斯特林制冷机22914ppt
制冷压缩机知识大全ppt课件

1
制冷系统的组成
一个典型的制冷系统是由压缩机、冷凝器、节流 阀、蒸发器四大部件组成的。
制冷系统完成的是一个从低温环境吸取热量,在 高温环境放出热量的过程!在这个系统中,压缩机是 心脏,起到一个链接的作用,它将低温低压的工况压 缩变成高温高压的工况。所以,压缩机是否能正常工 作将直接影响整个系统是否能正常工作!
a.八角型系列半封闭压缩机
型号说明:4DC-5.2(Y) 44DC-10.2(Y)
4:表示-4缸
D:表示-缸径X行程
C:表示-八角型
5:表示-5HP
2:表示-第二代压缩机 接
44:表示-两台4缸对
Y:表示-聚脂油(R134a/R404A/507)
不标Y表示的是用矿物油
可编辑课件PPT
14
C4 系列
可编辑课件PPT
22
d.高效的能量调节 4缸压缩机:50%(选购件) 6缸压缩机:33%和66%(选购件)
e.振动小、噪音低:4缸、6缸压缩机采用最佳的质量平衡设计。 (如将甩油盘安放在远离电机侧)
f. 可靠的电机保护装置:采用PTC传感器对电机温度和排气温 度(选购件)进行监控。
g.体积小、重量轻 h.一种压缩机配置两种电机,使其适用不同的运行工况
C6系列
可编辑课件PPT
C8 系列
15
C4 八角机系列 – 侧视图
吸、排气截至阀可以 按90°为单位旋转
曲轴箱加热器 (可选件)
- 插入套管内
可编辑课件PP-T PTC 控制
16
C4 八角机系列 – 正视图
连接 “Delta-P“ 电子油压开关
可编辑课件PPT 排油堵
17
紧凑设计的 4NCS-20.2
冷水机组制冷原理PPT课件

1. 相关术语
1.1温度 • 在法定计量单位中,采用热力学温度.并允许摄氏温度同
时使用。热力学温度符号用T表示,单位符号为K。工程上 仍延用摄氏温度(公制)和华氏温度(英制)。摄氏温度用t表 示,单位符号为℃; • 华氏温度用θ表示,单位符号为℉。三种温度之间的关系 如下: • 表示温度差和温度间隔时: • 表示温度数值时:
27
盐水溶液选用原则
1、盐水溶液的使用原则是:保证蒸发器中的盐水不结冰,盐水溶液的凝固点不 应选的过低,因这样会使密度增加,流动阻力增加,而且比热容减小,输送 相同的冷量所需的循环量要增加,使耗功增加。一般盐水溶液的凝固点温度 比制冷剂蒸发温度低5℃左右。
2、盐水溶液对金属有强烈的腐蚀作用,会腐蚀管道和设备,为减小其腐蚀性, 可采取以下措施:a. 提高盐的纯度;b. 减少与空气的接触,采用封闭式循环 ;c. 加缓蚀剂
17
制冷剂符号举例
制冷剂符号举例
18
制冷剂的选择原则
1.3、制冷剂的选择原则
1.3.1、热力学性质方面 工作温度范围内有合适的压力和压力比。 单位制冷量q0和单位容积制冷量qv较大。 比功w和单位容积压缩功wv小,循环效率高。 等熵压缩终了温度不能太高,以免润滑条件恶化或制冷剂自身在高温下分解。 1.3.2、迁移性质方面 粘度、密度尽量小。 导热系数大,可提高传热系数,减少传热面积。 蒸发压力≧大气压力 冷凝压力不要过高 冷凝压力与蒸发压力之比不宜过大
3
气化
1.2气化
物质由液态转变为气态的过程称为气化。气化有蒸发和沸腾两不同的 方式。 A、蒸发是指在任何温度下液体表面分子汽化成蒸气分子的过程。蒸发 在任何压力、任何温度下都可能发生。 B、沸腾是在一定温度和压力下,液态内部形成许多蒸气小泡,并迅速 上升,突破液体表面而破裂转化成气体的过程,所以沸腾是液体表面和 内部同时进行的剧烈汽化的现象。液态沸腾时的温度称为沸点。液体在 沸腾过程中要吸取热量,并保持其湿度不变,要使沸腾过程连续进行, 必须连续不断地自外界加入热量。
直线电机驱动的斯特林制冷机的结构设计-概述说明以及解释

直线电机驱动的斯特林制冷机的结构设计-概述说明以及解释1.引言1.1 概述概述直线电机驱动的斯特林制冷机是一种新型的制冷技术,它利用了直线电机的优势和斯特林制冷循环的原理,实现了高效、环保的制冷效果。
本文将对直线电机驱动的斯特林制冷机的结构设计进行详细探讨。
直线电机是一种能够将电能转化为直线运动的电机,其结构与传统的旋转电机有所不同。
它由定子和推子组成,推子在定子的引导下直线运动。
相比于旋转电机,直线电机具有体积小、重量轻、寿命长、无噪音等优点,因此在各个领域得到了广泛应用。
斯特林制冷机是一种基于气体的制冷循环原理的制冷设备。
它利用气体的压缩与膨胀来实现制冷效果。
该制冷循环具有高效、稳定、无污染等特点,被广泛应用于冷链物流、制药、电子设备等领域。
直线电机驱动的斯特林制冷机将这两种技术结合在一起,借助直线电机的驱动力,实现了斯特林制冷机的工作。
通过合理的结构设计和控制策略,使得直线电机能够精确地驱动斯特林制冷机的各个部件,从而实现高效的制冷效果。
本文主要围绕直线电机驱动的斯特林制冷机的结构设计展开讨论。
首先介绍直线电机驱动的斯特林制冷机的基本原理和工作原理,以便读者对该技术有一个清晰的认识。
然后深入探讨直线电机的选型和设计要点,包括推子的材料选择、定子结构设计等方面。
最后总结本文的内容,并展望直线电机驱动的斯特林制冷机在未来的发展前景。
通过本文的研究和论述,读者可以对直线电机驱动的斯特林制冷机的结构设计有一个全面的了解,为相关领域的研究和应用提供参考和借鉴。
同时也将为推动制冷技术的发展和创新做出一定的贡献。
1.2文章结构1.2 文章结构本文将按照以下结构来进行叙述和分析直线电机驱动的斯特林制冷机的结构设计:第二章将重点介绍直线电机驱动的斯特林制冷机的原理和工作方式。
首先,将简要介绍斯特林制冷机的基本原理和传统的驱动方式。
然后,重点讲解直线电机作为一种全新驱动方式的优势和特点。
同时,将详细介绍直线电机在斯特林制冷机中的应用,并对其工作原理进行深入分析和解释。
特灵冷水机组PPT

56
特灵离心式水冷冷水机-冷媒/油分离器
• 回油管 • 油箱压力平衡管
57
特灵离心式水冷冷水机-射流器
• 射流器位于油箱顶部 • 接到油箱顶部的管路 • 从冷凝器来的排气压力(压缩机排
36
压力
3
2
节
冷凝器
流 机 构
压 缩 机
4
蒸发器 1
B焓
AC
特灵离心式水冷冷水机-节能原理
24 6
1
35 13 12 11 10 9 8
压力
Pc
P1
7
Pe
8
冷凝器
膨胀节 流装置
10
高压侧节能器 7
9
5
低压侧节能器
12
11
3
13
蒸发器
1
DCB 焓
A
6
三
4
级 压
缩
2机
37
特灵离心式水冷冷水机-节能原理
• 供冷媒管路 – 从冷媒泵来
• 多余冷媒回流管
49
特灵离心式水冷冷水机-电机冷却管路
50
特灵离心式水冷冷水机-电机冷却管路
• 在以前同样的区域 • 接到冷媒泵吸入端
51
特灵离心式水冷冷水机-冷媒泵
• 叶轮 • 为电机直接提供冷媒 • 与油泵同轴
共用一台电机
52
特灵离心式水冷冷水机-润滑循环
铜管束
液体制冷剂 进入蒸发器
冷冻水进水 液体分配器
20
气液分离板
节流孔板
特灵离心式水冷冷水机-蒸发器
现代低温制冷技术第二章 斯特林循环制冷机讲课教案

2.工作过程
等温压缩过程1-2:压缩活塞向左移动而膨胀 活塞不动。气体被等温压缩,压缩热经冷却器 A传给冷却介质(水或空气),温度保持恒值 Ta,压力升高到P2,容积减小到V2。
定容放热过程2-3:两个活塞同时向左移动, 气体的容积保持不变,直至压缩活塞到达左止 点。当气体通过回热器R时,将热量传给填料, 因而温度由Ta降低到Tc0,同时压力由P2降低 到P3。
塑料制冷机的结构
分置的压缩机和排出器通 过氦气管道相连;工质借 排出器的自由运动而流动; 当气体在热端和冷端运动 时,与排出器进行换热; 在任何瞬间,整个系统的 压力几乎是相同的。
气体在缝隙中与排出器和 气缸壁之间的热交换过程, 即为回热过程。
不依靠蓄冷填料的缝隙蓄 冷器,特别适合于低功率 的制冷机。
➢ 1.回热损失 ➢ 2.流阻损失 ➢ 3.穿梭损失 ➢ 4.泵气损失 ➢ 5.轴向导热损失 ➢ 6.冷头漏热损失 ➢ 7.换热器不完全换热损失 ➢ 8.其他损失
1.回热损失
回热损失是由于回热器的不完全换热引起 的冷量(或热量)损失。包括换热温差、壁 效应、填料温度波动等因素引起的损失。
回热器巾存在着相当大的空容积,充满气体;而且,由于循环压力的 变比,使得回热器空容积中贮存的气体质量发
排出器径向缝隙的控制。除第一级具有0.1mm的 径向缝隙外,其余几级在室温下几乎无径向缝隙; (预冷过程中,玻璃钢管和尼农棒的收缩率不同, 将会出现大约1%的径向间隙。)
实验时,制冷机的冷端一般朝下安装或水平安装。 (若冷头朝上安装,制冷温度会比朝下安装高 0.2K。)
装配多级制冷机时,必须注意玻璃管内外表面间 的同轴度。
必须使冷腔的容积变化Vc0超前于室温 腔Va,其相位差为φ。如图示情况ф= 90°(两气缸中心线夹角β=90°)。 在活塞作简谐运动的情况下,循环的P -V图变成一个连续变化的光滑曲线 。
《斯特林制冷机》课件

斯特林制冷机用于医疗设备中,例如核磁共 振仪等,以维持设备的稳定运行。
科学研究
斯特林制冷机用于实验室中的低温实验,为 科学研究提供关键支持。
环境控制
斯特林制冷机可用于控制温度和湿度,为建 筑物和车辆提供舒适的环境。
斯特林制冷机的优势和限制
1 高效节能
斯特林制冷机相比传统 制冷技术,具有更高的 能量效率和较低的环境 影响。
斯特林制冷机的工作过程
1
加热阶段
Hale Waihona Puke 工作气体被加热,吸收热量并膨胀,推动活塞向上。
2
冷却阶段
工作气体被冷却,释放热量并压缩,推动活塞向下。
3
制冷效果
经过连续的加热和冷却循环,工作气体的温度下降,实现制冷效果。
斯特林制冷机的应用领域
航天科技
斯特林制冷机广泛应用于航天器和卫星中, 以保持重要设备的低温运行。
工业应用
斯特林制冷机将在工业领域中 应用更广泛,提供更高效和可 持续的制冷解决方案。
总结及参考资料
斯特林制冷机是一种重要的制冷技术,具有广泛的应用和潜力。了解其原理、 结构和工作过程能帮助我们更好地理解其优势和限制,以及未来的发展方向。
2 可靠性
3 限制
斯特林制冷机结构简单, 没有旋转部件,具有较 长的使用寿命和可靠性。
斯特林制冷机的体积较 大,制冷功率较低,适 用于一些特定的应用领 域。
斯特林制冷机的发展前景
技术创新
斯特林制冷机的发展仍在进行 中,新的材料和设计将进一步 提高性能和效率。
环境可持续性
斯特林制冷机作为一种低能耗 和环保的制冷技术,将在未来 得到更广泛的应用。
《斯特林制冷机》PPT课件
探索斯特林制冷机的原理、结构、工作过程、应用领域、优势和限制以及发 展前景。
《斯特林制冷机》课件

日常维护保养
定期检查
定期检查斯特林制冷机的运行状态, 包括检查制冷剂的压力、温度、流量 等参数,以及各部件的紧固和磨损情 况。
更换磨损部件
保持良好散热
定期清理散热器,确保斯特林制冷机 在运行过程中能够充分散热,防止过 热导致性能下降。
对于磨损严重的部件,如轴承、密封 圈等,应及时更换,以保证机器的正 常运行。
01
斯特林制冷机是一种基于斯特林 循环的线性压缩机,通过气体的 压缩和膨胀过程实现制冷效果。
02
它由两个独立的气缸组成,一个 为压缩缸,另一个为膨胀缸,通 过活塞在气缸内的往复运动实现 气体的压缩和膨胀。
斯特林制冷机的工作原理
斯特林制冷机的工作原理基于斯特林循环,该循环包括四个过程:等温压缩、等 熵压缩、等温膨胀和等熵膨胀。
蒸发器
01
蒸发器的作用是将低压液体制冷剂蒸发成气体,吸收热量并降 低温度。
02
常见的蒸发器类型有壳管式、板式等,选择合适的蒸发器需要
考虑制冷剂的性质、蒸发温度和传热面积等因素。
蒸发器的性能参数包括传热系数、流动阻力等,这些参数对制
03
冷效果和设备能耗有重要影响。
PART 03
斯特林制冷机的性能特点
压缩机的性能参数包括排气量、压力比、转速等,这些参数的选择直接影响制冷效 果和能效比。
冷凝器
冷凝器的作用是将压缩机排出的高温高压制冷 剂气体冷却成液体,同时释放出热量。
常见的冷凝器类型有水冷式、风冷式和蒸发式 等,选择合适的冷凝器需要考虑制冷剂的性质 、散热量的大小以及安装环境等因素。
冷凝器的性能参数包括传热系数、压力降等, 这些参数对制冷效果和设备能耗有重要影响。
膨胀机
膨胀机是斯特林制冷机中的关键部件之一,其主要功 能是将高压液体制冷剂节流成低压低温的湿蒸汽,以
斯特林制冷机

质 量 迁 移 特 征
膨胀腔排气 膨胀腔进气
在大部分质量由死容积迁移至膨胀腔 的同时有部分质量流向压缩腔。
实际装置中的各项不可逆损失
实际损失的定量评估方法
分置式斯特林建模
Schmidt 模型是纯热力学仿真,计算前提是压缩腔、膨胀腔的运动规律已知或设 定;在分置式斯特林机中,动力学与热力学是耦合的,即动子的振幅及相位差都 是浮动的:运动方程中会出现动态的气体力,而运动位移又会反过来影响气体力 的变化过程。
分置式制冷机中压缩机的谐振特性
用直流电流测量支撑弹簧的K值
谐振现象是装置具有频域“选频”特性的直接证据; 谐振有助于提高压缩机的排气量,从而提高装置的 制冷量及能效比。 谐振的实验表象:
1、位置出现峰值 2、电压大(恒流驱动)、电流小(恒压驱动) 3、电流与位移相位夹角趋于90度。
体积极值 并不对应 压力极值 的时刻。
进一步整理压力表达式:
平均压力不等 于充气压力。
压力水平与充气质量相关
模型的作用: 了解内部动 态过程,进 行参数化研 究。
结论一: 结论二: 结论三:
由于空容积的存在,系统内的工质并不是直接在压缩腔与膨胀腔 之间来回流动,有部分工质始终在回热器中往复振荡,导致制冷 量降低。
斯特林循环的理论制冷系数与同温限的卡诺循环制冷系数相等。
实际装置的运动特征
热力仿真模型—Schmidt model
Schmidt模型最突出特点是实现了“公式化”的计算体系;工程上,性能 指标的预测误差可由实验数据整理出的经验关系式修正。
重点关注各热工参数之间的相位关系
空容积为工作腔容积中扣 除扫气容积所剩余的容积。
斯特林机(Stirling)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
回热原理
回热制冷机特点
◦ 闭式循环 ◦ 周期性不稳定过程
产冷条件
◦ 系统压力周期性变化 ◦ 容积周期性变化 ◦ 压力和容积有一相位差
-
实现机构
理想-间断运行 实际-曲柄连杆机构,往复运动 斯特林循环工质是在室温腔,冷却器,
回热器,冷量交换器和冷腔等部分来回 变动,气体总量不变,闭式循环。
-
发展
最早1946年荷兰Philip公司实现空气液 化
普冷-深冷,3K 冷量从微型到大型(毫瓦级-46.8kw) 多缸制冷机 单级-多级 整体式-分置式 形式多样化:双活塞,推移活塞,平行排
列,角形排列等 多种驱动:曲柄连杆,摇盘,斜盘,菱形,
液压,电磁,启动驱动
-
应用
-
-
-
扰性支撑
-
-
-
-
低温制冷技术
斯特林循环制冷机 吉福特-麦克马洪循环制冷机 脉管制冷机 节流制冷机 吸附式制冷机 热声制冷机 磁制冷机
-
斯特林循环
两个等温过程 两个等容过程 回热 工质:氢气,氦气
-
原理
-
P-V,T-S
-
过程
等温压缩 定容放热 等温膨胀 定容吸热
-
效率
Cop-理想循环 换热器效率