相似三角形的判定(SSS)

合集下载

三角形的相似判定方法

三角形的相似判定方法

三角形的相似判定方法
有三种常用的三角形相似判定方法:
1. 角-角-角相似判定法(AAA相似判定法):
如果两个三角形的三个内角分别对应相等,则这两个三角形相似。

2. 边-边-边相似判定法(SSS相似判定法):
如果两个三角形的对应边的长度比例相等,则这两个三角形相似。

3. 边-角-边相似判定法(SAS相似判定法):
如果两个三角形的两边的长度比例相等,并且夹角相等,则这两个三角形相似。

需要注意的是,以上的相似判定方法只能确定两个三角形是否相似,不能确定它们的大小关系。

若要确定两个相似三角形之间的长宽比等具体数值关系,还需要另外给出一个边的长度或者角的大小。

相似三角形相似三角形的判定sss课件

相似三角形相似三角形的判定sss课件

05
SSS判定定理的总结与回

SSS判定定理的重要性和应用范围
1 2
三角形全等的最直接判定方法 SSS判定定理是三角形全等判定中最直接的方法, 只需要满足三边分别相等即可判定两个三角形全 等。
在几何证明题中的应用 在解决几何证明题时,SSS判定定理常常被用来 证明两个三角形全等,进而得出其他相关结论。
04
SSS判定定理的练习题与 解析
练习题一:判断两个三角形是否相似
总结词
通过比较三角形的三边长度来判断两 个三角形是否相似。
详细描述
首先,分别测量两个三角形的三边长 度,然后比较这些长度是否满足SSS 判定定理(三边对应成比例的两个三 角形相似)。如果满足,则这两个三 角形相似。
练习题二:找出相似三角形的对应边长
与其他三角形全等判定定理相比,SSS判定定理的应用范围相对较小,但在特定情况下 却是唯一的判定方法。
感谢观 看
THANKS
掌握定理的证明过程
通过学习SSS判定定理的证明过程, 可以更好地理解定理的原理和应用条 件,有助于记忆和应用。
与其他相似三角形判定定理的比较和联系
与其他判定定理的联系
SSS判定定理与其他三角形全等的判定定理有一定的联系,例如SAS判定定理和ASA判 定定理都可以通过SSS判定定理证明。
与其他判定定理的比较
相似三角形的性质
相似三角形对应角相等, 对应边成比例,面积比等 于相似比的平方。
相似三角形的判定定理
SSS定理
如果两个三角形的三边对应相 相等,且这两个角所对的边也 对应相等,则这两个三角形相似。
ASA定理
如果两个三角形有两个角对应 相等,且这两个角所夹的边也 对应相等,则这两个三角形相似。

相似三角形的判定(SSS和SAS)课件

相似三角形的判定(SSS和SAS)课件
在几何图形中,如果两个三角形相似,那么它们的对应角度相等。因此,可以通过构造相似三角形来 求解目标角度。
其他领域的应用
物理学中的应用
01
在物理学中,相似三角形可以用来解决一些与距离、高度和角
度相关的问题,如光的折射、反射等。
工程学中的应用
02
在工程学中,相似三角形可以用来解决一些与测量、设计和施
工相关的问题,如建筑设计、道路规划等。
若两个三角形相似,则它们的面 积比等于相似比的平方。
面积于计算相似三角形的面积。
在实际应用中,可以通过测量两 个三角形的面积和相似比来计算
其中一个三角形的面积。
05
相似三角形的应用举例
测量问题中的应用
利用相似三角形测量高度
通过构造相似三角形,利用已知边长和角度,可以计算出目 标物体的高度。
相似三角形的判定 (SSS和SAS)课件
目录
• 引言 • SSS判定方法 • SAS判定方法 • 相似三角形的性质与定理 • 相似三角形的应用举例 • 总结与展望
01
引言
相似三角形的定义
对应角相等,对应边 成比例的两个三角形 叫做相似三角形。
相似三角形对应边的 比叫做相似比(或相 似系数)。
相似用符号“∽”来 表示,读作“相似于 ”。
比例和度量问题。
培养逻辑思维
学习和掌握相似三角形的判定方 法,有助于培养学生的逻辑思维
、推理能力和问题解决能力。
相似三角形的研究前景
01
深入探究判定方法
尽管SSS和SAS是两种常用的相似三角形判定方法,但仍存在其他判定
方法值得进一步研究和探讨。例如,探究更多基于边和角关系的判定方
法,提高判定的准确性和效率。

27.2.1相似三角形的判定sss sAS

27.2.1相似三角形的判定sss sAS

AE AC

AD AB AE AC
∠A=∠A`
△ ADE ≌△ ABC
∵△ A´DE∽△A´B´C´
∴△ ABC∽△A´B´C´
相似三角形的判定(SAS)
如果两个三角形的两组对应边的比相等, 并且相应的夹角相等,那么这两个三角形相 似. (简称:两边夹角)
符号语言:
在△ABC 和△A´B´C´中, ∵
平行于三角形一边的直线与其它两 边(或延长线)相交,所得的三角形与原三 角形相似.
定理的符号语言:∵ DE∥BC
∴ △ ADE ∽ △ ABC
问 题:
类似于判定三角形全等的SSS方法,
我们还能不能:通过三边来判断两个三
角形相似呢?
三边对应成 比例
A
A’
B C
B’
C’
A' B' B' C' A' C' AB BC AC
相似三角形判定方法
BDF ∽ BAC
EF // AB
CEF ∽ CAB
ADE ∽ DBF ∽ EFC ∽ ABC ∽ FED
九年级数学(上册)第二十七章
A′
A D B C B′ E C′
A′
A
D E
B
C
B′
C′
在△ A´B´C´,的边A´B´上截取A´D=AB 过点D作DE∥ B´C´,交A´C´于点E.
定义 全等 三角形 判定方法
三角、三边对 边S 边S 角A 角A 斜 H 边S 角A 边S 角A 边 L 应相等的两个 边S 边S 角A 边S 与 三角形全等 直 相似 三角对应相等, 三 角 三角形 边对应成比例的两 √ 边 个三角形相似

几何中的相似三角形相似三角形的判定条件

几何中的相似三角形相似三角形的判定条件

几何中的相似三角形相似三角形的判定条件相似三角形是几何学中的重要概念,判断两个三角形是否相似可以通过一系列的条件来确定。

本文将介绍几何中的相似三角形以及相似三角形的判定条件。

一、相似三角形的定义相似三角形是指具有相同形状但不同大小的三角形。

它们的所有对应角度相等,对应边的长度成比例。

二、相似三角形的判定条件在几何学中,有三种主要的判定条件用于确定两个三角形是否相似,它们分别是AA相似定理、SAS相似定理和SSS相似定理。

1. AA相似定理(角-角相似定理)当两个三角形中有两个对应角度相等时,它们是相似三角形。

具体而言,如果两个三角形的一个角度相等,而另一个角度也相等,那么这两个三角形是相似的。

2. SAS相似定理(边-角-边相似定理)当两个三角形的一个角度相等,并且两边成比例,那么它们是相似的。

具体而言,如果两个三角形的一个角度相等,并且与这个角度对应的两边成比例,那么这两个三角形是相似的。

3. SSS相似定理(边-边-边相似定理)当两个三角形的三边成比例时,它们是相似的。

具体而言,如果两个三角形的三边长度成比例,那么这两个三角形是相似的。

三、相似三角形的性质相似三角形具有一些重要的性质,可以应用于解决几何问题。

1. 对应角相等性质相似三角形的对应角相等,即它们的三个角度一一对应相等。

2. 对应边成比例性质相似三角形的对应边长度成比例,即它们的三个边按比例相等。

3. 高度性质相似三角形的对应边上的高度成比例,即它们的高度按比例相等。

4. 重心性质相似三角形的重心重合,即它们的重心位置一致。

四、应用举例下面通过一个实例来演示相似三角形的判定过程。

例题:已知∠ABC = 60°,∠ACB = 40°,AB = 8 cm,BC = 6 cm,是否可以判定△ABC与△DEF相似?解答:根据角度相等的条件,我们可以得知∠ABC = ∠DEF = 60°以及∠ACB = ∠DFE = 40°。

8.5(3)相似三角形判定(SSS)

8.5(3)相似三角形判定(SSS)

不相似,因为对应边的比不相等.
Hale Waihona Puke AB BC AC 如图已知 , AD DE AE 求证:∠1=∠2
证明: ∵
AB BC AC AD DE AE ∴ △ABC∽△ADE
A
1 3 2
E
∴ ∠BAC=∠DAE
又∵ ∠3是公共角
B
D
C
∴ ∠BAC- ∠3 =∠DAE-∠3 ∴ ∠1 =∠2
如图在边长为的正方形网格上有 A1B1C1和 1 A2 B2C2,它们相似吗?如果相 似,求出相 似比;如果不相似,请 说明理由。
任画一个三角形,再画一个三角形,使
它的各边长都是原来三角形各边长的k倍(任确 定一个倍数),度量两个三角形的对应角,它 们相等吗?这样的两个三角形相似吗?
例如:画一个三角形使边长为:2cm、2.4cm、3cm , 再画一个三角形,使它的各边长都是这个三角形各边长的 2或3倍。
请观察两个三角形的三组对应边有什么特点?
A
4 cm
B
三边对应成 比例 4.8 cm
A'
2 cm
2.4 cm
6 cm
C
B' 3 cm C'
A' B' B' C' A' C' 1 AB BC AC 2
是否有 △A'B'C' ∽△ABC?
A' A B'
B
A' C' B'
∠A'=∠A
F C'
C ∠B'=∠B
∠A'=∠A ∠B' =∠B △A'B'C' ∽△ABC

相似三角形的判定与性质

相似三角形的判定与性质

相似三角形的判定与性质相似三角形是几何学中的重要概念,它们在很多问题的解决中起着关键作用。

本文将介绍相似三角形的判定方法以及相似三角形的一些性质。

一、相似三角形的判定方法1. AA相似定理AA相似定理是相似三角形的判定方法之一。

当两个三角形的对应角度相等时,这两个三角形是相似的。

具体而言,如果三角形ABC和三角形DEF满足∠A = ∠D,且∠B = ∠E,那么这两个三角形是相似的。

2. SSS相似定理SSS相似定理是相似三角形的判定方法之二。

当两个三角形的对应边长成比例时,这两个三角形是相似的。

具体而言,如果三角形ABC 和三角形DEF满足AB/DE = BC/EF = AC/DF,那么这两个三角形是相似的。

3. SAS相似定理SAS相似定理是相似三角形的判定方法之三。

当两个三角形的一个对应边成比例,且两个对应边夹角相等时,这两个三角形是相似的。

具体而言,如果三角形ABC和三角形DEF满足AB/DE = AC/DF和∠A = ∠D,那么这两个三角形是相似的。

二、相似三角形的性质1. 对应角相等性质相似三角形的对应角是相等的。

如果三角形ABC与三角形DEF是相似的,那么∠A = ∠D,∠B = ∠E,∠C = ∠F。

2. 对应边成比例性质相似三角形的对应边成比例。

如果三角形ABC与三角形DEF是相似的,那么AB/DE = BC/EF = AC/DF。

3. 高度与边成比例性质相似三角形的对应边上的高度成比例。

如果三角形ABC与三角形DEF是相似的,那么AD/DF = BE/EF = CF/DE。

4. 面积与边长平方的比例性质相似三角形的面积与对应边长的平方成比例。

如果三角形ABC与三角形DEF是相似的,则S(ABC)/S(DEF) = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2,其中S(ABC)表示三角形ABC的面积,S(DEF)表示三角形DEF的面积。

5. 定理勾股定理性质边长成比例的三角形中,对应边长的平方和成比例。

23.3相似三角形(4)判定SSSGOOD

23.3相似三角形(4)判定SSSGOOD

知识概括
相似三角形的判定定理3 三边成比例的两个三角形相似。
试试看,你能证明这个 定理吗?
如图,在∆ABC和∆
求证:∆ABC~∆
中,
【证明】 在边AB上截取AD=
过点D作DE∥BC 交AC于E点。则 ∆ABC∽∆ADE
A
D
E C
B
而∆ABC~∆ADE
∴∆ABC~∆
判定方法3 :如果一个三角形的三条边与另一个三角
A
你的理由.
解:在ΔABC 和ΔADE 中,
AB BC AC AD DE AE
B D
E
C
∴ ΔABC∽ΔADE .
∴∠BAC =∠DAE , ∠B =∠D , ∠C = ∠E .
例2中还有相等的角吗?
∠BAD =∠CAE
例 3: 如图,某地四个乡镇A、B、C、D之间建有公路,已知AB=14
1 2
E C
1.如图:在△ABC中,D,E分别为AB,AC上的点,若
AD=4,BD=3.5,AE=5,EC=1,下列结论错误的是( C )
A
A.1.5DE=BC C.∠ADE=∠B
B.△ABC∽△AED D.∠AED=∠B B

E C
DD
A A 2.在△ABC中,AB=9,AC=12,BC=18,
DE=6,EF=12,DF=8 △ABC∽ △EDF 4 C 6 8 12 3 A D 6 E
(3)AB=3,BC=4,AC=6;方法总结:把每个三角形的三 边按大小顺序依次排列,然后 DE=6,EF=9,DF=12 比较它们对应的比值是否相等 不 相 似
例题解析
例1
在∆ABC和 AC=10cm, 试证明∆ABC与 中,AB=6cm,BC=8, 相似。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B E D
C 备课日期 2012年10月8日 教出日期 主备课人:段中明 审核人
课题: 相似三角形判定(一)
目标: 1.培养学生的观察﹑发现﹑归纳能力,感受两个三角形相似的判定方法1
2.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。

教学重、难点::两个三角形相似的判定引例﹑判定方法1
学 习 内 容 与 要 求 学 习
指 导
一.新课引入:1。

复习相似多边形的定义及相似多边形相似比的定义
2.相似三角形的定义及相似三角形相似比的定义
3.回顾全等三角形的概念及判定方法(SSS )
4.相似三角形的概念及判定相似三角形的思路。

二.合作探究:
探究方法:探究1:在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?
分析:学生通过度量,不难发现这两个三角形的对应角都相等,根据相似三角形的定义,这两个三角形相似。

(学生小组交流)
在学生小组交流的基础上引导学生思考证明探究所得结论的途径。

分析:作A 1D=AB ,过D 作DE ∥B 1C 1,交A 1C 1于点E ⇒
∆A 1DE ∽∆A 1B 1C 1。

用几何画板演示∆ABC 平移至∆A 1DE 的过程
⇒ A 1D=AB ,A 1E=AC ,DE=BC ⇒∆A 1DE ≌∆ABC
⇒ ∆ABC ∽∆A 1B 1C 1

归纳:如果两个三角形的
三组对应边的比相等,那
么这两个三角形相似。


若11AB
A B =11BC
B C =11
CA
k C A =,则⇒ ∆ABC ∽∆A 1B 1C 1
三.课堂练习:
1:根据下列条件,判断△ABC 与△A ’B ’C ’是否相似,并说明理由.
(1)∠A=1200,AB=7cm ,AC=14cm ,∠A ′=1200,A ′B ′=3cm ,A ′C ′=6cm.
解:∵=''B A AB , =''C A AC . ∴=''B A AB . 且∠ =∠ ∴ ∽ ( ) (2)AB=4 cm ,BC=6cm ,AC=8cm, A ′B ′=12cm,B ′C ′=18cm ,A ′C ′=24cm. 解:∵=''B A AB , =''C A AC ,=''C B BC 。

∴=''B A AB = . ∴ ∽ ( ) 2.如图,在大小为4×4的正方形网格中,是相似三角形的是( ) A 、①和② B 、②和③ C 、①和③ D 、②和④ 3.(2011•深圳)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( ) A 、 B 、 C 、 D 、 四课堂检测: 已知:BC DE AC AE AB AD ==,求证:∠BAD =∠CAE . 五、 总结反思 这节课你有什么收获?
A A
B
C A 1
D
E B 1 C 1。

相关文档
最新文档