频谱分析

合集下载

频谱分析 原理

频谱分析 原理

频谱分析原理
频谱分析是一种广泛应用于信号处理和波谱分析的方法,用于研究信号在频域上的特性和分布。

它通过将信号从时域转换为频域,从而能够得到信号在不同频率上的能量分布情况。

频谱分析的核心原理是傅里叶变换。

傅里叶变换能够将一个信号表示为一组离散的频谱成分,这些成分描述了信号在不同频率下的振幅和相位。

频谱分析所得到的频谱图可以清晰地显示出信号中各个频率成分的大小和强度,帮助人们理解信号的频率特性。

在频谱分析中,一般使用离散傅里叶变换(DFT)或快速傅里叶变换(FFT)算法来计算信号的频谱。

通过将信号分成一段段小的时间窗口,在每个时间窗口内对信号进行傅里叶变换,可以得到该时间窗口内的频谱信息。

然后将所有时间窗口内的频谱信息进行叠加和平均处理,最终得到整个信号的频谱图。

频谱图通常以频率为横轴,以振幅或能量为纵轴进行表示。

在频谱图中,可以根据不同的需求选择线性频谱或对数频谱,以更好地展示信号的特性。

通过分析频谱图,可以判断信号中的主要频率成分、频域特征、噪声干扰等信息,对信号处理和系统设计等方面都具有重要的应用价值。

总之,频谱分析通过傅里叶变换将信号从时域转换为频域,揭示了信号在不同频率下的特性和分布。

它是一种强大的工具,被广泛应用于信号处理、通信、音频处理、振动分析等领域,在理论研究和实际应用中都有着重要的地位和作用。

频谱分析

频谱分析

将时域信号变换至频域加以分析的方法称为频谱分析。

频谱分析的目的是把复杂的时间历程波形,经过傅里叶变换分解为若干单一的谐波分量来研究,以获得信号的频率结构以及各谐波和相位信息。

测试信号的频域分析是一种将信号的幅度,相位或能量转换为频率坐标轴,然后分析其频率特性的分析方法。

也称为频谱分析。

对信号进行频谱分析以获得更多有用的信息,例如获得动态信号中的频率分量和频率分布范围,以及获得每个频率分量的振幅分布和能量分布,从而获得主振幅和能量分布。

应用:
由时间函数求频谱函数的傅里叶变换公式就是将该时间函数乘以以频率为系数的指数函数之后,在从负无限大到正无限大的整个区间内,对时间进行积分,这样就得到了与这个时间函数对应的,以频率为自变量的频谱函数。

频谱函数是信号的频域表示方式。

根据上述傅里叶变换公式,可以求出常数(直流信号)的频谱函数为频域中位于零频率处的一个冲激函数,表示直流信号就是一个频率等于零的信号。

与此相反,冲激函数的频谱函数等于常数,表示冲激函数含有无限多个、频率无限密集的正弦成分。

同样的,单个正弦波的频谱函数就是频域中位于该正弦波频率处的一对冲激函数。

利用傅里叶变换的方法对信号进行分解,并按频率展开,使其成为频率的函数,进而在频率域中对信号进行研究和处理的一种过程,称为频谱分析。

目的:
将信号在时间域中的波形转变为频率域的频谱,进而可以对信号的信息作定量解释。

数据分析知识:如何进行数据分析的频谱分析

数据分析知识:如何进行数据分析的频谱分析

数据分析知识:如何进行数据分析的频谱分析频谱分析是一种非常重要的数据分析方法,它可以用于分析某个信号的频率分布情况。

相信很多人在学习数据分析的时候都会经过这个环节,但是频谱分析并不是一件简单的事情,需要结合数学、信号处理等多个领域的知识深入理解。

本文将详细介绍频谱分析的定义和原理,并通过实例演示如何运用Python实现频谱分析。

一、什么是频谱分析?频谱分析是一种通过将信号在频域(即频率域)上的特征进行分析,来获取信号特征的方法。

频谱分析通常用于把研究对象与干扰等振荡源进行分离,而不是像时域研究那样直接看信号或数据的波形。

在信号处理中,频谱是一个可见、可分析的物理量。

频谱分析的结果可以使得我们分析信号的频率分布情况,从而了解信号的特征。

二、频域与时域在分析频谱之前,我们需要先了解频域和时域的概念。

时域:时域是指研究对象在时间上的变化规律。

通常研究对象都是随着时间变化而变化的。

在时域中,我们可以直接观察研究对象的时间变化规律。

比如在音乐中,我们听到的是随着时间变化的声音,这就属于时域。

频域:频域是指研究对象在频率上的变化规律。

频率是一个物理量,表示研究对象的某个特征在一定时间内的变化次数。

在频域中,我们可以观察研究对象在不同频率下的变化情况。

比如在音乐中,我们可以分析乐曲中各个音符的频率,并进行频谱分析。

三、傅里叶变换傅里叶变换是频谱分析的重要数学基础。

傅里叶变换可以将一个时域中的信号转换成频域信号。

其原理是将研究对象在时域上的信号转换为在频域上的信号,从而得出频域的特征。

傅里叶变换是频域分析的基石,是频谱分析的关键,对于数据分析具有很大的意义。

四、Python实现频谱分析现在,我们用Python实现一个简单的频谱分析。

首先,我们需要安装必要的库。

```pythonimport numpy as npimport matplotlib.pyplot as pltfrom scipy.fftpack import fft```接下来,我们构造一个时域信号。

频谱分析原理与实现方法

频谱分析原理与实现方法

未来随着技术的不断发展,我们将有更多高效的算法和工具用于频谱分析,以 更好地服务于科学研究和实际应用。
谢谢观看
F(ω) = ∫f(t)e^(-iωt) dt
其中,F(ω)是信号的频谱,f(t)是信号的时域表示,ω是角频率,i是虚数 单位。
3、快速傅里叶变换
快速傅里叶变换(FFT)是一种高效计算傅里叶变换的算法。与直接计算傅里 叶变换相比,FFT算法能够大大减少计算时间和内存占用。FFT算法基于对称 性和周期性将信号分解成多个子信号,然后对每个子信号进行傅里叶变换。在 实际应用中,我们通常使用FFT算法来进行频谱分析。
MATLAB的优势在于其强大的矩阵计算能力和图形界面,使得频谱分析和可视 化变得简单直观。然而,MATLAB的缺点是运算速度相对较慢,对于大规模数 据集的处理有一定限制。
Python的SciPy库在处理大规模数据集时具有优势,它的并行计算功能可以大 大提高运算速度。此外,SciPy库还提供了许多高级的信号处理函数和算法, 使用户能够更加灵活地进行频谱分析。但是,Python相对于MATLAB来说,其 图形界面和易用性稍逊一筹。
(3)噪声信号:噪声信号的频谱分析有助于我们了解噪声的来源和特性。例如, 通过分析环境噪声的频谱分布,我们可以评估噪声对人类生活和健康的影响。
对比分析不同工具箱的优缺点, 总结实践经验。
在频谱分析实践中,除了MATLAB之外,还有其他工具箱或软件可以用于频谱 分析,如Python的SciPy库、R语言的signal包等。这些工具箱或软件都提供 了傅里叶变换和FFT算法的实现,但各具特点。
R语言的signal包功能全面,提供了丰富的信号处理函数和分析工具。然而, R语言在处理大规模数据集时的速度不如Python和MATLAB,且其图形界面不如 MATLAB直观。

采集信号的频谱分析

采集信号的频谱分析

采集信号的频谱分析1. 引言频谱分析是一种重要的信号处理技术,它可以帮助我们理解信号的频域特性。

在现代通信领域和无线电频谱监测中,采集信号的频谱分析是一项关键的工作。

频谱分析可以帮助我们识别信号的不同频率成分,并从中提取有用的信息。

本文将介绍频谱分析的基本原理、常用的采集方法以及一些相关的应用领域。

2. 频谱分析的基本原理频谱分析是将信号从时域转换到频域的过程。

在时域中,信号被表示为随时间变化的波形;而在频域中,信号被表示为不同频率成分的强度和相位。

常用的频谱分析方法包括傅里叶变换(Fourier Transform)和快速傅里叶变换(Fast Fourier Transform,FFT)。

傅里叶变换是一种数学变换,它能将信号从时域转换到频域。

快速傅里叶变换是傅里叶变换的一种高效算法,能够快速计算信号的频谱。

在频谱分析中,我们使用频谱图来表示信号的频谱。

频谱图通常以频率为横轴,信号强度为纵轴,用于直观地展示不同频率成分的能量分布。

3. 采集信号的方法采集信号的频谱分析需要使用合适的设备和方法。

以下是常用的采集信号的方法:3.1 信号接收器信号接收器是一种用于接收信号并将其转化为电信号的设备。

根据需要采集的信号类型不同,可以选择不同类型的信号接收器,如无线电接收器、音频接收器等。

3.2 采样率采样率是指在单位时间内采集信号的样本数。

在频谱分析中,较高的采样率能够提供更精确的频谱信息,但也会增加数据处理的复杂性和成本。

根据信号的带宽和分辨率要求,选择合适的采样率非常重要。

3.3 采样深度采样深度是指每个样本的比特数,决定了每个样本的精度。

较大的采样深度能够提供更高的分辨率,但也会增加数据存储和传输的需求。

根据信号的动态范围和精度要求,选择适当的采样深度是必要的。

3.4 采集时间采集时间是指采集信号所需的时间长度。

较长的采集时间可以提供更准确的频谱信息,但也会增加采集的时间和资源。

根据应用需求和实际情况,选择合适的采集时间是必要的。

频谱分析技术及其在通信领域中的应用

频谱分析技术及其在通信领域中的应用

频谱分析技术及其在通信领域中的应用随着科技的发展,无线通信技术的应用越来越广泛。

为了更好地利用频段资源,保障通信的稳定性和安全性,频谱分析技术得到了广泛关注和应用。

本文将简要介绍频谱分析技术的基本原理以及其在通信领域中的应用。

一、频谱分析技术的基本原理频谱分析是指对信号的频谱特征进行分析和识别的一种技术,主要通过将信号进行频谱变换,同时在时间和频率域上对信号进行分析和识别。

频谱分析技术的基本原理是傅里叶变换,其可以将时域的信号转化为以频域为自变量的函数。

在实际应用中,频谱分析主要包括以下几种方式:1.时域采样:将信号从时域中采样出一定点数的样本,然后通过傅里叶变换将其转换到频域中进行分析。

2.频域分析:将频域信号进行傅里叶变换,得到幅度谱和相位谱等频谱信息。

3.功率谱估计:主要是通过信号的自相关函数和互相关函数,计算出信号的功率谱密度。

4.低通滤波器:利用低通滤波器对高频信号进行滤波,得到信号的基频成分。

通过以上手段得到的信号频谱,可以获得信号的频率、幅度、相位、谐波等一系列特征参数。

这些特征参数可以被广泛地应用于频段规划、通信干扰检测等领域。

二、频谱分析技术在通信领域中的应用1.频段规划无线电通信需要占用一定的频率资源,因此频段规划是通信业务部署的关键之一。

频谱分析技术可以对现有的频率资源进行分析,实现对频段的规划和管理,以达到多个无线通信系统之间相互协调和资源共享的目的。

例如,很多地区的2G、3G和4G通信网络之间存在一定重叠,频谱分析技术可以针对这种情况进行分析,优化频段的资源配置和使用,最终使无线通信系统之间达到最优的协调。

2.通信干扰检测通信干扰是无线通信中常见的问题,特别是在频谱资源稀缺的情况下,无线通信系统之间相互干扰的问题愈发严重。

频谱分析技术可以帮助检测无线通信系统中出现的各种通信干扰,具体包括以下三种:(1)自然干扰:指由于自然因素引起的信号干扰,例如雷电、电磁辐射等。

(2)人为干扰:指由于工业设备、家庭电器、广播电视台等人为因素引起的干扰。

频谱分析实验报告

频谱分析实验报告

频谱分析实验报告频谱分析实验报告引言:频谱分析是一种用于研究信号频谱特性的方法,广泛应用于通信、音频处理、无线电等领域。

本实验旨在通过实际操作和数据分析,探索频谱分析的原理和应用。

实验设备与步骤:本次实验使用了频谱分析仪、信号发生器和电缆等设备。

具体步骤如下:1. 连接设备:将信号发生器通过电缆连接到频谱分析仪的输入端口。

2. 设置参数:根据实验要求,设置信号发生器的频率、幅度和波形等参数,并将频谱分析仪的参考电平和分辨率带宽调整到合适的范围。

3. 采集数据:启动频谱分析仪,开始采集信号数据。

可以选择连续扫描或单次扫描模式,并设置合适的时间窗口。

4. 数据分析:通过频谱分析仪提供的界面和功能,对采集到的数据进行分析和处理。

可以查看频谱图、功率谱密度图等,了解信号的频谱特性。

实验结果与讨论:通过实验操作和数据分析,我们得到了以下结果和结论。

1. 频谱分析原理:频谱分析仪通过将信号转换为频谱图来展示信号在不同频率上的能量分布情况。

频谱图通常以频率为横轴,幅度或功率为纵轴,可以直观地反映信号的频谱特性。

2. 不同信号的频谱特性:我们使用了不同频率和波形的信号进行实验,观察其在频谱图上的表现。

正弦波信号在频谱图上呈现出单个峰值,峰值的位置对应信号的频率。

方波信号在频谱图上则呈现出多个峰值,峰值的位置和幅度反映了方波的频率和谐波分量。

3. 噪声信号的频谱特性:我们还进行了噪声信号的频谱分析。

噪声信号在频谱图上呈现为连续的能量分布,没有明显的峰值。

通过分析噪声信号的功率谱密度图,可以了解噪声信号在不同频率上的能量分布情况。

4. 频谱分析的应用:频谱分析在通信和音频处理领域有着广泛的应用。

通过频谱分析,可以帮助我们了解信号的频率成分、噪声特性以及信号处理器件的性能等。

在无线电领域,频谱分析还可用于频段分配、干扰监测等工作。

结论:通过本次实验,我们深入了解了频谱分析的原理和应用。

频谱分析可以帮助我们理解信号的频谱特性,对于信号处理和通信系统设计具有重要意义。

数字信号处理中的频谱分析算法

数字信号处理中的频谱分析算法

数字信号处理中的频谱分析算法数字信号处理(Digital Signal Processing,DSP)是一门将连续时间的信号转换为离散时间的信号,并在数字域中进行信号处理的技术。

频谱分析是DSP中的重要任务之一,它用来研究信号的频率特性,在通信、音频处理、图像处理等领域有着广泛的应用。

本文将介绍几种常见的频谱分析算法,它们分别是傅里叶变换、离散傅里叶变换、快速傅里叶变换和功率谱密度估计。

1. 傅里叶变换(Fourier Transform)傅里叶变换是频谱分析中最基本的工具之一。

它能将时域信号转换为频域信号,将信号表示为一系列正弦和余弦函数的和,从而揭示了信号的频率分量。

傅里叶变换的数学表达式为:F(w) = ∫[f(t)e^(-iwt)]dt其中,F(w)是信号在频域上的表示,f(t)是信号在时域上的表示,e^(-iwt)是复指数函数。

2. 离散傅里叶变换(Discrete Fourier Transform,DFT)离散傅里叶变换是傅里叶变换在离散时间域上的推广。

由于数字系统中信号是离散采样得到的,因此必须使用离散傅里叶变换进行频谱分析。

离散傅里叶变换的计算复杂度较高,通常采用快速傅里叶变换算法进行高效计算。

3. 快速傅里叶变换(Fast Fourier Transform,FFT)快速傅里叶变换是一种高效计算离散傅里叶变换的算法。

通过利用傅里叶变换的对称性和周期性,FFT算法将计算复杂度降低到O(NlogN),使得频谱分析在实时系统中具备了可能。

4. 功率谱密度估计(Power Spectrum Density Estimation)功率谱密度(Power Spectrum Density,PSD)是频谱分析的重要指标之一,它反映了信号各个频段的功率强度。

而在实际应用中,往往无法直接计算功率谱密度,需要通过估计算法得到近似值。

常见的功率谱密度估计算法有周期图谱法、自相关法、Burg方法、Yule-Walker 方法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1频谱分析原理时域分析只能反映信号的幅值随时间的变化情况,除单频率分量的简单波形外,很难明确提示信号的频率组成和各频率分量大小,而频谱分析能很好的解决此问题。

由于从频域能获得的主要是频率信息,所以本节主要介绍频率(周期)的估计与频谱图的生成。

2.2.1DFT与FFT对于给定的时域信号y,可以通过Fourier变换得到频域信息Y。

Y可按下式计算式中,N为样本容量,Δt = 1/Fs为采样间隔。

采样信号的频谱是一个连续的频谱,不可能计算出所有的点的值,故采用离散Fourier变换(DFT),即式中,Δf = Fs/N。

但上式的计算效率很低,因为有大量的指数(等价于三角函数)运算,故实际中多采用快速Fourier变换(FFT)。

其原理即是将重复的三角函数算计的中间结果保存起来,以减少重复三角函数计算带来的时间浪费。

由于三角函数计算的重复量相当大,故FFT能极大地提高运算效率。

2.2.2 频率、周期的估计对于Y(kΔf),如果当kΔf = 时,Y(kΔf)取最大值,则为频率的估计值,由于采样间隔的误差,也存在误差,其误差最大为Δf / 2。

周期T=1/f。

从原理上可以看出,如果在标准信号中混有噪声,用上述方法仍能够精确地估计出原标准信号的频率和周期,这个将在下一章做出验证2.2.3 频谱图为了直观地表示信号的频率特性,工程上常常将Fourier变换的结果用图形的方式表示,即频谱图。

以频率f为横坐标,|Y(f)|为纵坐标,可以得到幅值谱;以频率f为横坐标,arg Y(f)为纵坐标,可以得到相位谱;以频率f为横坐标,Re Y(f)为纵坐标,可以得到实频谱;以频率f为横坐标,Im Y(f)为纵坐标,可以得到虚频谱。

根据采样定理,只有频率不超过Fs/2的信号才能被正确采集,即Fourier 变换的结果中频率大于Fs/2的部分是不正确的部分,故不在频谱图中显示。

即横坐标f ∈[0, Fs/2]2.5.运行实例与误差分析为了分析软件的性能并比较时域分析与频域分析各自的优势,本章给出了两种分析方法的频率估计的比较,分析软件的在时域和频域的计算精度问题。

2.5.1标准正弦信号的频率估计用信号发生器生成标准正弦信号,然后分别进行时域分析与频域分析,得到的结果如图 4所示。

从图中可以看出,时域分析的结果为f = 400.3702Hz,频域分析的结果为f = 417.959Hz,而标准信号的频率为400Hz,从而对于标准信号时域分析的精度远高于频域分析的精度。

2.5.2 带噪声的正弦信号的频率估计先成生幅值100的标准正弦信号,再将幅值50的白噪声信号与其混迭,对最终得到的信号进行时域分析与频域分析,结果如图 5所示,可以看出,时域分析的结果为f = 158.9498Hz,频域分析的结果为f = 200.391Hz,而标准信号的频率为200Hz,从而对于带噪声的正弦信号频域分析的精度远高于时域分析的精度。

2.5.3 结果分析与结论在时域,频率估计是使用过零检测的方式计算出,从而对于带噪声的信号既容易造成“误判”,也容易造成“漏判”,且噪声信号越明显,“误判”与“漏判”的可能性越大。

但在没有噪声或噪声很小时,时域分析对每个周期长度的检测是没有累积误差的,故随着样本容量的增大,估计的精度大大提高。

在频域,频率估计是通过找出幅值谱峰值点对应的频率求出。

故不会有时域分析的问题。

但频率离散化的误差及栅栏效应却是不可避免地带来误差,仅频率离散化的误差就大于Fs/2。

由实验结果及以上的分析可以得出结论:在作频率估计时,如果信号的噪声很小,采用时域分析的方法较好;如果信号的噪声较大,采用频域分析的方法较好。

3.总结本文给出了基于MATLAB的声音信号频谱分析仪的设计原理与实现方法,在原理部分,从时域和频域两个方面提供了信号分析所需要的算法流程及计算公式,在原理的最后还结合软件工程理论给出了软件的模块划分,这样在基于此设计原理的基础上可以用任何平台任何语言进行软件开发。

在实现方法上,结合软件的界面和具体的代码讲述了整个软件编码实现的原理。

最后结合一个运行实例比较了时域分析与频域分析计算频率的异同之处,并分析了误差的原因。

尽管MATLAB有强大的数学函数库,使得编程时间大大缩短,但MATLAB有它固有的缺陷,如运行速度太慢,因为它是解释型语言,而且运行依赖了MATLAB 软件,无法发布为商用软件,另外在控制用户输入上也比较难以实现。

这些缺陷也导致了用MATLAB所开发的软件有这些缺陷。

3.2谱分析的几种算法信号的频谱分析是研究信号特性的重要手段之一,对于声信号,由于它一般是非平稳随机信号,通常是求其功率谱来进行频谱分析。

功率谱估计(PSD)是用有限长的数据来估计信号的功率谱,它对于认识一个随机信号或其他应用方面来讲都是非常重要的,是数字信号处理的重要研究内容之一。

功率谱估计分为经典谱估计和现代谱估计。

经典谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有直接法和间接法;现代谱估计是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱,主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的,应用最广的是AR参数模型[12]。

本章将分别介绍经典功率谱估计中的直接法、间接法、改进算法和现代功率谱估计中的基于AR模型的几种相关算法。

3.2.1经典功率谱估计的几种典型算法经典谱估计具有物理概念明确、算法简单的特点,是目前经常使用的谱估计方法。

在经典谱估计中,主要方法有周期图法、间接法,和直接法的改进算法Bartlett法及Welch法。

(1)周期图法周期图法又称直接法,利用该方法得到的随机信号y(n)的功率谱是直接由傅立叶变换得到的。

傅立叶级数是对周期信号求解频域特性,傅立叶变换则是对非周期信号求解其频域信息。

一个周期信号的傅立叶级数的实质是:把所要研究时域的周期波形分解成许多不同频率的正弦波的叠加和。

傅立叶变换可以看作是时间函数在频率域上的表示。

由傅立叶变换给出的频率域包含的信息和原函数时间域内包含的完全相同,不同的仅是信息的表示形式。

由于计算机的离散性,对一个时间连续信号进行分析要在遵守抽样定理的前提下,进行抽样。

同样,对一个时域信号进行分析时,也要在频域呈离散性,离散傅立叶变换应运而生。

综上所述:周期图法是把随机序列y(n)的N个观测数据视为一个能量有限的序列,直接计算y(n)的离散傅立叶变换得Y(k),然后再取其幅值的平方,并除以N,作为序列y(n)真实功率谱的估计。

第二章实验原理2.1 采样频率、位数及采样定理采样频率[2],也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。

采样频率的倒数是采样周期或者叫作采样时间,它是采样之间的时间间隔。

通俗的讲采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。

采样频率越高,即采样的间隔时间越短,则在单位时间内计算机得到的声音样本数据就越多,对声音波形的表示也越精确。

采样位数可以理解为声卡处理声音的解析度。

这个数值越大,解析度就越高,录制和回放的声音就越真实。

我们首先要知道:电脑中的声音文件是用数字0和1来表示的。

所以在电脑上录音的本质就是把模拟声音信号转换成数字信号。

反之,在播放时则是把数字信号还原成模拟声音信号输出。

采样定理又称奈奎斯特定理[2],在进行模拟/数字信号的转换过程中,当采样频率fs 不小于信号中最高频率fm 的2倍时,采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍。

2.2 时域信号的FFT 分析信号的频谱分析就是计算机信号的傅里叶变换[5]。

连续信号与系统的傅里叶分析显然不便于用计算机进行计算,使其应用受到限制。

而FFT 是一种时域和频域均离散化的变换,适合数值运算,成为用计算机分析离散信号和系统的有力工具。

对连续信号和系统,可以通过时域采样,应用DFT 进行近似谱分析。

2.3 IIR 数字滤波器设计原理利用双线性变换设计IIR 滤波器(巴特沃斯数字低通滤波器的设计)[6],首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR 滤波器的系统函数H(z)。

如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp 和Ws 的转换,对ap 和as 指标不作变化。

边界频率的转换关系为 ∩=2/T tan(w/2)。

接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N 和3dB 截止频率 ∩c ;根据阶数N 查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/ ∩c 代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。

之后,通过双线性变换法转换公式s=2/T((1-1/z)/(1+1/z))得到所要设计的IIR 滤波器的系统函数H(z)。

2.4 FIR 数字滤波器设计原理基于窗函数的FIR 数字滤波器的设计方法通常也称之为傅立叶级数法,是用一定宽度窗函数截取无限脉冲响应序列,获得有限长的脉冲响应序列,从而得到FIR 滤波器。

它是在时域进行的,由理想滤波器的频率响应)(ωj d e H 推导出其单位冲激响应h d (n ),再设计一个FIR 数字滤波器的单位冲激响应h (n )去逼近h d (n ),表示)(n h d =π21ωωωππd e e H j j d )(⎰-由此得到的离散滤波器的系统传递函数H d (z ) 为 )(ωj d e H =∑-=-10)(N n j e n h ω,该h d (n ) 为无限长序列,因此H d (z )是物理不可实现的。

为了使系统变为物理可实现的,且使实际的FIR 滤波器频率响应尽可能逼近理想滤波器的频率响应,采用窗函数将无限脉冲响应h d (n )截取一段h(n)来近似表示h d(n),可得:h (n) = h d(n)w(n) ,从而有:式中N 表示窗口长度,这样H(z)就是物理可实现的系统。

并且从线性相位FIR滤波器的充要条件可知,为了获得线性相位FIR 数字滤波器的冲激响应h(n) ,那么序列h(n) 应有τ= (N −1) / 2的延迟。

由于窗函数的选择对结果起着重要的作用,针对不同的信号和不同的处理目的来确定窗函数的选择才能收到良好的效果。

相关文档
最新文档