电动机制动控制电路图

合集下载

电机制动原理图(“制动”相关文档)共7张

电机制动原理图(“制动”相关文档)共7张

制动原理可用图4.18说明。由于电源两相相序交换,定子绕组中产生的旋转磁场的方向也 发生改变,即与原方向相反。而电动机的转子此时在惯性作用下仍向原来方向旋转,转子相 对旋转磁场的转向改变,于是转子电路中产生了一个与原方向相反的感应电流,进而产生了 一个与原转向相反的转矩,实现制动。
电源两相反接制动的机械特性如图4.19所示,为反向串大电阻特性。当负载转矩大
于堵转转矩时,将稳定于停车;当负载转矩小于堵转转矩时将稳定于反转状态。
图4.18 电源两相反向制动原理
图4.19 电源两相反向机械特性
三相异步电动用于拖动重物,在重物下降时,在位能负载 转矩作用下,转子转速n大于同步转速n1DD'点。
图4.21 回馈制动原理
图4.22 异步电动机回馈制动机械特性
图4.14 能耗制动控制接线图
当断交流送直流时,在电动机定子绕组内产生一恒定磁场,此时转子 导体切割直流磁场,产生感应电流,其方向由右手定则可以判断,如图 4.15所示。通有电流的转子处在恒定磁场中将受力,其方பைடு நூலகம்由左手定则判 断为与原转速方向相反,如图4.15所示,故为制动转矩。
能耗制动的机械特性曲线如图4.16中曲线1所示。当负载为反抗性负载 时,将制动到转速为零停车,此时应断开直流电源,停止工作。当负载为 位能性负载时,将反向下降,稳定工作在某一转速下,即实现限速下放。 通过改变直流电压的高低或所串入电阻的大小可以改变其制动性能,如图 4.16中曲线3或曲线2所示。
4.3 三相异步电动机的电气制动
与直流他励电动机相似,三相 异步电动机也有能耗制动、反接制 动和回馈制动三种方式。 4.3.1 能耗制动
能耗制动的控制接线如图 4.14所示。正常工作时,Q合上, KM1闭合,电动机处于电动运行 状态。制动时,断开KM1,电动 机脱离三相交流电源。同时迅速 将KM2接通,将桥式整流电路输 出的单相直流电源接入定子绕组 的某二相中并串入电阻,电机进 入能耗制动状态,其制动原理可 用图4.15说明。

电机控制线路图大全

电机控制线路图大全

电机控制线路图大全Y-△(星三角)降压启动控制线路-接触器应用接线图Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。

由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。

Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。

OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。

OX3—13型Y-△自动启动器的控制线路如图11—11所示。

()合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I星形—三角形降压起动控制线路星形——三角形降压起动控制线路星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。

Y —△起动只能用于正常运行时为△形接法的电动机。

1.按钮、接触器控制 Y —△降压起动控制线路图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。

线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。

2.时间继电器控制 Y —△降压起动控制线路图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。

图2定子串电阻降压起动控制线路图2是定子串电阻降压起动控制线路。

第2章三相异步电动机控制线路模板ppt课件

第2章三相异步电动机控制线路模板ppt课件
在多处位置设置控制按钮,均能对同一电机实行控制。控制回 路需要设置多套起、停按钮,分别安装在设备的多个操作位置
特 点:
起动按钮的常开触点并联;停止按钮的常闭触点串联。
操作
无论操作哪个启动按钮都可以实现电动机的起动; 操作任意一个停止按钮可以打断自锁电路,使电动机停止运行。
SB1乙
SB1甲
SB2甲
KM
2、工作台前进至终点自动停车; 3、工作台在终点时,启动电机只能反转; 4、工作台后退至原位自动停车; 5、工作台在前进或后退途中均可停车,再 启动后既可进也可退。
实现方法:在生产机械行程的终点和原位安装行程开关
运动过程
按下SB2 工作台正向运行 至终点位置撞开SQ2 电机停车
(反向运行同样分析)
SB2乙
K M
甲地
乙地
SB1甲、SB2甲实现就地控制; SB1乙、SB2乙实现远方控制。
(a)
(b)‍
‍多点控制电路‍
2.2.5 自动循环控制
正程:电动机正转; 逆程:电动机反转。
控制要求:
工作台 B
后退 前进
SQ4 SQ1
床身
工作台 A
SQ2 SQ3
机床工作示意图
1、工作台在原位时,启动电机只能正转;
(1)工作台在原位时: 启动后只能前进,不能后退。 (2)A前进到终点时: 立即后退,退回到原位自动停。
(3)A在途中时: 可停车;再启动时,既可前进也可后退。 (4)A在途中时,若暂时停电,复电时,A不会自行运动。 (5)A在途中若受阻,在一定时间内电机应自行断电而停车。
基本电路的结构特点: 1. 自锁——接触器常开触点与按钮常开触点相并联。 2. 互锁——两个接触器的常闭触点串联在对方线圈的电路

电动机制动控制

电动机制动控制

三相异步电动机电磁抱闸通电制动
如图3所示:合上电源开关QS,按动启动按钮SB1,接触器线圈KM1通电, KM1主触头闭合,电动机正常动转。因其常闭辅助触头(KM1)断开,使接触器 KM2线圈断电,因此电磁抱闸线圈回路不通电,电磁抱闸的闸瓦与闸轮分开, 电动机正常运转。
当按下停止复合按钮SB2时,因其常闭触头断开,KM1线圈断电,电动机定 子绕组脱离三相电源,同时KM1的常闭辅助触头恢复闭合。这时如果将SB2按到 底,则由于其常开触头闭合,而使KM2线圈获电,KM2触头闭合使电磁抱闸线 圈通电,吸引衔铁,使闸瓦抱住闸轮实现制动。
3、电动机制动时,KM2释放后电动机发生反转。
这是由于Ks复位太迟引起的故障,原因是Ks触点复位弹簧压力过小,应 按上述方法将复位弹簧的压力调大,并反复调整试验,直至达到合适程度。
可逆运行电动机反接制动控制
可逆运行电动机反接制动控制
双向运行的反接制动控制电路
三相异步电动机能耗制动
三相异步电动机能耗制动就是切断电动机交流电源的同时,向定子 绕组通入直流电流,将电动机转子因惯性而旋转的动能,转化为电能消 耗在转子电阻上的一种制动方法,此时转子切割静止的磁力线,产生感 应电动势和转子电流,转子电流与磁场相互作用,产生制动力矩,使电 动机迅速减速停车。
三相异步电动机电磁抱闸断电制动
如图2所示:合上电源开关QS,按动启动按钮SB1,接触器线圈KM通电, KM的主触头闭合,电动机通电运行。同时电磁抱闸线圈获电,吸引衔铁,使之 与铁心闭合,衔铁克服弹簧拉力,使杠杆顺时针方向旋转,从而使闸瓦与闸轮 分开,电动机正常运行。
当按下停止按钮SB2时,接触器线圈断电,KM主触头恢复断开,电动机断 电,同时电磁抱闸线圈也断电,杠杆在弹簧恢复力作用下向下移动,闸瓦抱住 闸轮开始制动。

三相交流异步电动机制动控制01(共7张PPT)

三相交流异步电动机制动控制01(共7张PPT)

电动机正反转控制操作顺序的不同,有“正—停—反”控制电路与“正—反—停”控制电路。
由于是利用接触器(继电器)的常闭触点串接在对方线圈回
路中而形成的相互制约的控制称为电气互锁。这种连接保证
电气
了电路工作安全和可靠,因此在电气控制线路中,凡具有相
互锁
反动作的均需电气互锁。
电动机正反转控制线路,实质上是两个方向相反的单向运行电路的组合,并且在这两个方向相反的单向运行电路中加设必要的联锁。 再按停止按钮SB3,电动机停转。 将在同一时间里两个接触器只允许一个工作的控制作用称为互锁(联锁)。 这种连接保证了电路工作安全和可靠,因此在电气控制线路中,凡具有相反动作的均需电气互锁。 电(动1)机“正正—反停转—控反制”操控作制顺电序路的不同,有“正—停—反”控制电路与“正—反—停”控制电路。 电(动2)机正正—反反转—控停制”控操制作电顺路序的不同,有“正—停—反”控制电路与“正—反—停”控制电路。 控制电路中,我们将这种利用复合按钮的常闭触点串接在对方线圈回路中而形成的相互制约的控制称为机械互锁。 这将种在连 同接一保时证间了里电两路个工接作触安器全只和允可许靠一,个因工此作在的电控气制控作制用线称路为中互,锁凡(具联有锁相)反。动作的均需电气互锁。 电按动下机 正正向反起转动控按制钮线SB路1,接实触质器上K是M两1线个圈方得向电相吸反合的,单其向常运开行主电触路点的闭组合将,电并动且机在定这两子个绕方组向接相通反电的源单,向相运序行为U电、路V中、加W设,必电要动的机联正锁向。起动运 在行生。产实际中,往往要求控制线路能对电动机进行正、反转的控制。 电这动种机 连正接反保转证控了制电线路路工,作实安质全上和是可两靠个,方因向此相在反电的气单控向制运线行路电中路,的凡组具合有,相并反且动在作这的两均个需方电向气相互反锁的 。单向运行电路中加设必要的联锁。 在电生动产 机实正际反中转,控往制往操要作求顺控序制的线不路同能,对有电“正动—机停进—行反正”控、制反电转路的与控“正制—。反—停”控制电路。 按再停按止 停按止钮按钮SBS3B,3K,M电1动失机电停释转放。,电动机停转。 (1)“正—停—反”控制电路 按停止按钮SB3,KM1失电释放,电动机停转。 由于是利用接触器(继电器)的常闭触点串接在对方线圈回路中而形成的相互制约的控制称为电气互锁。 将在同一时间里两个接触器只允许一个工作的控制作用称为互锁(联锁)。

制动控制电路-反接制动控制电路-能耗制动控制电路

制动控制电路-反接制动控制电路-能耗制动控制电路

制动控制电路-反接制动控制电路-能耗制动控制电路三相异步电动机从脱离电源开始,由于惯性的作用,转子要经过一段时间才能完全停止旋转,这就不能适应某些生产机械的工艺要求,出现运动部件停位不准、工作不安全等现象,也影响生产效率。

因此,应对电动机进行有效的制动,使其能迅速停车。

停车制动的方式有两大类:机械制动和电气制动。

机械制动是利用电磁抱闸等机械装置来强迫电动机迅速停车;电气制动是用电气的方法,使电动机产生一个与转子原来转动方向相反的电磁转矩来实现制动。

常用的电气制动方式有反接制动和能耗制动。

1.反接制动控制电路反接制动的原理是通过改变电动机定子绕组上三相电源的相序,使定子绕组产生反向旋转磁场,从而形成制动转矩。

反接制动时定子绕组中流过的反接制动电流相当于全压直接起动时电流的两倍,制动电流大,制动转矩大,对设备冲击也大。

因此为了减小冲击电流,通常在电动机定子电路中串入反接制动电阻,既限制了制动电流,又限制了制动转矩。

当反接制动到转子转速接近于零时,必须及时切除反相序电源,以防止反向再起动。

反接制动的特点是制动迅速、效果好、冲击大,通常仅适用于10kW以下的小容量电动机。

图1所示为使用速度继电器实现反接制动的控制电路。

图1a所示为电动机单向运转的反接制动控制电路。

电动机正常运转时,接触器KM1通电吸合,KM2线圈断电,速度继电器KS常开触点闭合,为反接制动做准备。

按下停止按钮SB1,KM1断电,电动机定子绕组脱离三相电源,电动机因惯性仍以很高速度旋转,KS常开触点仍保持闭合,将SB1按到底,使SB1常开触点闭合,KM2通电并自锁,电动机定子接反相序电源,进入反接制动状态。

电动机转速迅速下降,当电动机转速接近于零时(转速小于100r/min),KS常开触点复位,KM2断电,电动机断电,反接制动结束。

图1 反接制动控制电路图1b所示为电动机正反转运行的反接制动控制电路。

电动机正向起动时,按下正向起动按钮SB2,接触器KM1吸合并自锁,电动机正向运转;当电动机正向运转时,速度继电器KS1正向常闭触点断开,正向常开触点闭合,为制动做准备。

三相异步电动机的制动控制电路

三相异步电动机的制动控制电路

三相异步电动机的制动控制电路沟通异步电动机定子绕组脱离电源后,由于系统惯性作用,转子需经一段时间才能停止转动,这往往不满意某些机械的工艺要求,也影响生产效率的提高,并造成运动部件停位不准,工作担心全,因此应对拖动电动机实行有效的制动措施。

三相异步电动机的制动方法:机械制动和电气制动。

其中电气制动方法又包括反接制动、能耗制动、发电制动等。

1、反接制动掌握电路:反接制动是利用转变电动机电源相序,使定子绕组产生的旋转磁场与转子旋转方向相反,因而产生制动力矩的一种制动方法。

应留意的是,当电动机转速接近零时,必需马上断开电源,否则电动机会反向旋转。

另外,由于反接制动电流较大,制动时需在定子回路中串入电阻以限制制动电流。

反接制动电阻的接法有两种:对称电阻接法和不对称电阻接法,如下图所示。

一般制动电阻采纳对称接法,即三相分别串接相同的制动电阻。

图1 三相异步电动机反接制动电阻接法图2 电动机单向反接制动掌握线路2、能耗制动掌握电路能耗制动掌握电路:三相异步电动机能耗制动时,切断定子绕组的沟通电源后,在定于绕组任意两相通入直流电流形成一固定磁场,与旋转着的转子中的感应电流相互作用产生制动力矩。

制动结束必需准时切除直流电源。

图3 能耗制动掌握电路掌握电路(a):手动掌握:停车时按下SB1按钮,制动结束时放开。

电路简洁,操作不便。

掌握电路(b):依据电动机带负载制动过程时间长短设定时间继电器KT的定时值,实现制动过程的自动掌握。

能耗制动掌握电路特点:制动作用强弱与通入直流电流的大小和电动机的转速有关,在同样的转速下电流越大制动作用越强,电流肯定时转速越高制动力矩越大。

一般取直流电流为电动机空载电流的3~4倍,过大会使定子过热。

可调整整流器输出端的可变电阻RP,得到合适的制动电流。

并励直流电动机双向反接制动控制电路原理

并励直流电动机双向反接制动控制电路原理

并励直流电动机双向反接制动控制电路原理并励直流电动机双向反接制动控制电路的特点
同三相异步电动机一样,并励直流电动机双向反接制动电路就是,当直流电动机在正向运转需要停止运行时,在切断直流电动机电源后,立即在直流电动机的电枢中
通入反转的电流;而直流电动机在反向运转需要停止运行时,在切断直流电动机电源后,立即在直流电动机的电枢中通入正转的电流,从而达到使直流电动机在正、反转的情况下立即停车的目的。

并励直流电动机双向反接制动控制电路原理图如图所示。

在图中,当合上电源总开关QS时,断电延时时间继电器KT1、KT2,电流继电器KA通电闭合;当按下正转启动按钮SB1时,接触器KM1通电闭合,直流电动机M串电阻R1、R2启动运转;经过一定时间,接触器KM6闭合,切除串电阻R1,直流电动机M串电阻R2继续启动运转;又经过一定时间,接触器KM7通电闭合,切除串电阻R2,直流电动机全速全压运行,电压继电器KV闭合,继而接触器KM4通电闭合,完成正转启动过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档