八年级下册数学测试题汇总

合集下载

八年级下册数学期末测试题

八年级下册数学期末测试题

八年级下册数学期末测试题一、选择题(每小题3分共36分)1、第五次全国人口普查结果显示,我国的总人口已达到1 300 000 000人,用科学记数法表示这个数,结果正确的是 ( )A .1.3×108B .1.3×109C .0.13×1010D .13×109答案:B2、不改变分式的值,将分式20.020.23x x a b -+中各项系数均化为整数,结果为 ( )A 、2223x x a b -+B 、25010150x x a b -+C 、2502103x x a b -+D 、2210150x x a b-+答案:B3、如果一定值电阻R 两端所加电压5 V 时,通过它的电流为1A ,那么通过这一电阻的电流I 随它两端电压U 变化的大致图像是 (提示:UI R=) ( )A B C D答案:D4、如果把分式yx xy+中的x 和y 都扩大2倍,则分式的值( ) A 、扩大4倍; B 、扩大2倍; C 、不变; D 缩小2倍答案:B5、如图,有一块直角三角形纸片,两直角边6,8AC cm BC cm ==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合。

则CD 等于 ( ) A 、2cm B 、3cm C 、4cm D 、5cm答案:B6、矩形ABCD 中的顶点A 、B 、C 、D 按顺时针方向排列,若在平面直角坐标系内, B 、D 两点对应的坐标分别是(2, 0), (0, 0),且 A 、C 两点关于x 轴对称.则C 点对应的坐标是(A )(1, 1) (B) (1, -1) (C) (1, -2)(D) (2, -2)D CBAH G FE答案:B7、下列图形中,是中心对称图形( ).(A )正方形 (B)矩形 (C)菱形 (D)平行四边形答案:D8、如图,E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使四边形EFGH 为矩形,四边形ABCD 应具备的条件是( ).(A )一组对边平行而另一组对边不平行 (B )对角线相等 (C )对角线互相垂直 (D )对角线互相平分答案:C9、下列命题错误的是( )A .平行四边形的对角相等B .等腰梯形的对角线相等C .两条对角线相等的平行四边形是矩形D .对角线互相垂直的四边形是菱形答案:D10、若函数y =2 x +k 的图象与y 轴的正半轴...相交,则函数y =xk的图象所在的象限是( ) A 、第一、二象限 B 、 第三、四象限 C 、 第二、四象限 D 、第一、三象限 D 11、若13+a 表示一个整数,则整数a 可以值有( ) A .1个 B .2个 C.3个 D.4个答案:D12、如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是( ) A 、2 B 、4 C 、8 D 、10答案:B二、填空题共24分13、已知正比例函数y kx =的图像与反比例函数4ky x-=的图像有一个交点的横坐标是1-,那么它们的交点坐标分别为 。

八年级下册数学试题及答案

八年级下册数学试题及答案

八年级下册数学试题及答案注意:根据提供的题目要求,由于无法提供具体的试题内容及答案,下文中将以示例的方式进行描述。

请根据实际情况和格式要求自行填写试题及答案。

八年级下册数学试题及答案1. 选择题(1) 计算表达式的值:6 + 3 × 2 - 8 ÷ 4 = ?解析:首先按照乘除优先于加减的原则进行计算。

答案:6 + 3 × 2 - 8 ÷ 4 = 6 + 6 - 2 = 10(2) 若正整数x满足4x - 6 = 18,则x的值为多少?解析:将已知的等式转化为求解x的方程。

答案:4x - 6 = 184x = 18 + 6 = 24x = 24 ÷ 4 = 62. 填空题(1) 已知α是锐角,则α的补角为__________。

解析:补角指两个角的度数之和为90°。

答案:90° - α(2) 如果a:b = 2:3,且b:c = 4:5,则a:c = ________。

解析:根据比例关系进行计算,a与b之间的比例系数乘积为2×3,b与c之间的比例系数乘积为4×5。

答案:2:3 = 8:12,4:5 = 12:15,故a:c = 8:15。

3. 解答题(1) 计算下列各式的值:(3x - 2)^2,其中x = 4。

解析:将x = 4代入表达式,进行平方运算。

答案:(3x - 2)^2 = (3×4 - 2)^2 = (12 - 2)^2 = 10^2 = 100(2) 一间房间的长是宽的3倍,周长是42米。

求房间的长和宽。

解析:设房间的宽为x,则房间的长为3x。

根据周长的计算公式,得到2(x + 3x) = 42。

答案:2(4x) = 428x = 42x = 42 ÷ 8 = 5.25因为房间的长和宽为整数,所以宽为5米,长为15米。

以上是八年级下册数学试题及答案的部分示例。

在实际应用中,根据具体的教材和题库准备试题,以及针对每一道题目提供合适的解析和答案解答。

八年级数学下册练习题(打印版)

八年级数学下册练习题(打印版)

八年级数学下册练习题(打印版)### 八年级数学下册练习题(打印版)#### 一、选择题(每题2分,共20分)1. 下列哪个选项是无理数?- A. 3.14- B. π- C. 0.33333...(3无限循环)- D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:- A. 5- B. 6- C. 7- D. 83. 一个数的平方根是它本身,这个数可能是:- A. 1- B. -1- C. 0- D. 44. 已知一个二次方程 \( ax^2 + bx + c = 0 \),其中 \( a \neq 0 \),且 \( b^2 - 4ac = 0 \),那么这个方程:- A. 有一个实数根- B. 有两个相同的实数根- C. 没有实数根- D. 有两个不同的实数根5. 下列哪个表达式不能简化为一个常数?- A. \( \frac{3x}{x} \)- B. \( \frac{2x^2 - 4x + 4}{x - 2} \)- C. \( \frac{x^2 - 1}{x - 1} \)- D. \( \frac{2x^3 - 8x}{2x} \)#### 二、填空题(每题2分,共20分)6. 一个数的立方根是 \( \sqrt[3]{8} \),这个数是_______。

7. 一个圆的半径是 \( r \),它的面积是 \( πr^2 \),周长是\( 2πr \),如果半径增加1,新的周长是_______。

8. 如果一个函数 \( y = kx + b \) 经过点 (1, 5) 和 (2, 7),那么 \( k \) 的值是_______。

9. 一个数的绝对值是5,这个数可以是_______。

10. 一个三角形的三边长分别是 \( a \)、\( b \) 和 \( c \),如果 \( a + b > c \),那么这个三角形是_______三角形。

#### 三、解答题(每题10分,共30分)11. 解方程 \( 2x - 3 = 7x + 1 \)。

八年级下册数学试题及答案

八年级下册数学试题及答案

八年级下册数学试题及答案一、选择题(共10小题,每小题2分,满分20分)1. 下列哪个选项是正确的整数比例?A. 3:5B. 0.6:0.2C. 2.4:0.8D. 5.1:2.42. 计算下列表达式的值,哪个选项是正确的?A. \(\frac{3}{4} + \frac{2}{5}\)B. \(\frac{5}{6} - \frac{1}{3}\)C. \(\frac{7}{8} \times \frac{3}{5}\)D. \(\frac{4}{9} \div \frac{2}{3}\)3. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 64B. 96C. 100D. 1204. 一个圆的半径是7cm,那么它的周长(使用π表示)是多少?A. 14πB. 21πC. 28πD. 49π5. 以下哪个选项是正确的百分比计算?A. 20% of 150B. 50% of 200C. 75% of 100D. 10% of 5006. 一个班级有40名学生,其中25%是女生,那么这个班级有多少名女生?A. 10B. 12C. 15D. 207. 一个数的平方等于它的四倍,这个数是多少?A. 2B. 4C. 8D. 168. 以下哪个选项是正确的几何序列?A. 2, 4, 8, 16B. 3, 6, 12, 18C. 5, 10, 15, 20D. 7, 14, 21, 289. 一个三角形的三个内角分别是60度、70度和50度,它是哪种三角形?A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形10. 一个分数的分子是12,分母是18,这个分数化简后的结果是:A. \(\frac{2}{3}\)B. \(\frac{3}{4}\)C. \(\frac{4}{6}\)D. \(\frac{6}{9}\)二、填空题(共5小题,每小题2分,满分10分)11. 一个等差数列的前三项分别是2、5、8,那么它的第5项是_______。

人教版初中数学八年级下册期末测试题、答案

人教版初中数学八年级下册期末测试题、答案

人教版初中数学八年级下册期末测试题一、选择题(本大题共小题,每小题分,共分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得分,选错、不选或多选均得零分.)A B C D 如图,O A B 为直角三角形,O A =,A B =,则点A 的坐标为()A()B ()C ()D ()如图,矩形A B C D 的对角线A C =,B O C Ð=°,则A B 的长为()A B C D 一次函数()y kx k =-¹的函数值y 随x 的增大而减小,它的图象不经过的象限是()A 第一象限B 第二象限C 第三象限D 第四象限如图,直线y x =和y k x b =+相交于点()P ,则不等式x k x b £+的解集为()A.x ³B.x £C.x ³D.x £一组数据:n a a a ×××的平均数为P ,众数为Z ,中位数为W ,则以下判断正确的是()A P 一定出现在n a a a ×××中B Z 一定出现在n a a a ×××中C W 一定出现在n a a a ×××中D P ,Z ,W 都不会出现在n a a a ×××中二、填空题(本大题共小题,每小题分,共分)将函数y x =的图象向下平移个单位,所得图象的函数解析式为______如图,点P 是正方形A B C D 内位于对角线A C 下方的一点,已知:P C A P B C Ð=Ð,则B P C Ð的度数为______.南吕是国家历史文化名城,其名源于“昌大南疆,南方昌盛”之意,市内的滕王阁、八一起义纪念馆、海昏候遗址、绳金塔、八大山人纪念馆等都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学,人数分别为:,,,,(单位:人),这组数据的中位数是______.一组数据,,,x 的众数只有一个,则x 的值不能为______.如图,在A B C 中,已知:A C B Ð=°,c m A B =,c m A C =,动点P 从点B 出发,沿射线B C 以c m s 的速度运动,设运动的时间为t 秒,连接P A ,当A B P △为等腰三角形时,t 的值为______.三、解答题(本大题共小题,每小题分,共分)()计算:+-()求x =.如图,点C为线段A B上一点且不与A,B两点重合,分别以A C,B C为边向A B的同侧做锐角为°的菱形.请仅用无刻度的直尺分别按下列要求作图.(保留作图痕迹)=,作出线段D F的中点M;()在图中,连接D F,若A C B C()在图中,连接D F,若A C B C¹,作出线段D F的中点N.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图、(图为图的平面示意图),推开双门,双门间隙C D的距离为寸,点C和点D距离门槛A B都为尺(尺寸),则A B 的长是多少?某种子站销售一种玉米种子,单价为元千克,为惠民促销,推出以下销售方案:付款金额y(元)与购买种子数量x(千克)之间的函数关系如图所示.()当x³时,求y与x之间的的函数关系式:()徐大爷付款元能购买这种玉米种子多少千克?已知:①,,,,的平均数是,方差是;②,,,,的平均数是,方差是;③,,,,的平均数是,方差是;④,,,,的平均数是,方差是;请按要求填空:()n,n+,n+,n+,n+的平均数是,方差是;()n,n+,n+,n+,n+的平均数是,方差是;()n,n,n,n,n的平均数是,方差是.四、解答题(本大题共小题,每小题分,共分)下表是某公司员工月收入的资料.职位总经理财务总监部门经理技术人员前台保安保洁人数月收入元()这家公司员工月收入的平均数是元,中位数是和众数是;()在()中的平均数,中位数和众数哪些统计量能反映该公司全体员工收入水平?说明理由;()为了避免技术人员流失,该公司决定给他们每人每月加薪x元至公司员工月收入的平均数,求x的值.已知:一次函数()()y m x m m =+-¹与x 轴、y 轴交于A点,B 点()当m =时,求O A B 的面积;()请选择你喜欢的两个不同的()m m ¹的值,求得到的两个一次函数的交点坐标;()m 为何值时,O A B 是等腰直角三角形?如图,若D E 是A B C 的中位线,则A B C A D E S S =△△,解答下列问题:()如图,点P 是B C 边上一点,连接P D 、P E ①若P D E S =△,则A B CS=;②若P D B S =△,P C E S =△,连接A P ,则A P DS =,A P E S =△,A B CS=.()如图,点P 是A B C 外一点,连接P D 、P E ,已知:P D BS=,P C E S =△,P D E S =△,求A B CS的值;()如图,点P 是正六边形F G H I J K 内一点,连接P G 、P F 、P K ,已知:P G F S =△,P K J S =△,P F K S =△,求F G H I J K S 六边形的值.五、综合题(本大题共小题,共分)已知直线y x =-+分别与x 轴、y 轴交于A 点,B 点,点()n n Q x y 为这条直线上的点,Q P x ^轴于点P ,Q R y ^轴于点R .()①将下表中的空格填写完整:nn x --ny --n nx y +②根据表格中的数据,下列判断正确的是.A .x y =,B .x yS S =,C .x y S +=.()当点Q 在第一象限时,解答下列问题:①求证:矩形O P Q R 的周长是一个定值,并求这个定值;②设矩形O P Q R 的面积为S ,求证:S £.()当点Q 在第四象限时,直接写出Q P ,Q R 满足的等式关系.参考答案B C B A D By x﹣°或或()解:()原式(=+-=(=,∴x-=,∴x=解:()如图点M为D F的中点()如图点N为D F的中点解:取A B的中点O,过D作D E⊥A B于E,如图所示:由题意得:O A O B A D B C,设O A O B A D B C r寸,则A B r(寸),D E寸,O E C D寸,∴A E(r-)寸,在R t△A D E中,A E D E A D,即(r-)r,解得:r,∴r(寸),∴A B寸.解:()当x³时,设y与x之间的的函数关系式为y k x b=+,将点(),()带入解析式得k b k b+=ìí+=î解得k b=ìí=î∴y x=+.()将y=时,带入y x=+中解得x=千克.答:徐大爷付款元能购买这种玉米种子千克.解:()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴数据n,n+,n+,n+,n+的平均数+n E=n+,方差依然是,()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴n,n+,n+,n+,n+的平均数是+n E=n+,方差依然是,()数据n,n,n,n,n是将,,,,分别乘以n所得,∴数据n,n,n,n,n的平均数为n,方差为n,解:()∵一共有++++++=(人),∴这组数据的中位数是第、个数据的平均数,而第、个数据分别为、,∴中位数是+=(元),∵数据出现次数最多,∴这组数据的众数为元,故答案为:元,元;()中位数和众数能反映该公司全体员工收入水平,该公司员工月收入的平均数为,在这名员工中只有名员工的收入在元以上,有名员工的收入在元以下,因此用平均数不能反映所有员工的收入水平,中位数和众数为元能反映多数员工的收入水平.()由题意列方程:x x +=+,解得x =元∴技术人员需要加薪元.解:()当m =时,y x =-,当x =时,y =-,∴()B -,∴O B =当y =时,x =,∴A æöç÷èø,∴O A =,O A B S O A O B =×=△;()取m =,y x =+,取m =,y x=,∴y x y x =+ìí=î解得x y=ìí=î∴两个一次函数的交点坐标为()()当x =时,y m =-,∴O B m =-;当y =时,m x m-=,∴m O A m -=,∵O A B 是等腰直角三角形,∴O A O B =,即m m m--=;∵m -¹,∴m =±.解:()如图,连接B E ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P D E =S △B D E =,∴S △A B E =,∴S △A B C =,②∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A B C =;()如图,连接A P ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,S △A B C =S △A D E ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A D E =S △A P D S △A P E ﹣S △P D E =,∴S △A B C =S △A D E =;()如图,延长G F ,J K 交于点N ,连接G J ,连接P N ,∵六边形F G H I J K 是正六边形,∴F G =F K =K J ,∠G F K =∠J K F =°,S 六边形F G H I J K =S 四边形F G J K ,∴∠N F K =∠N K F =°,∴△N F K 是等边三角形,∴N F =N K =F K =F G =K J ,∴S △P G F =S △P F N =,S △P K J =S △P K N =,F K 是△N G J 的中位线,∴S △N F K =S △P F N S △P K N ﹣S △P F K =,∵F K 是△N G J 的中位线,∴S △N G J =S △N F K =;∴S 四边形F G J K =﹣=,∴S 六边形F G H I J K =.()①填表如下:n n x --n y --n nx y +②x y ==´--+++++++,故A 正确;[]x S =--+--+-+-+-+-+-+-+-=[]y S =--+--+-+-+-+-+-+-+-=∴x y S S =,故B 正确;∵x y +=∴x y S +=故C 正确;故答案为:A 、B 、C()①设()Q x x -+,∵点Q 在第一象限,∴O P x =,P Q x =-+,∴()O P Q R C O P P Q ==矩形+,∴矩形O P Q R 的周长是一个定值,周长为;②∵()()S x x x x x -=--+=+-=-³∴S £.()设点Q 的坐标为()xx -+,∵点Q 在第四象限,∴Q R x =,Q P x =-,∴Q R Q P -=.。

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。

八年级下册数学试题及答案

八年级下册数学试题及答案

八年级下册数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax + bD. y = a/x答案:A2. 已知一个等腰三角形的两边长分别为3cm和5cm,那么第三边的长度是多少?A. 3cmB. 5cmC. 8cmD. 无法确定答案:B3. 计算下列哪个表达式的值等于0?A. 2x - 4 = 0B. 3x + 6 = 0C. 5x - 10 = 0D. 4x + 8 = 0答案:C4. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A5. 一个数的立方根是3,那么这个数是:A. 27B. -27C. 9D. -9答案:A6. 下列哪个选项是圆的面积公式?A. A = πr^2B. A = 2πrC. A = πdD. A = r^2答案:A7. 一个直角三角形的两个直角边长分别为3cm和4cm,那么斜边的长度是多少?A. 5cmB. 6cmC. 7cmD. 8cm答案:A8. 已知一个圆的半径是5cm,那么它的周长是多少?A. 10π cmB. 20π cmC. 30π cmD. 40π cm答案:B9. 下列哪个选项是勾股定理的表达式?A. a^2 + b^2 = c^2B. a^2 - b^2 = c^2C. a^2 + c^2 = b^2D. b^2 + c^2 = a^2答案:A10. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A二、填空题(每题4分,共20分)1. 已知一个数的平方是25,那么这个数是________。

答案:±52. 一个圆的直径是10cm,那么它的半径是________。

答案:5cm3. 一个三角形的内角和是________。

答案:180°4. 一个数的绝对值是8,那么这个数是________。

人教版八年级下册数学期末测试卷(必刷题)

人教版八年级下册数学期末测试卷(必刷题)

人教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°2、如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有( )A. B. C. D.3、若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.4、计算的结果是()A.±3B.3C.﹣3D.5、在矩形ABCD中,E,P,G,H分别是边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中正确的是()①存在无数个四边形EFGH是平行四边形.②存在无数个四边形EFGH是矩形.③存在且仅有一个四边形EFGH是菱形.④除非矩形ABCD为正方形,否则不存在四边形EFGH是正方形.A.①②B.①②③C.①②④D.①③④6、如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A.8B.9C.11D.127、以下列各组数为边长,不能构成直角三角形的是()A. B. C. D.8、如图,菱形ABCD的对角线BD、AC分别为2、2 ,以B为圆心的弧与AD、DC相切,则阴影部分的面积是()A.2 ﹣πB.4 ﹣πC.4 ﹣πD.29、某射击运动员在训练中射击了10次,成绩分别是:5,8,6,8,9,7,10,9,8,10。

下列结论不正确的是( )A.中位数是8B.众数是8C.平均数是8D.方差是210、已知:∠MON,如图,小静进行了以下作图:①在∠MON的两边上分别截取OA,OB,使OA=OB;②分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;③连接AC,BC,AB,OC.=4,则AB的长为()若OC=2,S四边形OACBA.5B.4C.3D.211、两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为()A. B. C.sinα D.112、若式子有意义,则实数x的取值范围是()A. B. 且 C. D. 且13、下列变形正确的是( )A. B. C.D.14、函数y= 中自变量x的取值范围是()A.x≥3B.x≥﹣3C.x≠3D.x>0且x≠315、下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.17、已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于________ .18、A,B两地之间有一条6000米长的直线跑道,小月和小华分别从A,B两地同时出发匀速跑步,相向而行,第一次相遇后,小月将自己的速度提高25%,并匀速跑步到达B点,到达后原地休息;小华匀速跑步到达A点后,立即调头按原速返回B点(调头时间忽略不计),两人距各自出发点的距离之和记为y (米),跑步时间记为x(分钟),已知y(米)与x(分钟)之间的关系如图所示,则小月到达B点后,再经过________分钟小华回到B点.19、最简二次根式与是同类最简二次根式,则b=________.20、如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为________.21、如图,矩形OABC在第一象限,OA,OC分别于x轴,y轴重合,面积为6.矩形与双曲线y=(x>0)交BC于M,交BA于N,连接OB,MN,若2OB=3MN,则k=________22、化简=________23、如图,已知线段,P是AB上一动点,分别以AP,BP为斜边在AB 同侧作等腰和等腰,以CD为边作正方形DCFE,连结AE,BF,当时,为________.24、如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG 的周长是________.25、如图,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O, 若AB=12,EF=13,H为AB的中点,则DG=________.三、解答题(共5题,共计25分)26、计算(结果用根号表示)(+1)(﹣2)+227、已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF 交于点M.求证:AE=BF28、如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌的高CD (结果精确到0.1米,参考数据:≈1.41,≈1.73).29、如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.30、已知m=﹣,n=+ ,求代数式m2+mn+n2的值.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、B5、C6、D7、A8、D9、D10、B11、A12、C13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ab
a 2ab b
14. 从一个班抽测了 6 名男生的身高,将测得的每一个数据(单位:
cm)都减去 165.0cm,其结果如下:
- 1.2 , 0.1 , - 8.3 , 1.2 , 10.8 , - 7.0 这 6 名男生中最高身高与最低身高的差是 __________ ;这 6 名男生的平均身高约为 ________ (结果保
4
A
D
2
E
-5
OB
C5
X
3 fx =
x
-2
-4
19.已知: CD 为 Rt ABC 的斜边上的高,且 BC a , AC b , AB c , CD h (如图)
求证: 1 1 1 a2 b2 h2
参考答案
1.D 2.B 3. A 4. D 5 .C 6 . B 7 . C 8 . C 9 .C 10 . B

A. 4
B. 5
C.6
D. 7
二、填空题
11.边长为 7, 24, 25 的△ ABC 内有一点 P 到三边距离相等,则这个距离为
12. 如果函数 y= kx2k2 k 2 是反比例函数,那么 k=____, 此函数的解析式是 __ ______
11
2a 3ab 2b
13. 已知 - =5,则
的值是
留到小数点后第一位)
15.如图,点 P 是反比例函数 y
三、计算问答题
2
上的一点,
PD⊥x 轴于点 D,则△ POD的面积为
x
16.先化简,再求值:
x3 x2 x2 x
1 x 2 ,其中 x=2 x1
17.( 08 年宁夏中考题)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱”
赈灾
一、选择题
1. 当分式 3 有意义时,字母 x 应满足( x1
A. x 0 B. x 0 C. x 1

D.x132.若点( -5, y1)、 (-3,y 2)、 (3,y 3)都在反比例函数 y= - x 的图像上,则(

A . y1 > y2 > y3
B . y2 > y1 > y3
C. y3> y1> y2
D. y 1> y 3> y2
3 .( 08 年 四 川 乐 山 中考 题 ) 如 图 , 在 直 角 梯 形 ABCD 中 , AD ∥ BC , 点 E 是 边 CD 的 中 点 , 若
5
AB AD BC, BE ,则梯形 ABCD 的面积为(

2
A. 25 4
B. 25 2
C. 25 8
D. 25
o
x
D
7 . 若分式
x2 9 x2 4x
的值为
3
0,则 x 的值为(

A. 3
B. 3 或 -3
C.-3 D. 0
8 . ( 2004 年杭州中考题)甲、乙两人分别从两地同时出发,若相向而行,则
a 小时相遇;若同向而行,则 b
小时甲追上乙 . 那么甲的速度是乙的速度的(

a
A.
b倍
b
B. b 倍 ab
AD
E
B
C
4. 函数 y
k
的图象经过点( 1,- 2),则 k 的值为(

x
1
1
A.
B.
C. 2 D.
-2
2
2
5. 如果矩形的面积为 6cm2,那么它的长 y cm与宽 x cm之间的函数关系用图象表示大致(

y
y
y
y
o
x
o
x
o
x
A
B
C
6. 顺次连结等腰梯形各边中点所得四边形是(

A.梯形 B. 菱形 C. 矩形 D. 正方形
2、若一个四边形的两条对角线相等, 则称这个四边形为对角线四边形。 下列图形不是对角线四边形的是 ( )
A 、平行四边形
B、矩形
C 、正方形
3、某地连续 10 天的最高气温统计如下:
最高气温(℃)
22
23
24
25
捐款活动.八年级( 1)班 50 名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:
捐款(元)
10
15
30
50
60
人数
3
6
11
13
6
因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款
38 元.
( 1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.
( 2)该班捐款金额的众数、中位数分别是多少?
11.3
12. -1 或 1 2
13.1
y=- x -1 或 y= 1 x 1 2
14.19.1cm,164.3cm
15.1
16. 2x-1 , 3 17.解:( 1) 被污染处的人数为 11 人
设被污染处的捐款数为 x 元,则 11 x +1460=50×38
解得 x =40
答:( 1)被污染处的人数为 11 人,被污染处的捐款数为 40 元. ( 2)捐款金额的中位数是 40 元,捐款金额的众数是 50 元.
11 a2 b2
a2 b2 a 2b2
∵ 在直角三角形中, a 2 b 2 c2
又∵ 1 ab 1 ch 即 ab ch
2
2
∴ 右边
即证明出: 1 1 1 a2 b2 h2
人教版八年级下册数学期末测试题 2
一、细心填一填 ,一锤定音 (每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,
3 18. 解:( 1) A(1, 3),E( 2, 2 )
k ( 2)设所求的函数关系式为 y= x
把 x= 1, y= 3 代入, 得: k= 3× 1= 3 3
∴ y = x 为所求的解析式
3 ( 3)当 x= 2 时, y=
2 3 ∴ 点 E( 2,2 )在这个函数的图象上。
19.证明:左边
18. 已知如图:矩形 ABCD的边 BC在 X 轴上, E 为对角线 BD的中点,点 B、 D 的坐标分别为
B( 1,0), D(3, 3),反比例函数 ( 1)写出点 A 和点 E 的坐标;
y= k x
的图象经过
A 点,
( 2)求反比例函数的解析式;
6
Y
( 3)判断点 E 是否在这个函数的图象上
9.如图,把一张平行四边形纸片
b
C.
a倍
ba
b
D.
a倍
ba
ABCD沿 BD对折。使 C 点落在 E 处, BE 与 AD相交于点 D.若∠ DBC=15°,则
∠ BOD=
A. 130 °
B. 140 °
C. 150 ° D. 160°
10.如图,在高为 3 米,水平距离为 4 米楼梯的表面铺地毯,地毯的长度至少需多少米(
并将正确选项填入答题卡中)
题号
1
2
3
4
5
6
7
8
9
10
11 12
答案
1、同学们都知道,蜜蜂建造的蜂房既坚固又省料。那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅
仅约为 0.000073m。此数据用科学计数法表示为(

A 、 7.3 10 4 m
B、 7.3 10 5 m
C、 7.3 10 6 m
D 、 73 10 5 m
相关文档
最新文档