高中数学教材必修一《方程的根与函数的零点》教学设计

合集下载

方程的根与函数的零点教案

方程的根与函数的零点教案

一、《方程的根与函数的零点》二、教学目标:1. 了解方程的根与函数的零点的概念及关系;2. 掌握求解一元二次方程的方法;3. 学会利用函数的零点判断方程的解的情况;4. 能够运用方程的根与函数的零点解决实际问题。

三、教学重点与难点:1. 重点:方程的根与函数的零点的概念及关系,求解一元二次方程的方法;2. 难点:利用函数的零点判断方程的解的情况,运用方程的根与函数的零点解决实际问题。

四、教学方法:1. 采用问题驱动法,引导学生思考方程与函数之间的关系;2. 利用数形结合法,让学生直观地理解函数的零点与方程的根;3. 运用实例分析法,培养学生解决实际问题的能力。

五、教学内容:1. 方程的根与函数的零点的概念介绍;2. 求解一元二次方程的公式法与因式分解法;3. 利用函数的零点判断方程的解的情况;4. 方程的根与函数的零点在实际问题中的应用实例。

教案内容依次按照教学步骤、教学活动、教学评价进行设计。

六、教学步骤:1. 引入新课:通过回顾前面的知识,引导学生思考方程与函数之间的关系,引出本节课的主题——方程的根与函数的零点。

2. 讲解概念:讲解方程的根与函数的零点的概念,让学生理解两者之间的关系。

3. 求解一元二次方程:引导学生学习求解一元二次方程的公式法与因式分解法,并通过例题让学生掌握这两种方法。

4. 利用函数的零点判断方程解的情况:讲解如何利用函数的零点判断方程的解的情况,并通过图形让学生直观地理解。

5. 实际问题应用:通过实例分析,让学生学会运用方程的根与函数的零点解决实际问题。

七、教学活动:1. 小组讨论:让学生分组讨论方程的根与函数的零点之间的关系,并分享各自的观点。

2. 例题讲解:让学生上台演示求解一元二次方程的过程,并讲解解题思路。

3. 函数零点判断:让学生通过图形判断给定方程的解的情况。

4. 实际问题解决:让学生分组讨论实际问题,并运用方程的根与函数的零点找出解决方案。

八、教学评价:1. 课堂提问:通过提问了解学生对equation 的根与function 的零点的概念的理解程度。

方程的根与函数的零点教案

方程的根与函数的零点教案

方程的根与函数的零点教案第一章:方程的根与函数的零点概念引入1.1 教学目标让学生理解方程的根与函数的零点的概念。

让学生掌握方程的根与函数的零点之间的关系。

培养学生运用数形结合的思想方法解决问题的能力。

1.2 教学内容引入方程的根的概念,引导学生理解方程的根是使方程左右两边相等的未知数的值。

引入函数的零点的概念,引导学生理解函数的零点是使函数值为零的未知数的值。

引导学生理解方程的根与函数的零点之间的关系。

1.3 教学活动通过实际例子,让学生初步理解方程的根与函数的零点的概念。

引导学生进行思考和讨论,深化对方程的根与函数的零点之间关系的理解。

布置练习题,巩固学生对方程的根与函数的零点的理解和运用。

第二章:一元二次方程的根与二次函数的零点2.1 教学目标让学生掌握一元二次方程的根与二次函数的零点之间的关系。

让学生学会运用一元二次方程的根的判别式解决实际问题。

培养学生运用数形结合的思想方法解决问题的能力。

2.2 教学内容引导学生理解一元二次方程的根与二次函数的零点之间的关系。

引导学生掌握一元二次方程的根的判别式及其应用。

引导学生运用一元二次方程的根的判别式解决实际问题。

2.3 教学活动通过实际例子,让学生理解一元二次方程的根与二次函数的零点之间的关系。

引导学生进行思考和讨论,深化对一元二次方程的根的判别式的理解和运用。

布置练习题,巩固学生对一元二次方程的根与二次函数的零点的理解和运用。

第三章:方程的根与函数的零点的判定定理3.1 教学目标让学生掌握方程的根与函数的零点的判定定理。

培养学生运用判定定理判断方程的根与函数的零点的情况。

3.2 教学内容引导学生掌握方程的根与函数的零点的判定定理。

引导学生运用判定定理判断方程的根与函数的零点的情况。

3.3 教学活动通过实际例子,让学生理解方程的根与函数的零点的判定定理。

引导学生进行思考和讨论,深化对判定定理的理解和运用。

布置练习题,巩固学生对判定定理的掌握。

第四章:方程的根与函数的零点的求解方法4.1 教学目标让学生掌握方程的根与函数的零点的求解方法。

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计

方程的根与函数的零点教学教案设计一、教学目标1. 让学生理解方程的根与函数的零点的概念及其联系。

2. 让学生掌握求解一元二次方程的方法,并能够运用到实际问题中。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 方程的根与函数的零点的概念及其联系。

2. 一元二次方程的求解方法。

3. 实际问题中的应用。

三、教学重点与难点1. 教学重点:方程的根与函数的零点的概念及其联系,一元二次方程的求解方法。

2. 教学难点:一元二次方程的求解方法在实际问题中的应用。

四、教学方法与手段1. 采用问题驱动法,引导学生主动探究方程的根与函数的零点的关系。

2. 使用多媒体课件,帮助学生直观地理解一元二次方程的求解过程。

3. 开展小组讨论,培养学生合作解决问题的能力。

五、教学过程1. 导入新课:通过生活中的实例,引导学生思考方程的根与函数的零点的关系。

2. 讲解概念:介绍方程的根与函数的零点的概念,并解释它们之间的联系。

3. 演示求解过程:利用多媒体课件,演示一元二次方程的求解过程,让学生了解求解方法。

4. 练习与讲解:让学生独立完成练习题,对其中出现的问题进行讲解。

5. 实际问题应用:引导学生运用所学知识解决实际问题,巩固所学内容。

7. 布置作业:布置一些有关方程的根与函数的零点的练习题,巩固所学知识。

六、教学评估1. 课堂问答:通过提问的方式,了解学生对方程的根与函数的零点的理解和掌握程度。

2. 练习题:布置课后练习题,评估学生对一元二次方程求解方法的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,了解他们对于实际问题应用的掌握情况。

七、教学拓展1. 介绍一元二次方程的其他求解方法,如配方法、因式分解法等。

2. 探讨方程的根与函数的零点在实际问题中的应用,如物理学、工程学等领域的应用。

八、教学反馈1. 学生反馈:收集学生对课堂内容的反馈意见,了解他们的学习需求和困惑。

2. 教学反思:根据学生的反馈和课堂表现,反思教学过程中的不足之处,并进行改进。

最新人教版高中数学《方程的根与函数的零点》教学设计

最新人教版高中数学《方程的根与函数的零点》教学设计

方程的根与函数的零点一、教材地位和作用本节课是普通高中实验教科书人教A版必修1第三章第一单元第一节,是后继学习二分法的理论准备。

学生通过了解函数零点与方程根的联系,从而把求方程根的问题转化为求函数零点的问题。

作为函数应用的第一课时,就是要让学生认识到函数与其他数学知识的联系,让学生用函数的图象这个“形”来研究方程的根这个“数”,深刻体会“以形助数”的思想方法二、学情分析(1)知识基础:学生已经熟练掌握一次、二次方程的求解方法,掌握了一些基本初等函数图象的画法,并能从图象中获取一定信息,这是学习本节课的知识基础。

(2)心理准备:公式法求解高次、超越方程的思维受挫是学生学习本节课的内在动机。

三、教学目标1、知识与技能:结合具体的二次函数图象,判断二次方程根的存在性,从而了解函数的零点与方程根的联系,形成函数零点的概念及零点存在的判定方法。

2、过程与方法:在应用函数研究方程的过程中,体会函数与方程思想,数形结合思想以及化归思想;把从特殊函数零点存在的判定方法上升到一般函数,体现了从特殊到一般的研究方法。

3、情感态度价值观:在求解方程根的“山穷水尽”,到研究函数零点的“柳暗花明”,学生了解数学的发展史,感受探究的乐趣。

四、教学重点、难点与关键(1)重点:零点存在定理的发现。

(2)难点:零点存在定理的发现与准确理解。

(3)关键:引导学生运用函数的观点研究方程的根。

五、教法与学法(一)教法设计:本节课借鉴发现教学法,强调教师学生双主体,采用“创设问题情景——师生共同探究——形成概念结论——应用巩固提高”的探究模式,使学生在获得知识的同时,能够掌握方法、提升能力(二)学法指导:让学生在自主探究中,学会发现问题并解决问题,逐步形成敢于发现、敢于质疑的科学态度。

、函数零点的定义:对于函数()y f x =,把使0=的实数x 叫做函数(y f x =_x_ - 1_0 _ - 1 _ - 2_3 _2 _1_4_3_2_1设计理念:本节课借鉴发现教学法,强调教师学生双主体,采用“创设问题情景——师生共同辨析研讨——形成概念结论——应用举例巩固提高”的探究模式,教师真正担当学习情境的创设者,学生探究中的引导者,学生学习中的合作者;而学生则成为新知识的探索者、发现者、建构者,使学生在获得知识的同时,能够掌握学习数学的思维方法、提升进一步学习新知识的能力。

教案设计-方程的根与函数的零点

教案设计-方程的根与函数的零点

教案设计方程的根与函数的零点一、教学目标知识与技能:1. 理解方程的根与函数的零点的概念及其联系。

2. 学会使用数形结合的方法分析方程的根与函数的零点。

3. 掌握求解一元二次方程的方法,并能应用于实际问题中。

过程与方法:1. 通过观察、实验、探究等活动,培养学生的观察能力、思考能力和解决问题的能力。

2. 学会使用函数图像来分析方程的根的情况。

情感态度价值观:1. 培养学生的耐心和细心,对数学问题的探究兴趣。

2. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 方程的根与函数的零点的概念。

2. 方程的根与函数的零点的联系。

3. 一元二次方程的解法。

4. 利用函数图像分析方程的根的情况。

5. 实际问题中的应用。

三、教学重点与难点重点:1. 方程的根与函数的零点的概念及其联系。

2. 一元二次方程的解法。

难点:1. 对方程的根的情况的分析。

2. 利用函数图像分析方程的根的情况。

四、教学准备1. 教学课件或黑板。

2. 练习题。

五、教学过程1. 导入:a. 引导学生回顾方程的解的概念。

b. 引入“方程的根”的概念,引导学生理解方程的根与方程的解的关系。

2. 探究方程的根与函数的零点的联系:a. 引导学生观察一元二次方程的解与对应函数的零点的关系。

b. 通过实验或探究活动,让学生体会方程的根与函数的零点的联系。

3. 学习一元二次方程的解法:a. 引导学生学习一元二次方程的解法,如因式分解法、配方法、求根公式等。

b. 通过练习题,巩固学生对一元二次方程解法的掌握。

4. 利用函数图像分析方程的根的情况:a. 引导学生学会绘制函数图像。

b. 引导学生通过观察函数图像,分析方程的根的情况。

5. 实际问题中的应用:a. 引导学生运用方程的根与函数的零点的知识解决实际问题。

b. 提供一些实际问题,让学生练习运用所学知识解决问题。

b. 引导学生反思自己在学习过程中的收获和不足,提出改进措施。

7. 布置作业:a. 根据学生的学习情况,布置一些巩固所学知识的练习题。

数学《方程的根与函数的零点》教案

数学《方程的根与函数的零点》教案

数学《方程的根与函数的零点》教案一、教学目标:1. 了解方程的定义,掌握求解方程的基本方法。

2. 掌握函数的零点的概念,了解函数的零点与方程的根的关系。

3. 能够应用所学知识解决实际生活中的问题。

二、教学内容:1. 方程与根2. 函数与零点三、教学重难点:1. 方程解法2. 函数的零点四、教学方法:1. 讲授法2. 互动探究法3. 课堂演示法五、教学过程及时间安排:1. 导入(5分钟)可以用一些有趣的问题引导学生思考,例如:1+1=?答案是不是唯一的?讲解方程在数学中的重要性,方程的不等式是数学研究的基础。

2. 方程与根(15分钟)1)引入方程的定义,方程的形式及一元一次方程的解法。

2)讲解方程解的唯一性和存在性。

3)引入方程的根的概念,讲解如何将解代入原方程验证。

3. 函数与零点(20分钟)1)讲解函数的定义及函数的图像。

2)引入函数的零点的概念和求解方法。

3)展示一些函数的图像,并找出它们的零点。

4、应用实例(15分钟)举一些实际例子,引导学生如何将所学知识应用于实际生活中。

比如:一家工厂的生产成本为y = 3x2 + 2x + 12(其中y为成本,x为产量),如果该工厂希望能够获得最大的利润,应该选择什么样的产量?根据利润的公式L = 10x - y,求得利润最大时的产量和利润。

5、巩固练习(20分钟)提供一些练习题,让学生巩固所学内容。

六、板书设计:1. 方程与根方程的定义方程的形式一元一次方程的解法等式和不等式方程解的唯一性和存在性方程的根的概念2. 函数与零点函数的定义函数的图像函数的零点七、教学反思:本次教学采用讲授法、互动探究法和课堂演示法相结合的方法,使学生更好地理解了方程与根、函数与零点的概念及求解方法,学生能够较好地将所学知识应用于实际生活中。

在教学的过程中,要注意学生的参与性,在教学中保持与学生的互动,让学生更好地掌握所学知识。

方程的根与函数的零点教案

方程的根与函数的零点教案

方程的根与函数的零点教案方程的根与函数的零点教案「篇一」知识与技能1.结合方程根的几何意义,理解函数零点的定义;2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.过程与方法1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力.情感、态度与价值观1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;3.使学生感受学习、探索发现的乐趣与成功感.教学重点与难点教学重点:零点的概念及零点存在性的判定.教学难点:探究判断函数的零点个数和所在区间的方法.教学的方法与手段授课类型新授课教学方法启发式教学、探究式学习。

方程的根与函数的零点教案「篇二」教学目标:1、能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。

2、理解函数的零点与方程的联系。

3、渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。

教学重点、难点:1、重点:理解函数的零点与方程根的联系,使学生遇到一元二次方程根的问题时能顺利联想函数的思想和方法。

2、难点:函数零点存在的条件。

教学过程:1、问题引入探究一元二次方程与相应二次函数的关系。

出示表格,引导学生填写表格,并分析填出的表格,从二次方程的根和二次函数的图像与x轴的交点的坐标,探究一元二次方程与相应二次函数的关系。

一元二次方程方程的根二次函数图像与X轴的交点x2-2x-3=0x1=-1,x2=3y=x2-2x-3(-1,0),(3,0)x2-2x+1=0x1=x2=1y=x2-2x+1(1,0)x2-2x+3=0无实数根y=x2-2x+3无交点(图1-1)函数y=x2-2x-3的图像(图1-2)函数y=x2-2x+1的图像(图1-3)函数y=x2-2x+3的图像归纳:(1)如果一元二次方程没有实数根,相应的二次函数图像与x轴没有交点;(2)如果一元二次方程有实数根,相应的二次函数图像与x轴有交点。

人教版高中必修13.1.1方程的根与函数的零点教学设计 (2)

人教版高中必修13.1.1方程的根与函数的零点教学设计 (2)

人教版高中必修13.1.1方程的根与函数的零点教学设计一、课程背景方程的根和函数的零点是高中数学中非常重要的内容,本文设计的教学方案适用于人教版高中必修13.1.1中的方程的根与函数的零点一章。

在学习本章课程前,学生已经学习过一元二次方程和一元二次函数的基本概念和性质,并通过解一元二次方程和求一元二次函数的图象掌握了方程的根和函数的零点的相关概念和解法。

二、教学目标1.了解方程、函数、根、零点的概念与性质。

2.掌握一元高次方程一般形式的解法及其应用。

3.掌握高次方程、无理方程、三角方程的解法及其应用。

4.掌握一元高次函数的零点的求法及其应用。

5.培养解决实际问题的能力。

三、教学重难点1.一元高次方程的一般解法,包括因式分解法、配方法、根与系数的关系、综合法等。

2.高次方程、无理方程、三角方程的解法与应用。

3.一元高次函数的零点的求法与应用。

四、教学过程设计1. 导入模块(1)引入问题:如果现在你有一个函数f(x)=x3+5x2−3x−9,你如何求它的零点?通过这个问题,引出本节课将讲解的方程的根与函数的零点的相关概念。

(2)概念解释:引导学生预习本章的课程内容,包括方程、函数、根、零点等的相关概念。

2. 一元高次方程的解法(1)讲解一元高次方程的一般形式及其解法。

(2)通过习题的讲解,让学生掌握因式分解法、配方法、根与系数的关系、综合法等一元高次方程的解法及其应用。

3. 高次方程、无理方程、三角方程的解法(1)通过例题的讲解,让学生掌握高次方程、无理方程、三角方程的解法及其应用。

(2)通过一些实际问题的解决,训练学生运用高次方程、无理方程、三角方程的解法解决实际问题的能力。

4. 一元高次函数的零点的求法与应用(1)通过例题的讲解,让学生掌握一元高次函数的零点的求法及其应用。

(2)通过一些实际问题的解决,训练学生运用一元高次函数的零点的求法解决实际问题的能力。

5. 综合练习通过一些习题的讲解,帮助学生加深对本节课程的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§3.1.1方程的根与函数的零点
【教学目标】
知识目标:理解函数零点的定义以及方程的根与函数的零点之间的联系,了解“函数零点存在”的判断方法,对新知识加以应用.
能力目标:渗透由特殊到一般的认识规律,提升学生的抽象和概括能力,领会数形结合、化归等数学思想.
情感、态度与价值观:
认识函数零点的价值所在,使学生认识到学习数学是有用的;
培养学生认真、耐心、严谨的数学品质;
让学生在自我解决问题的过程中,体验成功的喜悦.
【教学重点】理解函数的零点与方程根的关系,初步形成用函数观点处理问题的意识.
【教学难点】函数零点存在性定理的理解及初步应用
【教学方法】发现、合作、讲解、演练相结合.
【教学过程】
(一)抛转引玉
浙江杭州某天早晨六点的温度是-2℃,十二点的温度是12℃.在这段时间内,假设温度是均匀变化的,问:1)是否存在某时刻的温度为0℃?
2)你能从数学的角度来解释这一现象吗?
3)能计算出具体的时刻吗?
(设计意图:当温度均匀变化时,温度随时间的变化图是一条直线,学生能够根据已知条件发现直线一定与x轴相交,求出相应函数的解析式,最终得出一次函数图象与x轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备.)
(二)溯本逐源
(设计意图:回顾二次函数图象与x轴的交点和相应方程的根的关系,为一般函数及相应方
程关系作准备.)
在《几何画板》下展示如下函数的图象: ()()()21226y x x x =-+-、28x y =-、()2y ln x =-,比较函数图象与x 轴的交点和相应方程的根的关系. 函数()y f x =的图象与x 轴交点,即当()0f x =,该方程有几个根,()y f x =的图象与x 轴就有几个交点,且方程的根就是交点的横坐标.
(设计意图:通过各种函数,将结论推广到一般函数.)
1.函数零点概念
对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点.
说明:函数零点不是一个点,而是具体的自变量的取值.
2.方程的根与函数零点的关系
方程()
0f x =有实数根
函数()y f x =的图象与x 轴有交点
函数()
y f x =有零点
以上关系说明:函数与方程有着密切的联系,从而有些方程问题可以转化为相应函数问题来求解,同样,函数问题有时也可转化为相应方程问题.这正是函数与方程思想的基础. (三)顺藤摸瓜
浙江杭州某天早晨六点的温度是-2℃,十二点的温度是12℃ .在这段时间内,温度是不均匀变化的,问:是否仍存在某时刻的温度为0℃?
(学生在事先准备好的图纸上画出温度随时间的变化图,教师选取几个具有代表性的图用实物投影仪加以展示,并让学生解释为什么这一时刻仍存在,使学生在自我解决问题的过程中,体验成功的喜悦.)
(设计意图:通过类比得出零点存在性定理,此刻体现变式教学.)
给出零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根.
(四)牛刀小试
1. 10x x -=3试判断方程+3是否有根?
2.求函数26f (x )x x =+-ln 的零点的个数.
(设计意图:通过例题分析,领会方程函数的转化思想,学会用零点存在性定理确定零点存在区间,并且结合函数性质,判断零点个数的方法.)
(五)抽丝剥茧
问题1. 如果函数图象不是连续不断的,结论还成立吗?
问题2.若()()0f a f b >,函数()y f x =在区间在[]a,b 上一定没有零点吗?一定有零点吗?
问题3.若()()0f a f b <,函数()y f x =在区间在[]a,b 上只有一个零点吗?可能有几个?
问题4.在满足定理的条件下,能否增加条件,可使函数()y f x =在区间在[]a,b 上只有一个零点?
(设计意图:函数零点存在的判定结论,是函数在某区间上存在零点的充分不必要条件,但零点的个数需结合函数的单调性等性质进行判断.结论的逆命题不成立,通过四个问题使学生准确理解零点存在性定理.)
(六)再接再厉
1.已知函数f (x )的图象是连续不断的,且有如下对应值表,则函数在哪几个
2.函数()376f x x x =--在区间[-4,4]上是否存在零点?若存在零点,能确定零点的个数及大小吗?
(设计意图:本题比较灵活,既可以用零点存在定理,又可以转化为方程、因式分解后求根。

目的有二:一是通过确定零点的大小,体会一分为二的思想,为下一节二分法做铺垫;二是再次体会方程函数的转化思想.)
(七)提纲挈领
1.知识小结: 零点的概念、方程的根与函数的零点 零点存在定理
2.思想方法小结:化归思想 数形结合思想 方程函数转化思想
(八)作业与课外活动
作业:
88教材P 练习1 、2
课外活动
在一个星期内,四位同学为小组合作完成一篇关于方程发展史的数学小论文或去探究一下如何缩小零点所在的区间.。

相关文档
最新文档