最新-数学几何图形练习题 精品

合集下载

几何图形周长练习题

几何图形周长练习题

几何图形周长练习题一、三角形的周长计算1. 已知一个三角形的三边分别为5 cm、7 cm和9 cm,请计算该三角形的周长。

解析:三角形的周长等于三条边的长度之和。

因此,该三角形的周长为5 cm + 7 cm + 9 cm = 21 cm。

2. 已知一个等边三角形的边长为12 cm,请计算该等边三角形的周长。

解析:等边三角形的三条边长度相等。

因此,该等边三角形的周长为12 cm + 12 cm + 12 cm = 36 cm。

3. 已知一个直角三角形的两个直角边分别为3 cm和4 cm,请计算该直角三角形的周长。

解析:直角三角形的周长等于三条边的长度之和。

其中,两个直角边的长度分别为3 cm和4 cm,可以通过勾股定理计算出斜边的长度。

根据勾股定理,斜边的长度为√(3^2 + 4^2) = √(9 + 16) = √25 = 5 cm。

因此,该直角三角形的周长为3 cm + 4 cm + 5 cm = 12 cm。

二、长方形和正方形的周长计算4. 已知一个长方形的长为8 cm,宽为5 cm,请计算该长方形的周长。

解析:长方形的周长等于两倍的长加两倍的宽。

因此,该长方形的周长为2 × (8 cm + 5 cm) = 2 × 13 cm = 26 cm。

5. 已知一个正方形的边长为10 cm,请计算该正方形的周长。

解析:正方形的周长等于4倍的边长。

因此,该正方形的周长为4× 10 cm = 40 cm。

三、其他几何图形的周长计算6. 已知一个圆的半径为6 cm,请计算该圆的周长(取π≈3.14)。

解析:圆的周长等于2倍的半径乘以π。

因此,该圆的周长为2 × 6 cm × 3.14 ≈ 37.68 cm。

7. 已知一个梯形的上底和下底分别为6 cm和9 cm,斜边长度为10 cm,请计算该梯形的周长。

解析:梯形的周长等于上底、下底和两条斜边的长度之和。

因此,该梯形的周长为6 cm + 9 cm + 10 cm + 10 cm = 35 cm。

初一数学几何图形练习题及答案20题

初一数学几何图形练习题及答案20题

初一数学几何图形练习题及答案20题1. 填空题:a. 正方形的对角线长度是________(1词)。

b. 两个互相垂直的角的和为________度(1词)。

2. 判断题(正确为T,错误为F):a. 直角三角形的两个直角边可以相等。

()b. 一个平行四边形的对角线相等。

()c. 所有的矩形都是正方形。

()d. 一个凸四边形的内角和为360度。

()3. 简答题:a. 请解释平行四边形的定义及性质。

(至少2句)b. 解释锐角、钝角和直角分别是什么角度范围。

(至少1句)4. 计算题:在下图中,ΔABC是个等边三角形,边长为4cm。

a. 请计算三角形ABC的周长。

(2词)b. 请计算三角形ABC的面积。

(2词)5. 应用题:桌子的形状为长方形,长为120cm,宽为80cm。

在桌子的边上画出一个同样形状的长方形,使得它的宽比原来的桌子短一半,长比原来的桌子长一半。

请计算这个新长方形的面积。

(2词)答案:1. a. 简答题b. 902. a. Fb. Tc. Fd. T3. a. 平行四边形是一个有四个边的四边形,且相对的两边是平行的。

其性质包括:对角线互相平分;相邻角互补;相对角相等。

b. 锐角是指小于90度的角;钝角是指大于90度小于180度的角;直角是指等于90度的角。

4. a. 12cmb. 4√3 cm²5. 1800 cm²通过以上20道初一数学几何图形练习题及答案的训练,可以帮助学生巩固和加深对于几何图形的理解和应用能力。

请同学们认真学习,并通过解答这些问题来提高自己的数学技能。

初二数学几何图形练习题

初二数学几何图形练习题

初二数学几何图形练习题1. 设△ABC 为等腰直角三角形,其中∠BAC = 90°,∠ABC =∠ACB。

已知 AB = 5cm。

(a) 求 BC 的长度。

(b) 求△ABC 的面积。

2. 在△ABC 中,AD 是边 BC 的中线,且 AB = 3cm,BC = 4cm。

连接 BD,BD 的延长线交 AC 于 E 点。

(a) 求 BD 和 DE 的长度。

(b) 求△ADE 的面积。

3. 在△ABC 中,D、E 两点分别在边 AB、AC 上。

若DE ║ BC,则证明:AD/BD + AE/CE = 1。

4. 已知△ABC 中,∠BAC = 40°,∠ABC = 70°,点 D 在边 BC 上,且满足 BD = AC。

(a) 求∠BDC 的度数。

(b) 求∠ADB 的度数。

5. 在△ABC 中,D、F 分别是边 AB、AC 上的两个点,连接 BF、CD。

已知 AF = 6cm,BF = 4cm,CF = 3cm,FD = 1.5cm。

(a) 求△BFD 的面积。

(b) 求△ABC 的面积。

6. △ABC 的三个内角分别为 60°、75°、45°。

(a) 将△ABC 分别绕着顶点 A,边 BC,边 AC 旋转 90°,分别得到△A'B'C'、△AB'C'、△A'BC。

求△A'B'C'、△AB'C'、△A'BC 的内角。

(b) 证明△A'B'C' 是等腰三角形。

7. 在平面直角坐标系中,点 A(3, 4)、B(-1, -2)、C(-2, 6) 是顶点坐标。

连接 AB、AC,垂直平分 AC 的线段交 AB 的延长线于点 D。

求点 D 的坐标。

8. 已知△ABC 中,点 D、E 分别是边 AB、BC 上的两个点,且 DE ║ AC。

2024-2025学年人教版七年级数学上册《第6章几何图形初步》单元同步练习题(附答案)

2024-2025学年人教版七年级数学上册《第6章几何图形初步》单元同步练习题(附答案)

2024-2025学年人教版七年级数学上册《第6章几何图形初步》单元同步练习题(附答案)一.选择题1.在一个棱柱中,一共有八个面,则这个棱柱棱的条数有()A.18条B.15条C.12条D.21条2.下列立体图形中,从正面看,看到的图形是三角形的是()A.B.C.D.3.如图,点B、C、D在同一条直线上,则下列说法正确的是()A.射线BD和射线DB是同一条射线B.直线BC和直线CD是同一条直线C.图中只有4条线段D.图中有4条直线4.下列语句正确的是()A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A、B两点,并使直线AB经过C点5.平面上有任意三点A、B、C,经过其中两点共可以画出直线的条数是()A.1条B.3条C.1条或3条D.无数条6.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,则∠CBD等于多少度()A.70°B.80°C.90°D.100°7.如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB 的中点,则线段DE的长为()A.0.5B.1C.1.5D.28.小颖在研究无盖的正方体盒子的展开图时,画出下面4个展开图,其中符合要求的共有()A.1个B.2个C.3个D.4个二.填空题9.正方体有个面,有条棱.10.圆柱的侧面展开图是一个,圆锥的侧面展开图是一个,棱柱的侧面展开图是一个.11.如图,该图中不同的线段共有条.12.一个几何体由若干大小相同的小立方块搭成的,如图分别是从它的左面,上面看到的平面图形,则组成这个几何体的小立方块最多有个.13.在直线l上有A、B、C三点,AB=8cm,BC=3cm,则AC的长为.14.如图,点O是直线AD上一点,射线OC、OE分别是∠AOB,∠BOD的平分线,若∠AOC=28°,则∠COD=,∠BOE=.三.解答题15.如图,已知同一平面内的四个点A、B、C、D,根据下列语句画出图形:(1)画直线AD;(2)画射线AB;(3)连接AC,在线段AC上找一点P,使它到点B、点D的距离的和PB+PD最小.16.(1)如图,在无阴影的方格中选出两个画上阴影,使它们与图中四个有阴影的正方形一起可以构成一正方体的表面展开图.(填出两种答案)(2)如图所示的几何体是由5个相同的正方体搭成的,请分别画出这个几何体的三视图.17.如图,点P是线段AB上的一点,点M、N分别是线段AP、PB的中点.(1)如图1,若点P是线段AB的中点,且MP=4cm,则线段AB的长cm;(2)如图2,若点P是线段AB上的任一点,且AB=12cm,求线段MN的长;(3)小明由(1)(2)猜想到,若点P是直线AB上的任意一点,且AB=12cm,线段MN的长与(2)中结果一样,你同意他的猜想吗?说明你的理由.18.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?19.已知,线段AB=16,M是线段AB的中点,P是线段AB上任意一点,N是线段PB的中点.(1)当P是线段AM的中点时,求线段NB的长;(2)当线段MP=2时,求线段NB的长.(3)若点P在线段BA的延长线上,求线段PA与线段MN的数量关系.20.如图,将一副直角三角板的直角顶点C叠放在一起.【计算与观察】(1)若∠DCE=35°,则∠BCA=;若∠ACB=150°,则∠DCE=;【猜想与证明】(2)猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.【拓展与运用】(3)若∠DCE:∠ACB=2:7,求∠DCE的度数.参考答案一.选择题1.解:一个棱柱中,一共有八个面,则有2个底面,6个侧面,因此此立体图形是六棱柱,则这个棱柱棱的条数有18条.故选:A.2.解:A.圆锥从正面看到的形状为等腰三角形,符合题意;B.正方体从正面看到的形状为正方形,不符合题意;C.圆柱从正面看到的形状为矩形,不符合题意;D.长方体的主视图是矩形,不合题意;故选:A.3.解:A、射线BD和射线DB不是同一条射线,错误;B、直线BC和直线CD是同一条直线,正确;C、图中只有6条线段,错误;D、图中2条直线,错误;故选:B.4.解:A、延长线段AB到C,使BC=AC,不可以做到,故本选项错误;B、反向延长线段AB,得到射线BA,故本选项正确;C、取直线AB的中点,错误,直线没有中点,故本选项错误;D、连接A、B两点,并使直线AB经过C点,若A、B、C三点不共线则做不到,故本选项错误.故选:B.5.解:当三点在同一直线上时,只能作出一条直线;三点不在同一直线上时,每两点可作一条,共3条;平面上有任意三点A、B、C,经过其中两点共可以画出直线的条数是1条或3条.故选:C.6.解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′BD=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.故选:C.7.解:由线段的和差,得AC=AB﹣BC=10﹣3=7cm,由点D是AC的中点,所以AD=AC=×7=3.5cm;由点E是AB的中点,得AE=AB=×10=5cm,由线段的和差,得DE=AE﹣AD=5﹣3.5=1.5cm.故选:C.8.解:由四棱柱四个侧面和上下两个底面的特征可知,第1个、第2个和第3个图形可以拼成一个无盖正方体;而第4个图形不能折成正方体,故不是正方体的展开图.∴符合要求的共有3个,故选:C.二.填空题9.解:正方体,它有6个面,有8条棱.故答案为:6,8.10.解:圆柱的侧面展开图是一个矩形,圆锥的侧面展开图是一个扇形,棱柱的侧面展开图是一个矩形.11.解:从点C到B,D,E,A有4条线段;同一直线上的B,D,E,A四点之间有×4×3=6条;所以共10条线段.12.解:根据俯视图发现最底层由3个小立方块,从左视图发现第二层最多有2个小立方块,故最多有3+2=5个小立方块,故答案为:5.13.解:当A、B、C的位置如图1所示时,∵AB=8cm,BC=3cm,∴BC=AB﹣BC=5(cm);当A、B、C的位置如图2所示时,BC=AB+BC=8+3=11(cm).故答案为:5cm或11cm.14.解:∵∠AOC+∠COD=180°,∠AOC=28°,∴∠COD=152°;∵OC是∠AOB的平分线,∠AOC=28°,∴∠AOB=2∠AOC=2×28°=56°,∴∠BOD=180°﹣∠AOB=180°﹣56°=124°,∵OE是∠BOD的平分线,∴∠BOE=∠BOD=×124°=62°.故答案为:152°、62°.三.解答题15.解:(1)如图,AD为所作;(2)如图,AB为所作;(3)如图,点P为所作.16.解:如图所示:(答案不唯一).(2)如图所示:17.解:(1)∵点M、N分别是线段AP、PB的中点,∴AP=2MP,BP=2PN,∵MP=4cm,∴AP=8cm,∵P为AB的中点,∴AB=2AP=16cm,故答案为16;(2)∵点M、N分别是线段AP、PB的中点,∴AP=2MP,BP=2PN,∴AP+BP=2MP+2PN=2MN,即AB=2MN,∵AB=12cm,∴MN=6cm;(3)同意.理由:当P点在线段AB延长线上时,∵点M、N分别是线段AP、PB的中点,∴AP=2MP,BP=2PN,∴AP﹣BP=2MP﹣2PN=2MN,即AB=2MN,∵AB=12cm,∴MN=6cm;当P点在线段BA延长线上时,∵点M、N分别是线段AP、PB的中点,∴AP=2MP,BP=2PN,∴BP﹣AP=2PN﹣2MP=2MN,即AB=2MN,∵AB=12cm,∴MN=6cm.18.解:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°﹣80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣40°﹣100°=40°.(2)平分理由:∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣100°﹣40°=40°.∴∠AOF=∠3=40°,∴OF平分∠AOD.19.解:(1)如图:∵M是线段AB的中点,AB=16,∴AM=AB=8,∵P是线段AM中点,∴AP=AM=4,∴PB=AB﹣AP=16﹣4=12,∵N是线段PB的中点,∴NB=PB=×12=6.(2)∵MP=2,∴点P在M的左边或右边,当点P在M的左边时,由(1)知MB=8,∵MP=2,∴PB=10,∵N是PB中点,∴NB=10÷2=5,当点P在M的右边时,∴PB=6,∴NB=3,∴NB值为5或3.(3)如图:∵MN=NB﹣MB=PB﹣8=(PB﹣16),AP=PB﹣AB=PB﹣16,∴AP=2MN.20.解:(1)①∵∠ACD=∠ECB=90°,∠DCE=35°,∴∠ACE=90°﹣∠DCE=55°,∴∠BCA=∠ACE+∠BCE=145°,∴∠BCA=145°;②∵∠ACB=150°,∠ACD=∠ECB=90°,∴∠ACE=∠DCB=150°﹣90°=60°,∴∠DCE=90°﹣60°=30°.故答案为:145°,30°;(2)猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补).理由:∵∠ECB=90°,∠ACD=90°,∴∠ACB=∠ACD+∠DCB=90°+∠DCB,∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB,∴∠ACB+∠DCE=180°.(3)∵∠ACB+∠DCE=180°,∠DCE:∠ACB=2:7,∴∠DCE+∠DCE=180°,解得∠DCE=40°.。

2024年北京版一年级数学秋季学期几何图形分类专项综合练习题

2024年北京版一年级数学秋季学期几何图形分类专项综合练习题

2024年北京版一年级数学秋季学期几何图形分类专项综合练习题班级:__________ 姓名:__________1. 看一看,填一填。

如图,七巧板中有______块□,______块△,______块□,其中3号是______形,______号和______号一样大,______号和______号一样大。

2. 拼一拼,想一想,拼出的图形像什么?3. 用七巧板拼一拼。

(1)用哪几块图形______可以拼成一个大三角形?(2)用哪几块图形______可以拼成一个大正方形?4. 找一找雪娃娃身上的图形。

长方形有______个,正方形有______个,圆有______个,三角形有______个。

5. 动动脑,连一连。

6. 按规律接着涂一涂、画一画、填一填。

7. 我来涂一涂。

(给正方形涂上你喜欢的颜色)8. 数一数,填一填。

有______个三角形。

9. 图中共有()个正方体。

A .3B .4C .5D .610. 数一数,填一填。

(1)下图中有______个三角形。

(2)下图中有______个正方形。

(3)下图中有______个长方形11. 看一看,填一填。

(1)想一想,______个正方形(2)有______个长方形(3)想一想,______个正方形(4)数一数,______个三角形12. 判断下图中哪些是正方体,哪些不是,是的打“√”,不是的打“×”。

(________)(________)(________)(________)13. 猜一猜,下面的图形折成正方体后,数字的对面是谁?6的对面是______;4的对面是______。

14. 看一看,选一选,三角形是()。

A .B .C .15. 给○涂上颜色。

2024年数学四年级上册几何图形基础练习题2(含答案)

2024年数学四年级上册几何图形基础练习题2(含答案)

2024年数学四年级上册几何图形基础练习题2(含答案)试题部分一、选择题:1. 在下列图形中,不是轴对称图形的是()A. 长方形B. 正方形C. 椭圆D. 平行四边形2. 一个正方形的边长是4厘米,它的周长是()厘米。

A. 8厘米B. 12厘米C. 16厘米D. 20厘米3. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 矩形C. 梯形D. 直角三角形4. 一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是()厘米。

A. 22厘米B. 32厘米C. 34厘米D. 40厘米5. 下列图形中,面积相等的是()A. 长为6厘米,宽为4厘米的长方形和边长为5厘米的正方形B. 长为8厘米,宽为6厘米的长方形和边长为10厘米的正方形C. 长为10厘米,宽为5厘米的长方形和边长为8厘米的正方形D. 长为12厘米,宽为8厘米的长方形和边长为9厘米的正方形6. 一个长方形的长是10厘米,宽是5厘米,它的面积是()平方厘米。

A. 50B. 100C. 150D. 2007. 下列图形中,不是平面图形的是()A. 长方形B. 正方形C. 球D. 圆8. 下列图形中,对称轴数量最多的是()A. 等边三角形B. 矩形C. 正方形D. 菱形9. 一个圆的直径是10厘米,它的半径是()厘米。

A. 5厘米B. 10厘米C. 15厘米D. 20厘米10. 下列图形中,周长相等的是()A. 长为8厘米,宽为6厘米的长方形和边长为10厘米的正方形B. 长为10厘米,宽为8厘米的长方形和边长为12厘米的正方形C. 长为12厘米,宽为10厘米的长方形和边长为14厘米的正方形D. 长为14厘米,宽为12厘米的长方形和边长为16厘米的正方形二、判断题:1. 所有的三角形都是轴对称图形。

()2. 一个正方形的四条边长度相等,四个角都是直角。

()3. 两个完全一样的三角形可以拼成一个平行四边形。

()4. 圆的半径是直径的一半。

数学课程几何图形面积练习题及答案

数学课程几何图形面积练习题及答案

数学课程几何图形面积练习题及答案一、矩形的面积计算1. 若一个矩形的长为10cm,宽为5cm,求其面积。

解答:矩形面积的计算公式为面积 = 长 ×宽,代入数值得面积 =10cm × 5cm = 50cm²。

2. 若一个矩形的面积为75cm²,宽为3cm,求其长度。

解答:设矩形长度为x,则根据面积公式 x × 3 = 75,解方程可得 x = 25。

所以该矩形的长度为25cm。

二、三角形的面积计算3. 若一个直角三角形的两条直角边长分别为4cm和6cm,求其面积。

解答:三角形面积的计算公式为面积 = 底 ×高 ÷ 2,其中底为直角边之一,高为另一直角边。

代入数值得面积 = 4cm × 6cm ÷ 2 = 12cm²。

4. 若一个三角形的底为8cm,高为5cm,求其面积。

解答:根据面积公式,面积 = 8cm × 5cm ÷ 2 = 20cm²。

三、圆的面积计算5. 若一个圆的半径为10cm,求其面积(取π≈3.14)。

解答:圆的面积计算公式为面积= π × 半径²,代入数值得面积 = 3.14 × 10cm × 10cm ≈ 314cm²。

6. 若一个圆的面积为154cm²,求其半径(取π≈3.14)。

解答:设圆的半径为r,则根据面积公式π × r² = 154,解方程可得 r ≈ √(154/π) ≈ √(154/3.14) ≈ √(49.0446) ≈ 7。

所以该圆的半径约为7cm。

四、梯形的面积计算7. 若一个梯形的上底长为6cm,下底长为10cm,高为4cm,求其面积。

解答:梯形面积的计算公式为面积 = (上底 + 下底) ×高 ÷ 2,代入数值得面积 = (6cm + 10cm) × 4cm ÷ 2 = 32cm²。

最新初中数学几何图形初步经典测试题附答案解析(1)

最新初中数学几何图形初步经典测试题附答案解析(1)

最新初中数学几何图形初步经典测试题附答案解析(1)一、选择题1.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD Q ,D G ∴∠=∠,//BF DE Q ,G ABF ∴∠=∠,D ABF ∴∠=∠,BF Q 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )A .35°B .45°C .55°D .65°【答案】A【解析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A .【点睛】本题考查余角、补角的计算.3.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?( )A .B .C .D .【答案】D【解析】分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.详解:A 选项中,展开图下方的直角三角形的斜边长为12,不合题意;B 选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C 选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D 选项中,展开图能折叠成一个三棱柱,符合题意;故选:D .点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.4.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )A .8B .9C .10D .11【解析】【分析】连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】+的值最小解:如图,连接DE,交AC于P,连接BP,则此时PB PE∵四边形ABCD是正方形∴、关于AC对称B D∴PB PD=∴+=+=PB PE PD PE DEQ==BE AE BE2,3∴==6,8AE AB22DE∴=+=;6810+的最小值是10,故PB PE故选:C.【点睛】本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.5.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC 上一点,则DE+BE的最小值为()A.2B31C3D.23【答案】C【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离=AC=3,故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.6.在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.【详解】∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,∴∠BAF=12∠BAC,∠ABF=12∠ABC,又∵∠C=90°,∴∠ABC+∠BAC=90°,∴∠BAF+∠ABF=45°,∴∠AFB=135°,故①正确;∵DG∥AB,∴∠BDG=∠ABC=2∠CBE,故②正确;∵∠ABC的度数不确定,∴BC平分∠ABG不一定成立,故③错误;∵BE平分∠ABC,∴∠ABF=∠CBE,又∵∠C=∠ABG=90°,∴∠BEC+∠CBE=90°,∠ABF+∠FBG=90°,∴∠BEC=∠FBG,故④正确.故选:C【点睛】本题考查了角平分线性质、三角形内角和定理、平行线的性质以及等角的余角相等等知识,熟练运用这些知识点是解题的关键.7.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D.一样大【答案】C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C.8.下列图形中,不是三棱柱的表面展开图的是()A.B.C.D.【答案】D【解析】利用棱柱及其表面展开图的特点解题.解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选D.9.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于()A.38°B.104°C.142°D.144°【答案】C【解析】∵∠AOC=76°,射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°−∠AOM=180°−38°=142°,故选C.点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键. 10.如图,点C是射线OA上一点,过C作CD⊥OB,垂足为D,作CE⊥OA,垂足为C,交OB 于点E ,给出下列结论:①∠1是∠DCE 的余角;②∠AOB =∠DCE ;③图中互余的角共有3对;④∠ACD =∠BEC ,其中正确结论有( )A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据垂直定义可得BCA 90∠=o ,ADC BDC ACF 90∠∠∠===o ,然后再根据余角定义和补角定义进行分析即可.【详解】解:CE OA ⊥Q ,OCE 90o ∠∴=,ECD 190∠∠∴+=o ,1∠∴是ECD ∠的余角,故①正确;CD OB ⊥Q ,AOB COCE 90∠∠∴==o ,AOB OEC 90∠∠∴+=o ,DCE OEC 90∠∠+=o ,B BAC 90∠∠∴+=o ,1ACD 90∠∠+=o ,AOB DCE ∠∠∴=,故②正确;1AOB 1DCE DCE CED AOB CED 90∠∠∠∠∠∠∠∠+=+=+=+=o Q , ∴图中互余的角共有4对,故③错误;ACD 90DCE ∠∠=+o Q ,BEC 90AOB ∠∠=+o ,AOB DCE ∠∠=Q ,ACD BEC ∠∠∴=,故④正确.正确的是①②④;故选B .【点睛】考查了余角和补角,关键是掌握两角之和为90o 时,这两个角互余,两角之和为180o 时,这两个角互补.11.如图,点A 、B 、C 是直线l 上的三个点,图中共有线段条数是( )A .1条B .2条C .3条D .4条【答案】C【解析】解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.12.下列图形中,是圆锥的侧面展开图的为()A. B.C.D.【答案】B【解析】【分析】根据圆锥的侧面展开图的特点作答.【详解】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选B.【点睛】考查了几何体的展开图,圆锥的侧面展开图是扇形.13.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A.B.C.D.【答案】A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.14.下列说法中不正确的是( )①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点A .①B .②C .③D .④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .15.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,16.如图,在平行四边形ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若60B ∠=o ,AB=3,则ADE ∆的周长为()A .12B .15C .18D .2【答案】C【解析】【分析】依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE 是等边三角形,即可得到△ADE 的周长为6×3=18.【详解】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选:C .【点睛】此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得 PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处. 故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.18.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是( )A .态B .度C .决D .切 【答案】A【解析】【分析】 正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.【详解】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A .【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.19.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠ADC =∠GCD ;③CA 平分∠BCG ;④∠DFB =12∠CGE .其中正确的结论是( )A .②③B .①②④C .①③④D .①②③④【答案】B【解析】【分析】 根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG ∥BC ,∴∠CEG=∠ACB ,又∵CD 是△ABC 的角平分线,∴∠CEG=∠ACB=2∠DCB ,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD 平分∠ACB ,∴∠ACD=∠BCD ,∴∠ADC+∠BCD=90°.∵EG ∥BC ,且CG ⊥EG ,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD ,故正确;③条件不足,无法证明CA 平分∠BCG ,故错误;④∵∠EBC+∠ACB=∠AEB ,∠DCB+∠ABC=∠ADC ,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB )=135°, ∴∠DFE=360°-135°-90°=135°, ∴∠DFB=45°=12∠CGE ,,正确. 故选B .【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.20.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A.75°B.90°C.105°D.120°【答案】C【解析】【分析】延长CE交AB于点F,根据两直线平行,内错角相等可得∠AFE=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE交AB于点F,∵AB∥CD,∴∠AFE=∠C=60°,在△AEF中,由三角形的外角性质得,∠AEC=∠A+∠AFE=45°+60°=105°.故选:C.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学几何图形练习题
篇一:六年级总复习几何图形练习题宇德教育六年级几何图形练习题(运用平移、翻折与旋转不、割补等法求面积类)1、下图是等腰直角三角形,求阴影部分的面积。

(单位:厘米)2、求出下图中阴影部分的面积。

(单位:厘米)3、求出下图中阴影部分的面积。

(单位:厘米)4、求出下图中阴影部分的面积。

(单位:厘米)5、在半径为10厘米,圆心角为90°的扇形中,分别以两条半径的中点和为圆心,以扇形半径之半为半径,画两个半圆交于。

求图中阴影部分的面积(如下图)。

6、求出下图阴影部分的面积。

(单位:厘米)7、求出下图阴影部分的面积。

(单位:厘米)8、下图,直径=20厘米,阴影Ⅰ的面积比阴影Ⅱ的面积大7平方厘米,求的长。

9、如下图,四个圆的直径均为4厘米,求阴影部分面积。

(单位:厘米)10、下图中各小圆的半径为1,求该图中阴影部分的面积。

11、已知右图中两个正方形的边长分别是3厘米和6厘米,求阴影部分的面积。

12、下图的中的正方形的边长是2厘米,以圆弧为分界线的Ⅰ、Ⅱ两部的面积的差是多少平方厘米?(?=314)12、如下图,已知直角三角形的面积是12平方厘米,求阴影部分的面积。

13、如下图,为圆心垂直于,三角形的面积是45平方厘米,以为圆心,为半径画弧将圆分成两部分,求阴影部分的面积。

14、如下图扇形的半径==6厘米。

角等于45°,垂直于点,那么图中阴影部分面积是多少平方厘米?(?=314)15、下图中,图①是一个直径为3厘米的半圆,是直径,让点不动,整个半圆逆时针旋转60°角,此时点移动到′(如图②)。

那么,图中阴影部分的面积是多少平方厘米?(?=314)16、求下列图形的阴影部分。

相关文档
最新文档