜索完毕。

由于dfs产生的是逆拓扑排序,故设一类型是指向邻接表的边结点的全局指针变量final,在dfs函数退出时,把顶点v插入到final所指的链表中,链表中的结点就是一个正常的拓扑序列。

邻接表的定义与本书相同,这里只写出拓扑排序算法。

int visited[]=0; finished[]=0; flag=1; //flag测试拓扑排序是否成功ArcNode *final=null; //final是指向顶点链表的指针,初始化为0void dfs(AdjList g,vertype v)//以顶点v开始深度优先遍历有向图g,顶点信息就是顶点编号.{ArcNode *t; //指向边结点的临时变量printf("%d",v); visited[v]=1; p=g[v].firstarc;while(p!=null){j=p->adjvex;if (visited[j]==1 && finished[j]==0) flag=0 //dfs结束前出现回边elseif(visited[j]==0) {dfs(g,j); finished[j]=1;} //ifp=p->next;}//whilet=(ArcNode *)malloc(sizeof(ArcNode));//申请边结点t->adjvex=v; t->next=final; final=t; //将该顶点插入链表} //dfs结束int dfs-Topsort(Adjlist g)//对以邻接表为存储结构的有向图进行拓扑排序,拓扑排序成功返回1,否则返回0 {i=1;while (flag && i <=n)if (visited[i]==0) {dfs(g,i); finished[i]=1; }//ifreturn(flag);}// dfs-Topsort。

相关文档
最新文档