高考数学导数压轴题无非这10种解法

合集下载

导数压轴题的几种处理方法

导数压轴题的几种处理方法

2、直接求导后对参数展开讨论,然后求出含参最值,从而 确定参数范围
例题: 设
,其中

(1)若
有极值,求 的取值范围;
(2)若当

恒成立,求 的取值范围.
解:( 1)由题意可知:

有两个不同的实数根,故
解得:
,即
(2)由于

恒成立,则
由于
,且
有极值,

( 4 分)
,即
(6 分)
,则①Βιβλιοθήκη 当时,在则当
时,
有零点需满足
二、适当处理后能够简化运算:
上都单调递减,于是函数 上单调递减,所以当
,即
.
3、(2014 年一测 )已知函数 f (x)=xlnx , g(x)=k(x-1) ( 1)若 f (x)>=g(x),求 k 的范围
.⑴解 : 注意到函数 f (x) 的定义域为 (0, ) ,
所以 f (x) g(x) 恒成立
f (x)
x
设 h(x) ln x k (x 1) (x 0) ,
h (x) x x2
x x2
1
k
xk

,
g(x)
恒成立 ,
x
------------2

当 k 0 时 , h (x) 0 对 x 0 恒成立 , 所以 h(x) 是 (0, ) 上的增函数 ,
注意到 h(1) 0 , 所以 0 x 1 时 , h(x) 0 不合题意 .-------4 分
处取得极大值、在
处取得极小值,
,解得:

(8 分)


时,
,即

上单调递增,且

高考压轴题:导数题型及解题方法总结很全.

高考压轴题:导数题型及解题方法总结很全.
方法 3:利用子区间(即子集思想) ;首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子 集。
注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max

高考导数压轴题终极解答_2022年学习资料

高考导数压轴题终极解答_2022年学习资料

13.设函数fx=nx-ux-1--1.-X-I当a=1时,过原点的直线与函数fx的图象相切于点P,求点P 坐标;-IⅡ当0<u<二时,求函数fx的单调区间:-D当u=号时,设函数g=-2x-,若对于飞∈0,e], 飞e[0,1-12-使fx≥8x2成立,求实数b的取值范围.e是自然对数的底,e<√3+1-14.两边分求 最小值与最大值已知函数f=xlnx,8=-x+x-3.求f在-[,t+2t>0上的最小值:若存在-e是常数 e=2.71828„使不等式-In x>-2f≥8成立,求实数0的取值范围:证明对一切x∈0,+0,都有e #43;bex∈R.(1若a=2,b=-2,求函数∫x的极值;-2若x=1是函数fx的一个 值点,试求出关于b的关系式(用M表示b,并确定-∫x的单调区间;-3在2的条件下,设u>0,函数8x=a2 14e+4.若存在21,22∈[0,4]使得-If2-f22K1成立,u的取值范围.-12.两边分求,最小 与最大值-已知函数f=lnr-ax+--1aeR.当a≤时,讨论f的单调性;设-8=x2-2bx+4.当a 时,若对任意x∈0,2,存在3∈[1,2,使fC≥g,-求实数b取值范围.
21.单调性已知fx=n+2-x+bx+c若函数fx在点1,y处的切线与直线-3x+7y+2=0垂直,且=0,求函数fx在区间[0,3]上的最小值;若fx在区间[0,m上-单调,求b的取值范围,-22.单调性, 到二阶导数的技巧-已知函数fx=lnx-0若F=f0+“-a∈R,求Fx的极大值:-X-2若Gx=[fx] kx在定义域内单调递减,求满足此条件的实数k的取值范围

导数压轴题12类常考题型

导数压轴题12类常考题型

导数压轴题12类常考题型导数是微积分中的重要概念,常常在各种数学问题中应用。

下面我将列举12类常考的导数题型,并从多角度进行解析。

1. 基本函数的导数:常数函数的导数,常数的导数为0。

幂函数的导数,幂函数的导数可以使用幂函数的导数公式进行求解。

指数函数的导数,指数函数的导数等于函数本身乘以底数的自然对数。

对数函数的导数,对数函数的导数可以使用对数函数的导数公式进行求解。

三角函数的导数,三角函数的导数可以使用三角函数的导数公式进行求解。

2. 反函数的导数:如果函数f(x)和g(x)互为反函数,则f'(x)和g'(x)互为相反数。

3. 复合函数的导数(链式法则):如果y=f(u)和u=g(x)是可导函数,则复合函数y=f(g(x))的导数可以使用链式法则进行求解。

4. 隐函数的导数:如果有一个方程F(x, y) = 0定义了y作为x的函数,则可以使用隐函数定理和求导法则求解隐函数的导数。

5. 参数方程的导数:如果有一个参数方程x=f(t)和y=g(t),则可以使用导数的定义求解参数方程的导数。

6. 反常导数:如果函数在某些点上不可导,但在其他点上可导,则称这个函数具有反常导数。

7. 高阶导数:如果一个函数的导数仍然可导,则可以计算其高阶导数。

8. 导数在几何中的应用:导数可以用来求函数的切线和法线方程,以及判定函数的极值和拐点。

9. 导数在物理中的应用:导数可以用来描述物体的速度、加速度等物理量。

10. 导数在经济学中的应用:导数可以用来分析经济学模型中的边际效应和弹性。

11. 导数在生物学中的应用:导数可以用来描述生物学模型中的生长速率和变化率。

12. 导数在工程中的应用:导数可以用来优化工程问题,如最小化成本、最大化效益等。

以上是导数常考题型的一些分类和解析,希望能帮助到你。

如果你有具体的导数问题,欢迎继续提问。

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

高三导数压轴题题型归纳

高三导数压轴题题型归纳

-导数压轴题题型1. 高考命题回忆例1函数f(*)=e *-ln(*+m).〔2013全国新课标Ⅱ卷〕(1)设*=0是f(*)的极值点,求m ,并讨论f(*)的单调性; (2)当m≤2时,证明f(*)>0.(1)解 f (*)=e *-ln(*+m )⇒f ′(*)=e *-1*+m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{*|*>-1},f ′(*)=e *-1*+m =e **+1-1*+1,显然f (*)在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 g (*)=e *-ln(*+2),则g ′(*)=e *-1*+2(*>-2).h (*)=g ′(*)=e *-1*+2(*>-2)⇒h ′(*)=e *+1*+22>0,所以h (*)是增函数,h (*)=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (*)=g ′(*)=0的唯一实根在区间⎝ ⎛⎭⎪⎫-12,0,设g ′(*)=0的根为t ,则有g ′(t )=e t -1t +2=0⎝ ⎛⎭⎪⎫-12<t <0, 所以,e t =1t +2⇒t +2=e -t , 当*∈(-2,t )时,g ′(*)<g ′(t )=0,g (*)单调递减;当*∈(t ,+∞)时,g ′(*)>g ′(t )=0,g (*)单调递增;所以g (*)min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2t +2>0,当m ≤2时,有ln(*+m )≤ln(*+2),所以f (*)=e *-ln(*+m )≥e *-ln(*+2)=g (*)≥g (*)min >0. 例2函数)(x f 满足2121)0()1(')(x x f ef x f x +-=-〔2012全国新课标〕 (1)求)(x f 的解析式及单调区间; (2)假设b ax x x f ++≥221)(,求b a )1(+的最大值。

六招破解高考导数压轴题

六招破解高考导数压轴题

破解高考导数压轴题的常见策略纵观近十年高考数学课标全国卷,容易发现导数压轴题有如下特点:主要考查导数的几何意义,利用导 数研究函数的单调性、极值、最值,研究方程和不等式. 试题有一定的综合性,并与数学思想方法紧密结合, 对函数与方程的思想,分类与整合的思想等都进行深入的考查.下面介绍破解高考导数压轴题的六种策略.1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2018 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.2. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

3. 构造函数利用导数解决不等式问题是导数的一个非常重要的应用,其关键是根据不等式的结构特点,构造恰当的 辅助函数,进而通过研究函数的单调性和最值,最终解决问题.运用构造函数法来解题是培养学生创新意识的 手段之一.例3设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.4.合理放缩高考数学压轴题往往涉及函数不等式问题,由于高考命题基本上涉及超越函数,研究其单调区间时一般 涉及解超越不等式,难度非常高,往往陷入绝境.放缩法是解决函数不等式问题的一把利器,关键是如何合理 放缩.常见的一种放缩法是切线放缩法,曲线的切线为一次函数,高中阶段大部分函数的图像均在切线的同侧, 即除切点外,函数的图像在切线的上方或下方,利用这一特性,可以将参与函数放缩成一次函数.例 4设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.5.虚设零点导数在研究函数的单调性、极值和最值方面有着重要的应用,而这些问题都离不开一个基本点——导函 数的零点,因为导函数的零点既可能是原函数单调区间的分界点,也可能是原函数的极值点或最值点.可以说, 抓住了导函数的零点,就抓住了原函数的要点.在高考导数压轴题中,经常会遇到导函数具有零点但求解相对 比较复杂甚至无法求解的问题.此时,不必正面强求,只需要设出零点,充分利用其满足的关系式,谋求一种 整体的代换和过渡,再结合其他统计解决问题,这种方法即是“虚设零点”.例 5(Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域.6. 多次求导高中函数压轴题一般需要求导,利用导函数的正负来判断原函数的增减.有些试题,当你一次求导后发现 得出的结果还存在未知的东西,导函数的正负没有清晰得表现出来时,就可以考虑二次求导甚至三次求导, 这个时候要非常细心,观察全局,不然做到后边很容易出错.例 6设函数()1xf x e -=-. (Ⅰ)证明:当x >-1时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围. x x 2f (x)x 2-=+e 0x >(2)20x x e x -++>[0,1)a ∈2x =(0)x e ax a g x x-->()()g x ()h a ()h a教师版1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2017 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1(2015 年高考数学全国乙卷(Ⅰ卷)理 21) 已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.解:(Ⅰ)2()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足00()0,()0f x f x '==,也就是2030x a +=且300104x ax ++=,解得012x =,34a =-,因此,当34a =-时,x 轴为曲线()y f x =的切线; (Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点; 当1x =时,若54a ≥-,则5(1)04f a =+≥,min{,(1)(1)(1)}(1)0h fg g ===,故1x =是()h x 的零点;当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数. 对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得23a x =-,那么 (i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上是单调函数,且15(0),(1)44f f a ==+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零点;当0a ≥时,()y f x =在区间(0,1)上没有零点;(ii )当30a -<<时,()0f x '<(0x <<()0f x '>1x <<),所以x =14f =.显然,若0f >,即304a -<<时,()y f x =在区间(0,1)上没有零点;若0f =,即34a =-时,()y f x =在区间(0,1)上有1个零点;若0f <,即334a -<<-时,因为15(0),(1)44f f a ==+,所以若5344a -<<-,()y f x =在区间(0,1)上有2个零点;若534a -<≤-,()y f x =在区间(0,1)上有1个零点.综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或54a =-时,()h x 有2个零点;当5344a -<<-时,()h x 有3个零点. 3. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2(2013 年高考数学全国乙卷(Ⅰ卷)理 21)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

导数压轴题十种构造方法大全以及解题方法导引

导数压轴题十种构造方法大全以及解题方法导引

导数压轴题十种构造方法大全以及解题方法导引方法一 等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。

方法导引例1 已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x ) =e ax -1-ax ,其中常数e =2.71828.(1)求f (x ) 的最小值;(2)当a ≥1时,求证:对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x ) ≥ 2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x+-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档