计算流体力学第4章课件
合集下载
流体力学4

第四章
流体动力学基础
u f ( x, y, z, t ), x, y, z f (t )
u x u x u x 1 p dux 1 u x ※则: X dt dx dy dz x dt dt t x y z u y u x u x u z ux uy uz t x y z
— 推导惯性和非惯性参考 1 p a b p dy 2 y 系(相对一个惯性系如 dz dy 物体转动或匀加速运动 z o 参照系)中伯努力方程。
z
c
dx
p
1 p dy 2 y
设:六面体中心 a 点压 力为 p( xyz) ,平均密度 ( xyz),加速度 a( xyz) 。
u z dz u z ) ( p 2 ) z 下面 ( p 2 z 2 z
zx dz zx z 2
zy dz zy z 2
第四章
流体动力学基础
二、粘性流体运动方程 根据:
F
x
max ,
F
y
may ,
F
z
maz
u x ( p 2 ) u x dx x 则: Xdxdydz [( p 2 ) ]d ydz x x 2 u x ( p 2 ) u x dx x [( p 2 ) ) d ydz x x 2 zx dz zx dz [( zx )dxdy ( zx ) dxdy ] z 2 x 2 yx dy yx dy dux [( yx ) ( yx ) dxdy ] m y 2 y 2 dt
u z 2 x ( y u x 2 y ( z
2
计算流体力学基础ppt课件

s x ds y ds
如果该曲线G满足:
dx ds
a
dy
ds
b
特征线
x
特征线简化了 方程,在空气 动力学领域应
用广泛
则有:
duaubuc ds x y
特征相容关系 (特征线上物理量的简化方程)
✓偏微方程在特征线上变成了常微分方程 Slide 5
演示: 如何利用特征线计算物理量
a(x,y)ub(x,y)uc(x,y)
特征方程(3) 有两个相同实根,且无法对角化 -> 抛物型
特征方程(3)无实根
-> 椭圆型
Slide 9
4. 讨论Euler方程组
一维非定常流动:
f(U)AU
x
x
U f(U) 0 t x
Uu
E
0
1
0
AU f ((232)u3)u2u/2c21
(3)u c2 32u2 1 2
1
u
推导
u f(U)u2 p
第四章 偏微分方程的性质 Behavior of Partial Differential Equations
Slide 1
超音速钝体绕流问题的解决
Slide 2
偏微方程的分类及特征
1. 一阶偏微分方程
➢ (常用)特例:常系数线性单波方程
u cu 0 t x
初值: u(x,0)(x)
方程的精确解: u(x,t)(xc)t
Slide 31
1.特征线为虚数,故与特征线有关 的解法不适用;
2.无有限影响区域和依赖区域,流 场参数信息可以向任何方向传播;
3.图中P点参数影响整个区域的信息, 同时区域内任意点的参数也影响P 点的参数。
如果该曲线G满足:
dx ds
a
dy
ds
b
特征线
x
特征线简化了 方程,在空气 动力学领域应
用广泛
则有:
duaubuc ds x y
特征相容关系 (特征线上物理量的简化方程)
✓偏微方程在特征线上变成了常微分方程 Slide 5
演示: 如何利用特征线计算物理量
a(x,y)ub(x,y)uc(x,y)
特征方程(3) 有两个相同实根,且无法对角化 -> 抛物型
特征方程(3)无实根
-> 椭圆型
Slide 9
4. 讨论Euler方程组
一维非定常流动:
f(U)AU
x
x
U f(U) 0 t x
Uu
E
0
1
0
AU f ((232)u3)u2u/2c21
(3)u c2 32u2 1 2
1
u
推导
u f(U)u2 p
第四章 偏微分方程的性质 Behavior of Partial Differential Equations
Slide 1
超音速钝体绕流问题的解决
Slide 2
偏微方程的分类及特征
1. 一阶偏微分方程
➢ (常用)特例:常系数线性单波方程
u cu 0 t x
初值: u(x,0)(x)
方程的精确解: u(x,t)(xc)t
Slide 31
1.特征线为虚数,故与特征线有关 的解法不适用;
2.无有限影响区域和依赖区域,流 场参数信息可以向任何方向传播;
3.图中P点参数影响整个区域的信息, 同时区域内任意点的参数也影响P 点的参数。
流体力学学习课件第四章流体动力学

x y z
dt
dt
dt
1、公式推导前提条件:恒定流(条件之一)即
p 0, u 0 ux uy uz 0
t
t
t t t
因为恒定流动时,流线与迹线重合,则此时的dx,dy,dz与时间 dt 的比为速度
分量,即有:
ux
dx dt
uy
dy dt
uz
dz dt
则:①
dux dt
dx
duy dt
y dt
单位质量流体的惯 性力在X、Y、Z坐 标轴上分量
Z 1 p duz
z dt
(1)物理意义:作用在单位质量流体上的质量力与表面力之代数和等于其加
速度。 (2)适用条件:a.无粘性流体。
b.可压缩流体及不可压缩流体 c.恒定流及非恒定流
二、粘性流体运动微分方程
1、以应力表示的实际流体运动微分方程 (1)方程推导依据:
g 2g
g
h pA pB u2
g g 2g
理论流速: u 2 pA pB 2gh
实际流速: u 2gh
μ:修正系数,数值接近于1,由实验确定,μ =0.97 ; h:为两管水头差。
四、实际液体元流能量方程
实际液体具有粘滞性,由于内摩擦阻力的影响,液体流动
时,其能量将沿程不断消耗,总水头线因此沿程下降,固
dy
duz dt
dz uxdux
uyduy
uz duz
1 d (u 2 ) 2
因此,方程是沿流线才适用的。——条件之二
②
p dx p dy p dz dp
x y z
(3)
则(1)式
( Xdx Ydy Zdz) 1 (p dx p dy p dz)
流体力学完整版课件全套ppt教程

阻力系数 0.4 阻力系数 0.2 阻力系数 0.137
前言
火车站台安全线
本章小结
【学习目标】 1. 理解流体力学的学科定义; 2. 了解流体力学的发展简史; 3. 熟悉流体力学的研究方法 。
工程流体力学
中国矿业大学电力学院
§1.1 流体的定义 §1.2 连续介质假说 §1.3 流体的物理性质
流体在受到外部剪切力作用时会发生变形,其内部相应会 产生对变形的抵抗,并以内摩擦力的形式表现出来。
➢ 粘性的定义
流体的粘性就是阻止发生剪切变形的一种特性,内摩擦力则 是粘性的动力表现。
§1.3 流体的物理性质
➢ 牛顿的平板实验
实验装置:2块平板,平板间充满流体。
实验过程:用力拉动液面上的平板,直 到平板匀速前进。
前言
曹冲(公元196-208年)称象
孙权 曾 致 巨 象 , 太祖欲知其斤重, 访之群下,咸莫能 出其理。冲曰: “置象大船之上, 而刻其水痕所至, 称物以载之,则校 可知矣。”太祖悦, 即施行焉。
前言
都江堰(公元前256年,李冰父子修都江堰)
战国时期,秦国蜀郡太 守李冰和他的儿子,修建 了著名的都江堰水利工程。 都江堰的整体规划是将岷 江水流分成两条,其中一 条引入成都平原,这样既 可以分洪减灾,又可以引 水灌田、变害为利。
前言
二、流体力学的研究方法
2. 实验室模拟
➢ 作用:实验模拟能显示运动特点及其主要趋势,实验结果可 检验理论的正确性。
➢ 优点:能直接解决生产中的复杂问题,能发现流动中的新现 象和新原理,它的结果可以作为检验其他方法是否正确的依 据。
➢ 缺点:对不同情况,需作不同的实验,所得结果的普适性较 差。
前言
流体力学课件第四章流动阻力和水头损失

l v hf d 2g
2
r w g J 2
w v 8
定义壁剪切速度(摩擦速度) 则
w v
*
v v
*
8
§4-4 圆管中的层流
层流的流动特征
du dy
du du dy dr
du dr
g J
r 2
r du g J 2 dr
层流 紊流
§4-3 沿程水头损失与剪应力的关系
均匀流动方程式
P G cos P2 T 0 1
P p1 A1 1
P2 p2 A2
T w l
G cos gAl cos gA( z1 z2 )
w l p1 p2 ( z1 ) ( z2 ) g g gA
v2 hj 2g
§4-2 粘性流体的两种流态
两种流态
v小
' c
v小
v > vc
v大 v大
临界流速。 下临界流速 vc ——由紊流转化为层流时的流速称为下 临界流速。
vc' ——由层流转化为紊流时的流速称为上 上临界流速
vv
层流 紊流
' c
紊流 层流
a-b-c-e-f f-e-d-b-a
第四章 流动阻力和水头损失
水头损失产生的原因: 一是流体具有粘滞性, 二是流动边界的影响。
§4-1 流动阻力和水头损失的分类
沿程阻力和沿程水头损失
在边界沿程无变化(边壁形状、尺寸、过 流方向均无变化)的均匀流段上,产生的流动 阻力称为沿程阻力或摩擦阻力。由于沿程阻力 做功而引起的水头损失称为沿程水头损失。均 匀流中只有沿程水头损失 h f 。
流体力学ppt课件-流体动力学

g
g
2g
水头
,
z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.
计算流体力学电子教案ppt课件

27
解:由于板在y、z方向为无限大,因此可作为一维问题 处理,即只考虑x方向。相对于无源问题,控制方程中增 加了源项。即
d dx
(k
dT dx
)
q
0
第一步:生成离散网格(先控制体后节点),生成5个单元
aPP aWW aEE Su (2 8)
aW
w
xWP
Aw
,
aE
e
k x
A,
aP
aW
aE SP
SP
2k x
A,Su
2k x
A
TB
23
根据以上过程可以得到左右边界控制体的离散方程:
左端控制体
kA(T2
x
T1
)
kA(T1 TA ) x / 2
0
右端控制体
kA(TB x
T5
/2
)
kA(T5 T4 ) x
0
(T2 T1) (2T1 2TA ) 0 (2TB 2T5 ) (T5 T4 ) 0
计算流体力学电子教案
1
目录
• 第一章 绪论 • 第二章 扩散问题的有限体积法 • 第三章 对流扩散问题的有限体积法 • 第四章 差分格式问题 • 第五章 压力--速度耦合问题的有限体积法 • 第六章 有限体积法离散方程的解法 • 第七章 非稳态流动问题的有限体积法 • 第八章 边界条件处理
2
第二章 扩散问题的有限体积法
即
kA(T2 T1 ) x
kA(T1 TA ) x / 2
0
在上述过程中有一假定:认为A点的温度梯度dT/dx与A
解:由于板在y、z方向为无限大,因此可作为一维问题 处理,即只考虑x方向。相对于无源问题,控制方程中增 加了源项。即
d dx
(k
dT dx
)
q
0
第一步:生成离散网格(先控制体后节点),生成5个单元
aPP aWW aEE Su (2 8)
aW
w
xWP
Aw
,
aE
e
k x
A,
aP
aW
aE SP
SP
2k x
A,Su
2k x
A
TB
23
根据以上过程可以得到左右边界控制体的离散方程:
左端控制体
kA(T2
x
T1
)
kA(T1 TA ) x / 2
0
右端控制体
kA(TB x
T5
/2
)
kA(T5 T4 ) x
0
(T2 T1) (2T1 2TA ) 0 (2TB 2T5 ) (T5 T4 ) 0
计算流体力学电子教案
1
目录
• 第一章 绪论 • 第二章 扩散问题的有限体积法 • 第三章 对流扩散问题的有限体积法 • 第四章 差分格式问题 • 第五章 压力--速度耦合问题的有限体积法 • 第六章 有限体积法离散方程的解法 • 第七章 非稳态流动问题的有限体积法 • 第八章 边界条件处理
2
第二章 扩散问题的有限体积法
即
kA(T2 T1 ) x
kA(T1 TA ) x / 2
0
在上述过程中有一假定:认为A点的温度梯度dT/dx与A
流体力学第四章ppt课件

对于定常无旋运动,式(4-3)括弧内的函数
不随空间坐标x,y,z和时间t变化,因此
它在整个流场为常数。精选课件
10
U p V2 C
2
(通用常数)
对于理想、不可压缩流体、在重力作用下的 定常无、旋运动,因U=-gz,上式可写成
p V2
z
C
(通用常数)
2g
上式为上述条件下的拉格朗日积分式,C在
整个流场都适用的通用常数,因此它在整个流场
建立了速度和压力之间精的选课件关系。
11
若能求出了流场的速度分布(理论或实验的 方法),就能用拉格朗日积分式求流场的压力分 布,再将压力分布沿固体表面积分,就可求出流 体与固体之间的相互作用力。
应用拉格朗日积分式,可解释许多重要的物
理现象:如机翼产生升力的原因;两艘并排行
U 2
2
g
近似代替 20
适用于有限大流束的伯努利方成为:
z p U2 const
2g
或
z1p1U 21g2 z2p2
U22 2g
方程适用条件:
(13) (14)
(1)理想流体,定常流动;
(2)只有重力的作用;
(3)流体是不可压缩的;
(4)1.2截面处流动须是渐变流。但1.2两断
面间不必要求为渐变流精动选课件。
驶而又靠得很近的船舶为什么会产生互相吸引
的“船吸现象”;以及在浅水航道行驶的船舶为
什么会产生“吸底现象”等等。
精选课件
12
讨论: 1. 如果理想、不可压缩流体作定常、无旋流
动且只有重力作用时,同一水平面上的两 点,其速度和压力的关系如何? 2. 两艘并排行驶而又靠得很近的船舶为什么会产 生互相吸引的“船吸现象”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
Lax-Wendroff格式
利用Taylor级数展开,可以得到二阶格式
un1 j
u
n j
at
un j 1
un j 1
x
at 2
2
u
n j 1
2u
n j
x
2
u
n j 1
该格式在时间和空间上均具有2阶精度,其稳定性条件为a∆t/∆x≤1 。
U
0
x
U U
l r
,x ,x
0 0
这类问题常称为Riemann问题,也称为激波管问题,该方程经常用于间断解计算方
法设计和构造,并用于判断间断解方法的优劣。
8
4.2 几个经典的差分格式
本节讨论计算流体力学早期发展起来的几个重要的流体力学方程组计算格式, 其中包括Lax-Friedrichs格式、Lax-Wendroff的二阶格式以及Von Neumann人 工粘性方法等。
6
Burgers方程
ut uux uxx0 x Lt 0
初始条件
u x,0 u0 x u 0,t u1 t u L,t u2 t
该方程是Navier-Stokes方程最简单的模型方程,空间一阶导数项用于模拟非 线性对流项,方程右端二阶导数项用于模拟粘性项,基本上保留了Navier-Stokes方 程的混合型特征。选用特殊的初始值和边界条件,可以得到模型方程的准确解。
由于流体力学方程组的复杂性,所得计算结果仍然需要与实验值或典型问题的 公认结果进行比较,证实数值方法的可靠性。
一般来说,模型方程应具备流体力学方程组的基本特征,本节给出在计算流体 力学中经常采用的几个模型方程,用于验证数值方法的精度。
3
线性单行波方程
ut aux 0a const 0t 0
2
4.1 模型方程及其数学性质
流体力学的基本方程是复杂的非线性方程组,很难找到一般情况下的解析解或 者精确解,所以在计算流体力学的研究过程中,经常针对模型方程,分析采用 的数值方法的基本特征,如方法的精度、收敛性、稳定性以及数值解的误差特 性等。
通过对模型方程的研究,验证数值方法的可靠性之后,再将其应用于求解流体 力学基本方程组。
10
Lax-Friedrichs格式
将FTCS格式中u取成平均值,就得到了偏微分方程的Lax格式
un1 j
un j 1
2
un j 1
at 2x
un j 1
u
n j 1
根据von Neumann稳定性分析理论可以得到,Lax格式在a∆t/∆x≤1的条件下是 稳定的,在时间和空间上都具有一阶精度。
11
蛙跳格式
在时间和空间都用二阶中心差分离散,可以得到蛙跳格式
u n1 j
u
n1 j
a
u
n j 1
u
n j 1
2t
2x
蛙跳格式在时间和空间上均具有2阶精度,其稳定性条件为a∆t/∆x≤1 。
从格式上可以看到,计算 层时间上的值时需要n和n-1两个初始时间层上的值, 因此初始解对计算结果的精度有很大的影响,同时,该格式的存储量也会比前 面的格式大。
初始条件
u x,0 u0 x
精确解
u x,t u0 x at
该方程的解只不过是以速度a平移而已,它描述了对流输运的基本特性。
4
热传导方程
ut uxx 0 const 0t 0
初始条件 精确解
u x,0 u0 x
第4章 可压缩流对流项数值格式 的几种处理方法
《计算流体力学:典型算法与算例》课程 (全书共235张幻灯片)
基本内容
4.1 模型方程及其数学性质 4.2 几个经典的差分格式 4.3 矢通量分裂方法 4.4 Roe格式 4.5 Godunov间断方法 4.6 TVD格式 4.7 ENO/WENO格式 4.8 间断Galerkin有限元方法 4.9 数值算例
13
人工粘性方法
一维流体力学模型方程是典型的拟线性双曲型方程组,即使在连续可微的初始 条件下,也会在解中出现间断,一些适合于计算连续可微解的差分方法,常常 不能适用于间断解的计算。
Von Neumann人工粘性方法是计算流体力学方程组的最早的方法之一,在实际 的工作中的一种常用的差分方法。
7
一维Euler方程组
Ut
F
U
x
0
其中
U , u, E T
F u, u2 p,u E p T
E p 1 u2 1 2
这里,,u, p, E, 分别为流体的密度,流体速度,压强,单位体积的总能和气体绝热 指数。计算中经常给出左右状态的初始条件
u
n j
a
un j 1
u
n j 1
t
2x
u n1 jຫໍສະໝຸດ un j
a
u
n j
u
n j 1
t
x
根据von Neumann稳定性分析理论可以得到,FTFS格式与FTCS格式为不稳定 的,FTBS格式也称为迎风格式,它在a∆t/∆x≤1的条件下是稳定的,在时间和空 间上都具有一阶精度。
u x,t
1 4 t
u0
x 2
e 4t d
该方程描述的是纯耗散性问题,其典型特征是解析解随时间的进行越来越光滑 。
5
无粘Burgers方程
ut uux 0
初始条件
u x,0 sin x
该方程经常用来进行间断解的方法设计、分析与检验,其典型特征是随时间的 进行,方程的解将出现间断。
这些方法构造相对简单,在计算流体力学发展过程中起到了先驱的作用,而且 在实际工作中也得到过相当广泛的应用,了解这些计算格式的基本思想对研究 和构造计算格式仍然有很深的影响。
9
基本差分格式
FTFS FTCS FTBS
u n1 j
u
n j
a
u
n j 1
u
n j
t
x
u n1 j
Von Neumann人工粘性方法的基本思想是将“激波”看成是仅有几个分子自由 程宽度的薄层,其中的物理量是连续的,但是变化梯度很大,在这个基本思想 下,Von Neumann提出在流体力学方程组中加上一项人工粘性来取代真实的粘 性,目的就是把激波间断抹平,使得差分方法能够进行计算。