遗传算法1

合集下载

GA1-遗传算法介绍

GA1-遗传算法介绍
2016/3/27 3
自然选择学说
计算机系
自然选择学说认为,生物要生存下去,就必须进行生存斗 争。生存斗争包括种内斗争、种间斗争以及生物与无机环境之 间的斗争三个方面。在生存斗争中,具有有利变异(mutation)的 个体容易存活下来,并且有更多的机会将有利变异传给后代, 具有不利变异的个体容易被淘汰,产生后代的机会也少得多。 因此,凡是在生存斗争中获胜的个体都是对环境适应性比较强 的。达尔文把这种在生存斗争中适者生存、不适者淘汰的过程 叫做自然选择。达尔文的自然选择学说表明,遗传和变异是决 定生物进化的内在因素。
计算机系
• 如何借鉴?
– 对于一个优化问题,一定数量的候选解(生命个 体)被表示为抽象的数字串(染色体),通过进 化向更好的解发展。 – 一开始,生命个体完全随机产生,之后一代一代 的进化,在进化过程中的每一代,每一个个体的 适应程度被评价,通过自然选择和变异产生新的 生命群体,该群体就是下一代的个体。
遗传算法 —一种基于仿生学的计算方法
计算机系
什么是遗传算法 (Genetic Algorithm)
• 生物进化
– 生命自从在地球上诞生以来,就开始了漫长的生 物演化历程,低级、简单的生物类型逐渐发展为 高级、复杂的生物类型。这一过程已经由古生物 学、胚胎学和比较解剖学等方面的研究工作所证 实。生物进化的原因自古至今有着各种不同的解 释,其中被人们广泛接受的是达尔文的自然选择 学说。
2016/3/27
4
计算机系
• • • •
环境 生物性状(表现型) 染色体-基因 适应能力-强壮、弱小
2016/3/27
5
遗传算法的起源
计算机系
20世纪60年代中期,美国Michigan(密西 根)大学的John Holland提出了位串编码技 术,这种编码既适合于变异又适合杂交操 作,并且他强调将杂交作为主要的遗传操 作。随后,Holland将该算法用于自然和人 工系统的自适应行为的研究之中,并于 1975年出版其开创性的著作《Adaptation in Natural and Artificial Systems》。后来, Holland与他的学生们将该算法加以推广并 应用到优化及机器学习等问题之中,而且 正式定名为遗传算法。遗传算法的通用编 码技术及简单有效的遗传操作为其广泛的 应用和成功奠定了基础。

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

遗传算法

遗传算法

1 遗传算法1.1 遗传算法的定义遗传算法(GeneticAlgorithm,GA)是近多年来发展起来的一种全新的全局优化算法,它是基于了生物遗传学的观点,是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

它通过自然选择、遗传、复制、变异等作用机制,实现各个个体的适应性的提高,从而达到全局优化。

遗传算法151解决一个实际问题通常都是从一个种群开始,而这个种群通常都是含有问题的一个集合。

这个种群是由一定数目的个体所构成的,利用生物遗传的知识我们可以知道这些个体正好组成了我们知道的染色体,也就是说染色体是由一个个有特征的个体组成的。

另外我们还知道,遗传算法是由染色体组成,而染色体是由基因组成,可以这么说,基因就决定了个体的特性,所以对于遗传算法的最开始的工作就需要进行编码工作。

然后形成初始的种群,最后进行选择、交叉和变异的操作。

1.2遗传算法的重要应用在现实应用中,遗传算法在很多领域得到很好的应用,特别是在解决多维并且相当困难的优化问题中时表现出了很大的优势。

在遗传算法的优化问题的应用中,其中最为经典的应用就是我们所熟悉的函数优化问题,它也是对遗传算法的性能进行评价的最普遍的一种算法;另外的一个最重要的应用,也就是我们本文所研究的应用—组合优化问题,一般的算法很难解决组合优化问题的搜索空间不断扩大的局面,而组合优化问题正好是解决这种问题的最有效的方法之一,在本文的研究中,比如求解TSP问题、VRP问题等方面都得到了很好的应用;另外遗传算法在航空控制系统中的应用、在图像处理和模式识别的应用、在生产调度方面的应用以及在工人智能、人工生命和机器学习方面都得到了很好的应用。

其实在当今的社会中,有关于优化方面的问题应用于各行各业中,因此有关于优化问题已经变得非常重要,它对于整个社会的发展来说都是一个不可改变的发展方向,也是社会发展的一个非常重要的需要。

1.3 遗传算法的特点遗传算法不同于传统的搜索与优化方法,它是随着问题种类的不同以及问题规模的扩大,能以有限的代价来很好的解决搜索和优化的方法。

遗传算法

遗传算法

遗传算法遗传算法是一种借鉴生物遗传和进化机制寻求最优解的计算方法。

该方法模拟生物进化中的复制、交换、变异等过程,并通过模拟自然选择压力的方式推动问题解集向最优解方向移动。

遗传算法为解决多种难以采用传统数学方法求解的复杂问题提供了新的思路。

1. 遗传算法的发展历史研究者采用计算机模拟生物进化过程并解决优化问题的尝试始于20世纪40至50年代。

20世纪60年代中期,美国密歇根大学的Holland教授提出了位串编码技术,这种编码技术适用于变异操作和交叉操作,他指出在研究和设计人工自适应系统时可借鉴生物遗传的机制,以群体的方式进行自适应搜索。

70年代中期,Holland提出遗传算法的模式定理(Schema Theorem),奠定了遗传算法的理论基础。

11967年,Holland教授的学生De Jong首次将遗传算法应用于函数优化中,2设计了遗传算法执行策略和性能评价指标。

他挑选的5个专门用于遗传算法数值实验的函数至今仍被频繁使用,而他提出的在线(on-line)和离线(off-line)指标则仍是目前衡量遗传算法优化性能的主要手段。

1989年,Goldberg出版专著“Genetic Algorithm in Search, Optimization, and Machine learning”3。

该书全面阐述了遗传算法的基本原理及应用,并系统总结了遗传算法的主要研究成果。

该书对遗传算法科学基础的奠定做出了重要贡献。

1991年,Davis编辑出版了专著“Handbook of Genetic Algorithms”,该书中介绍了遗传算法在工程技术和社会生活中的大量应用实例。

41992年,美国斯坦福大学的Koza出版专著“Genetic Programming, on the Programming of Computers by Means of Natural Selection”,在此书中,他将遗传算法应用于计算机程序的优化设计和自动生成,并在此基础上提出遗传编程(Genetic Programming, GP)的概念5。

遗传算法的基本操作

遗传算法的基本操作

遗传算法的基本操作1 遗传算法遗传算法(Genetic Algorithm,简称 GA)是一种染色体基因行为模拟的进化计算算法,它是一种基于自然选择和遗传变异进化机制的计算智能方法,是从生物学进化规律探索求解各种复杂问题的一种工具。

遗传算法是一种元胞自动机入门级的人工智能技术,能够解决各种复杂的最优化问题。

2 遗传算法的基本操作遗传算法的基本操作主要包括以下几个步骤:1.初始化种群:分配种群中每个个体的基因型,对种群中每个染色体随机分布互不相同的基因,成功分配染色体。

2.测试种群:评估种群中各个个体的适应度。

3.挑选进化操作:根据适应度值大小,选择优秀个体留入下一代。

4.变异和交叉:执行变异操作和交叉操作,以旧的种群基因组为基础生成新的基因组,以挑选某几代作为新的种群。

5.使用适应度值:重新计算每个个体的适应度,建立新的种群,获取最优解。

3 遗传算法在工程中的应用遗传算法可以完成多种实现最优解的工程问题,如最易支付路径分析、公路交叉路口路径优化、货物运输路线最优解、拆线问题等等。

随着科学技术的进步,遗传算法也广泛应用于其他领域,如通信网络结构优化、模式识别、系统自控等,使利用遗传算法工程化运用更加广泛,受到计算机应用研究者的追捧。

4 遗传算法的优势遗传算法有着诸多优势:1. 遗传算法可以解决非线性多变量优化问题;2. 遗传算法没有预定义的搜索空间,能够自动根据变量的取值范围搜索最优解;3. 能够处理连续和离散的优化变量;4. 遗传算法可实现并行化搜索,可大大提高计算速率;5. 遗传算法可以从全局最优出发搜索;6. 遗传算法擅长解非凸优化问题,比如有多个局部最优;7. 遗传算法可以应用于大规模复杂的优化问题。

遗传算法的运行效率不高,一般在解决工程优化问题时,常会伴随其他技术或工具,比如模糊技术、神经网络等,共同完成相应的优化工作。

此外,为了确保在种群的进化过程中保持正确的进化方向,必须了解其精准的适应度函数,为此必须提供明确的评价函数,这是关键性任务。

遗传算法的步骤

遗传算法的步骤

遗传算法的步骤遗传算法是一种基于自然选择和遗传机制的优化算法,它模拟了生物进化的过程,通过不断地迭代和优化,寻找最优解。

下面将介绍遗传算法的步骤。

1. 初始化种群遗传算法的第一步是初始化种群,即随机生成一组初始解。

这些解可以是随机生成的,也可以是根据问题的特点和经验生成的。

种群的大小和组成对算法的效果有很大的影响,一般来说,种群越大,搜索空间越广,但计算时间也会增加。

2. 选择操作选择操作是遗传算法的核心步骤之一,它模拟了自然选择的过程。

在选择操作中,根据适应度函数的值,选择一部分优秀的个体作为下一代的父代。

适应度函数的设计非常重要,它决定了个体的生存能力和繁殖能力。

3. 交叉操作交叉操作是遗传算法的另一个核心步骤,它模拟了生物的交配过程。

在交叉操作中,从父代中选择两个个体,通过交叉操作生成新的个体。

交叉操作的方式有很多种,如单点交叉、多点交叉、均匀交叉等。

4. 变异操作变异操作是遗传算法的最后一步,它模拟了生物的突变过程。

在变异操作中,对新生成的个体进行一定的变异操作,以增加搜索空间和避免陷入局部最优解。

变异操作的方式也有很多种,如位变异、反转变异、插入变异等。

5. 重复迭代遗传算法的迭代过程是不断重复选择、交叉和变异操作的过程,直到达到预设的停止条件。

停止条件可以是达到最大迭代次数、达到最优解或达到一定的误差范围等。

在迭代过程中,每一代的种群都会不断进化和优化,直到找到最优解。

遗传算法是一种非常有效的优化算法,它模拟了生物进化的过程,通过不断的选择、交叉和变异操作,寻找最优解。

在实际应用中,需要根据问题的特点和经验来选择适当的参数和操作方式,以达到最优的效果。

《遗传算法详解》课件

《遗传算法详解》课件
特点
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率

遗传算法的基本原理(1)

遗传算法的基本原理(1)
一一对应。
4.1 遗传算法的基本描述
4.1.3 遗传编码
根据模式定理,De Jong进一步提出了较为客观明确的 编码评估准则,称之为编码原理。具体可以概括为两 条规则:
1)有意义积木块编码规则:编码应易于生成与所求问题 相关的短距和低阶的积木块。
2)最小字符集编码规则:编码应采用最小字符集,以使 问题得到自然、简单的表示和描述。
akl 0,1
表示精度为x (v u) /(2L 1) 。
将个体又从位串空间转换到问题空间的译码函数 : {0,1}L [u, v]
的公式定义为:
xk
(ak1, ak2 ,, akL )
u
vu 2L 1
ቤተ መጻሕፍቲ ባይዱ
(
L j 1
akj
2L
j
)
4.1 遗传算法的基本描述
对于n维连续函数f (x), x (x1, x2 ,, xn ), xi [ui , vi ](i 1,2,, n) ,
操作后的期望数量为 n pn 。其它个体的期望数量按等差序
列计算
j
j1
n 1
,j
(
j
1)
( ) n 1
(
j
1,)
故现在排序选择概率为
ps (a
j
)
1 n
(
( )
n 1
(
j
1)),
j 1,2,, n
4.1.6 遗传算子
一、选择(selection)算子
4、联赛选择(tournament selection) • 基本思想:从当前群体中随机选择一定数量的个体(放回或者不
4.1.6 遗传算子
一、选择(selection)算子
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2 3 4 选择次数 1 1 0 2
011101 101011 011100 111001
选择结果
34 34 25 50
fi=143 fmax=50 f=35.75
交叉结果
0.24 0.24 0.17 0.35
变异点 4 5 2 6
配对情况
交叉点位置 1-2:2 3-4:4
变异结果
011101 111001 101011 111001
例:求下述二元函数的最大值:
max f(x1,x2)=x12+x22 s.t. x1 {1,2,3,4,5,6,7} x2 {1,2,3,4,5,6,7} (1) 个体编码 遗传算法的运算对象是表示个体的符号串,所以必须把变量 x1, x2 编码为一种 符号串。本题中,用无符号二进制整数来表示。 因 x1, x2 为 0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它 们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可 行解。 例如,基因型 X=101110 所对应的表现型是:x=[ 5,6 ]。 个体的表现型x和基因型X之间可通过编码和解码程序相互转换。
个体编号 1 2 3 4
交叉结果
变异点
4 5 2 6
变异结果
子代群体p(1)
011001 111101 101001 111011
011101 111111 111001 111010
011101 111111 111001 111010
对群体P(t)进行一轮选择、交叉、变异运算之后可得到新一代的群体p(t+1)。
• 初始种群
令种群中有 M 个个体,可随机产生 M 个数字 串构成初始种群。例如: 将数字串 1234…N 上的数字进行随机的交换
步骤二:适应度选择
• 适应度的计算
对于个体 j ,适应度为:
fj 1
1 5
2
l1 l2 l3 l4 l5
l
i 1
N
i

4
3
被选中作为父个体的概率:
pj fj
f
个体编号 初始群体p(0) 1 2 3 4 总和 x1 x2 3 5 3 7 5 3 4 1 适值 占总数的百分比 选择次数 选择结果
011101 101011 011100 111001
34 34 25 50
143
0.24 0.24 0.17 0.35
1
1 1 0 2
011101 111001 101011 111001
[注意] 需要说明的是,表中有些栏的数据是随机产生的。这里为了更好地说明问题, 我们特意选择了一些较好的数值以便能够得到较好的结果,而在实际运算过程中 有可能需要一定的循环次数才能达到这个最优结果。
个体编号 初始群体p(0)
x1 x2 3 5 3 7 5 3 4 1
适值 fi(x1,x2)
占总数的百分比 fi / f
12345(1) 34512(3) 用群论描述
旋转操作
所有路径的集合形成一个二面体群 A 等价解构成一个正规子群 B
A 中陪集的数目为 2N
12345(1) 32154(3) 34215(3) 15234(1)
1 5 4 3 2 5 4 1
相同父个体交叉 不同子个体,且和父个体不同 1 2 3 5 4 3 2
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
选择操作为种群提供了演进的方向
• 交叉 --- 优优组合
交叉操作的作用在于汇集散布于不同 个体间的局部优势模式
• 变异 --- 寻找新模式
变异操作是种群向外扩展的触角(随机) 好的变异将保留,坏的淘汰
遗传算法的总体评价
• 优点 解决问题的方法具有普适性 全局收敛性(依概率收敛) 能解决的问题范围很广 • 不足 求得的解为近似的数值解 对于经典数学可以解决的问题,效率较低
• 个体编码:(假定要求小数点后两位) 将[0,10]划分为1024个小区间 210 1024
个体 个体 个体 个体 1 2 3 …… 1024 0000000000 0000000001 0000000010 1111111111
0
• 种群初始化: 随机生成m个10位二进制串
10
步骤二:选择
24% 0
24%
17% 3#
35% 4# 1
1#
2#
(5) 交叉运算 交叉运算是遗传算法中产生新个体的主要操作过程,它以某一概率相互交换某 两个个体之间的部分染色体。 本例采用单点交叉的方法,其具体操作过程是: • 先对群体进行随机配对; • 其次随机设置交叉点位置; • 最后再相互交换配对染色体之间的部分基因。
TSP问题的遗传算法求解
• • • • • 步骤一:个体编码及种群初始化 步骤二:适应度选择 步骤三:交叉操作 步骤四:变异操作 步骤五:重复二、三、四步,直至结束 令城市(点)数目为 N
步骤一:初始化
• 个体编码
取长度为N的数字串,串中数字互不重复,取 值范围为[1,N]之间的整数。则每一个数字串代 表一个个体,个体中数字出现的位置表征路径 中城市出现的顺序。
(6) 变异运算 变异运算是对个体的某一个或某一些基因座上的基因值按某一较小的概率进 行改变,它也是产生新个体的一种操作方法。 本例中,我们采用基本位变异的方法来进行变异运算,其具体操作过程是: • 首先确定出各个个体的基因变异位置,下表所示为随机产生的变异点位置, 其中的数字表示变异点设置在该基因座处; • 然后依照某一概率将变异点的原有基因值取反。
j 1
M
j
p
j
1
选择 M 次 重新生成种群
步骤三:交叉操作
• TSP中交叉算子的特点
要保证生成的解为有效解 从一个父个体中随机选取一段子串A,在另一个父个体 中将A中出现的数字去掉形成串B,AB为一个子串
此外还有多种交叉算子
步骤四:变异操作
• 常用的变异操作:
随机选取两个相邻位置的数字,交换其顺序。 51243(5) 51234(5)
遗传算法的思想
• Darwin的进化论 ---- “自然选择、适者生存” 特定环境的考验 • 种群中个体的选择 • 种群中的交叉繁殖 • 种群中个体的变异 上述操作反复执行,个体逐渐优化
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
• 定义适应度函数: f 1 10 | x e x 100|
0.4 0.1 0.1
为何取倒数?
• 选择(适应度较大的个体)
D A C
0.2 0.1 0.4
B
0.3
0.3
0.2
0.4
0.6
1.0
随机产生 [0,1]之间 的数 RN, 选择个体
C D
RN
0 RN 0.1 0.1 RN 0.4 0.4 RN 0.6 0.6 RN 1
fi=253 fmax=98 f=58.75
0.14 0.42 0.21 0.23
遗传算法的一个实例
• 求解方程: x10 e x 100 ( x 0)
将方程求解问题转化为生存问题:
解一定在[0,10]之间,将区间[0,10]划分成 若干个小区间,设想每个小区间为一个 生物个体,使下列表达式最小的个体有
个体编号 1 2 3 4 总和
子群体p(1)
x1 x2 3 7 7 7 5 7 1 2
适值
占总数的百分比
011101 111111 111001 111010
34 98 50 53
235
0.14 0.42 0.21 0.23
1
从上表中可以看出,群体经过一代进化之后,其适应度的最大值、平均值都得 到了明显的改进。事实上,这里已经找到了最佳个体“111111”。
个体
A
B
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
步骤四:变异
• 变异操作 在个体中随机选择一位,改变该位的值
交叉和变异操作均以一定概率进行
步骤五
• 反复执行步骤二、三、四并记录最优个体 (适应度最大的个体) • 程序结束时,最优个体即为所求解 • 程序结束的判定 根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型 遗传到下一代群体中。一般要求适应度较高的个体将有更多的机会遗传到下一代
群体中。
本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中 的数量。其具体操作过程是: • 先计算出群体中所有个体的适应度的总和 fi ( i=1.2,…,M ); • 其次计算出每个个体的相对适应度的大小 fi / fi ,它即为每个个体被遗传 到下一代群体中的概率, • 每个概率值组成一个区域,全部概率值之和为1; • 最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区 域内来确定各个个体被选中的次数。
遗传算法(GA)的肇始
“ 活的有机体是解决问题的专家。它们所表现出 来的各种才能足以使最好的计算机程序自惭形 秽。这种现象尤其令计算机科学家们感到痛楚。 计算机科学家们为了某种算法可能花费数月乃 至数年的脑力劳动,而有机体则能通过进化和 自然选择这样一种显然并非定向进行的机制获 得这种能力。” --- John Holland
x1 x2 3 7 7 7 5 7 1 2
1-2 3-4
011001 111101 101001 111011
011101 111111 111001 111010
子代群体p(1)
适值 fi(x1,x2)
相关文档
最新文档