聚合物锂离子电池原理,特点,应用

合集下载

聚合物电池充电宝

聚合物电池充电宝

聚合物电池充电宝一、引言充电宝是一种外部便携式充电设备,它以电池为核心,可以为各种移动设备(如手机、平板电脑等)提供电力以延长使用时间。

随着科技的进步,聚合物电池作为充电宝的核心电池逐渐受到关注。

本文将介绍聚合物电池充电宝的原理、特点和应用。

二、聚合物电池充电宝的原理聚合物电池是一种新型的锂离子电池,与传统的锂离子电池相比,聚合物电池具有更高的能量密度、更好的安全性和更长的使用寿命。

聚合物电池的核心是由正极、负极和电解液组成的电池系统。

正极和负极主要由锂离子互相在充放电过程中进行嵌入和脱嵌反应来完成能量的转换。

正极通常采用锂盐、聚四氟乙烯和导电剂混合制成的复合材料,而负极一般采用石墨材料。

电解液是聚合物电池的重要组成部分,扮演着离子传输的关键角色。

电解液一般由锂盐、有机溶剂和添加剂组成,其主要功能是提供锂离子的传导路径,同时起到保护电池和调节电池性能的作用。

充电宝的原理是通过电源将电流输入到聚合物电池中,使其进行充电。

当外部设备需要电力时,电池会释放储存的电能,通过USB接口输出电流给外部设备。

当电池电量不足时,用户可以通过将充电宝连接到电源重新为其充电。

三、聚合物电池充电宝的特点1.高能量密度:聚合物电池充电宝相较于传统充电宝具有更高的能量密度,能够提供更长时间的使用。

2.安全性高:聚合物电池充电宝采用聚合物作为电解质,较传统电池具有更好的安全性能,能够有效减少电池过热、起火等安全风险。

3.充放电效率高:聚合物电池充电宝在充电和放电过程中的能量转换效率较高,能够更有效地利用电能。

4.外观轻薄:聚合物电池充电宝通常采用聚合物材质制造,具有轻薄的外观,便于携带和使用。

5.充电速度快:聚合物电池充电宝充电速度较快,可以迅速为移动设备提供电力。

四、聚合物电池充电宝的应用1.移动通信:聚合物电池充电宝广泛应用于手机、平板电脑等移动通信设备,可以为这些设备提供便携式的电力支持,延长使用时间。

2.旅行出行:聚合物电池充电宝具有便携性强的特点,是旅行出行中必备的电力补充装备,可以随时为各种电子设备充电。

磷酸铁锂电池和锂聚合物电池-概述说明以及解释

磷酸铁锂电池和锂聚合物电池-概述说明以及解释

磷酸铁锂电池和锂聚合物电池-概述说明以及解释1.引言1.1 概述磷酸铁锂电池和锂聚合物电池是当前应用广泛的两种新型电池技术。

它们在电子设备和电动汽车等领域具有重要的应用价值,并在可持续能源发展过程中扮演着至关重要的角色。

磷酸铁锂电池是一种以磷酸铁锂作为正极材料的锂离子电池。

它采用了锂离子在正负极之间的可逆嵌入/脱嵌来实现电荷和放电过程。

磷酸铁锂电池具有高能量密度、较长的循环寿命、稳定性好等优点,被广泛应用于便携式电子设备、电动工具和电动车辆等领域。

锂聚合物电池是一种以锂金属氧化物或锂离子导体为正极材料的锂离子电池。

它采用了同样的电荷和放电机制,但使用了具有高离子导电性和优异化学稳定性的聚合物电解质。

锂聚合物电池具有更高的能量密度、较轻的重量和更好的安全性能,被广泛应用于智能手机、平板电脑和便携式电子设备等领域。

本文将对磷酸铁锂电池和锂聚合物电池的原理、特点和应用进行详细介绍,并对它们在能量密度、安全性和环境友好性等方面进行比较和分析。

通过对这两种电池技术的综合评估,有助于我们更好地了解它们的优势和局限性,并为未来电池技术的发展方向提供参考。

此外,本文还将探讨这两种电池技术的应用前景,展望它们在可持续能源领域的潜力和发展空间。

1.2 文章结构文章结构部分的内容如下:本文将对磷酸铁锂电池和锂聚合物电池进行全面的比较与分析。

下面将详细介绍每个部分的内容。

第二部分将重点介绍磷酸铁锂电池。

首先,我们将阐述磷酸铁锂电池的工作原理,包括其在充放电过程中的反应机制。

接着,我们将探讨磷酸铁锂电池的特点,包括其高比能量、长循环寿命和良好的热稳定性等方面。

最后,我们将详细介绍磷酸铁锂电池的应用领域,包括电动汽车、储能系统和便携式电子设备等。

第三部分将着重介绍锂聚合物电池。

同样地,我们将首先解释锂聚合物电池的工作原理,包括其在充放电过程中的化学反应。

然后,我们将探讨锂聚合物电池的特点,如高能量密度、轻量化和灵活性等。

最后,我们将详细说明锂聚合物电池的应用领域,包括移动通信设备、便携式电子产品和无人机等。

锂聚合物电池

锂聚合物电池
国内的聚合物电池多数仅仅是软包电池,采用铝塑膜做外壳,但电解液并没有改变。这种电池同样可以薄型 化,其低温放电特性比聚合物电池更好,而材料能量密度则与液态锂电池、普通聚合物电池基本一致,但因为使 用了铝塑膜,因此比普通液态锂电更轻。安全方面,当液体刚沸腾时软包电池的铝塑膜会自然鼓包或破裂,同样 不会爆炸。
两种电池的比 较
锂离子电池俗称“锂电”,是综合性能最好的电池体系。锂离子电池负极是碳素材料,如石墨。正极是含锂 的过渡金属氧化物,如LiMn2O4。
(1)锂离子电池的优点: ①工作电压高,锂离子电池的工作电压在3.7V,是镍镉和镍氢电池工作电压的三倍。 ②比能量高。锂离子电池比能量已达140Wh/kg,是镍镉电池的3倍,镍氢电池的1.5倍。 ③循环寿命长。锂离子电池循环寿命已达1000次以上,在低放电深度下可达几万次,超过了其他几种二次电 池。 ④自放电小。锂离子电池月自放电率仅为6%~8%,远低于镍镉电池(25%~30%)及镍氢电池(30%~40%)。 ⑤无记忆效应。可以根据要求随时充电,而不会降低电池性能。 ⑥对环境无污染。锂离子电池中不存在有害物质,是名副其实的“绿色电池”。
感谢观看
技术人员为了缓解锂离子电池的危险,加入了能抑制锂元素活跃的成分(比如钴、锰、铁等等),但这些并 不能从本质上改变锂离子电池的危险性。
普通锂离子电池在过充、短路等情况时候发生时,电池内部可能出现升温、正极材料分解、负极和电解液材 料被氧化等现象,进而导致气体膨胀和电池内压加大,当压力达到一定程度后就可能出现爆炸。而聚合物锂离子 电池因为使用了胶态电解质,不会因为液体沸腾而产生大量气体,从而杜绝了剧烈爆炸的可能。
特点
锂聚合物电池是采用锉合金做正极,采用高分子导电材料、聚乙炔、聚苯胺或聚对苯酚等做负极,有机溶剂 作为电解质。锂聚苯胺电池的比能量可达到350W.h/kg,但比功率只有50-60W/kg,使用温度-40-70度,寿命约 330次左右。

聚合物锂电池原理特性及安全使用注意事项

聚合物锂电池原理特性及安全使用注意事项
B、充电电压:充电电压不得超过产品规格书中规定的充电电压( 4.2V/电芯)。充电电压绝对不能超过产品规格书中规定最高的极限 充电电压。充电器的设计应满足这个条件。充电电压高于充电极限电 压值时,将可能引起电芯的充放电性能、机械性能和安全性能的问题 ,可能会导致发热或泄漏并引起安全问题。
C、充电温度:电池必须在产品规格书指定的环境温度范围内进行充 电。
F、短路: 任何时候禁止有短路!
27
锂电池安全使用注意事项
6、其它安全使用注意事项:
A、防止电池包装内产生短路: 引线与电芯之间要有足够的绝缘层以保证绝对安全。外壳内不得有任何 短路发生,以防止冒烟或着火。
B、严禁拆卸电芯: a、在任何情况下不得拆卸电芯,拆卸电芯可能会导致内部短路,进而 引起鼓气、着火及其它问题。 b、电解液有弱酸性,聚合物锂电池理论上不存在流动的电解液,但万 一有电解液泄漏而接触到皮肤、眼睛或身体其它部位,应及时用清水冲 洗电解液。
锂电池装配注意事项
1、电池装配前准备事项:
A:所有作业人员要戴好棉手套及静电环;保持台面整洁无任何尖 锐物; B:作业台面最好要用绒布铺平整,无任何其它与作业无关的物质 ; C:在转用时电池摆放整齐有序,不能有堆积与碰撞电池及划伤表 面铝塑膜; D:所有焊接电池使用的恒温烙铁温度都必须控制在350±10℃, 焊接时间小于5S;
9
锂电池性能特性
d、安全性能好:无公害,无记忆效应.作为Li-ion前身的锂电池, 因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含 镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的NiCd电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但 Li-ion根本不存在这方面的问题。
B、电池属于安规部品。

锂离子电池的工作原理与应用

锂离子电池的工作原理与应用

锂离子电池的工作原理与应用概述锂离子电池是一种重要的可充电电池,具有高能量密度、长循环寿命、较低的自放电率等优势,广泛应用于移动电子设备、电动汽车等领域。

本文将介绍锂离子电池的工作原理以及在各个领域中的应用。

一、锂离子电池的工作原理锂离子电池是一种通过锂离子在正负极材料之间迁移来实现储存和释放能量的电池。

它主要由正极材料、负极材料、电解质和隔膜组成。

1. 正负极材料正极材料通常采用锂盐和过渡金属氧化物或磷酸盐,如锂钴酸锂(LiCoO2)、锂铁磷酸盐(LiFePO4)等。

它们具有良好的可逆性,能够提供稳定的电化学反应。

负极材料通常采用石墨,其能够插入和脱出锂离子,并且具有较高的导电性和循环稳定性。

2. 电解质电解质是连接正负极的离子传导介质,常见的有有机溶剂型和聚合物型电解质。

有机溶剂型电解质通常由有机溶剂和锂盐组成,具有高的离子传导性能,但易燃、挥发性高。

聚合物型电解质使用聚合物作为载体,并添加锂盐混合物,具有低挥发性、高机械强度,但离子导电性较差。

3. 隔膜隔膜用于隔离正负极材料,防止短路,并允许锂离子传输。

常见的材料有聚乙烯膜和聚丙烯膜。

二、锂离子电池的应用领域锂离子电池由于其特点在各个领域有广泛的应用。

1. 移动电子设备锂离子电池广泛应用于移动电子设备,如智能手机、平板电脑、便携式音频设备等。

其高能量密度和轻量化特性使得设备更加便携,并能够提供较长的使用时间。

2. 电动工具锂离子电池也被广泛应用于电动工具领域,如电动螺丝刀、电动钻等。

相比传统的镍镉电池,锂离子电池具有更高的能量密度和较低的自放电率,从而为电动工具提供更长的持续工作时间。

3. 电动汽车随着环保意识的提高,锂离子电池在电动汽车领域得到了广泛应用。

其高能量密度和较长的循环寿命使得电动汽车具备更长的续航里程和更长乘坐时间,满足了人们对于绿色出行的需求。

4. 太阳能储能系统锂离子电池可以作为太阳能储能系统的重要组成部分,将太阳能转化为电能进行储存。

聚合物锂离子高倍率电池知识介绍

聚合物锂离子高倍率电池知识介绍

聚合物锂离子高倍率电池知识介绍讲解:冉刚一、聚合物锂离子电池的构成)\磷酸铁锂(LiFePO4)\镍钴锰酸锂(Li(NiCoMn)O2)、1.正极:钴酸锂(LiCoO2粘接剂(PVDF)、导电剂(SP)、溶剂(NMP)、集流体-基材(铝箔-AI)。

2.负极:石墨(C)、粘接剂(SBR)、增稠剂(CMC)、导电剂(SP)、溶剂(水)、集流体-基材(铜箔-Cu)。

3.电解液4.隔离膜5.极耳6.铝塑膜(外包装)二、工作原理三、相关术语1.电极(electrode)电池的核心部分,它是由活性物质和导电骨架组成。

活性物质是指正、负极中参加成流反应的物质,是化学电源产生电能的源泉,是决定化学电源基本特性的重要部分。

2.能量(energy)及比能量电池的能量是指电池在一定的放电条件下对外做功所能输出的电能。

通常用瓦时(Wh)表示。

比能量是指单位重量或单位体积的电池所给出的能量,也叫重量比能量或体积比能量,也称能量密度,常用Wh/kg或Wh/L表示。

3.功率(power)及比功率电池的功率是指在一定的放电条件下,单位时间内电池输出的能量,单位为瓦(W)或千瓦(KW)。

单位重量或单位体积的电池输出功率称为比功率,其大小表征电池所能承受的工作电流的大小。

P(功率)=I(工作电流)*U(平均工作电压)4.容量(capacity)电池存贮能量能力的参数。

例如:5000mAh—代表电池在负载情况下,以5000mAh恒流放电,大约可放1小时。

以同一负载,用2500mA恒流放电,大约可放2小时。

5.倍率C-Rate在不同电流下能放出的能量,一般而言,电芯都需要测试在不同恒流情况下的放电性能。

电池倍率(C数--多少倍率)如何评估?当用电池1C容量的N倍电流放电,其放出容量在电池1C容量的85%以上时,我们认为电池的放电倍率为N倍率。

如:一个2000mAh电池,当用2000mA电池放电时,放电时间为60min,如果用60000mA放电,放电时间在1.7min,我们认为该电池放电倍率是30倍率(30C)。

导电聚合物在锂离子电池正极上的应用

导电聚合物在锂离子电池正极上的应用

导电聚合物在锂离子电池正极上的应用一、锂离子电池简介锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。

在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。

一般采用含有锂元素的材料作为电极的电池,是现代高性能电池的代表。

【1】锂离子电池可依电解质及正负极材料有无高聚物,分为液态锂离子电池(Liquified Lithium-Ion Battery,简称为LIB)和聚合物锂离子电池(Polymer Lithium-Ion Battery,简称为PLB)。

但目前主流的,商用的聚合物锂离子电池并没有使用导电高聚物作为电极材料,而是利用了聚合物凝胶电解质,另外高分子材料在锂离子电池上的应用还有将电池正负极板分开的隔膜。

【2】二、聚合物锂离子电池聚合物锂离子电池可分为三类:(1)固体聚合物电解质锂离子电池。

电解质为聚合物与盐的混合物,这种电池在常温下的离子电导率低,适于高温使用。

(2)凝胶聚合物电解质锂离子电池。

即在固体聚合物电解质中加入增塑剂等添加剂,从而提高离子电导率,使电池可在常温下使用。

(3)聚合物正极材料的锂离子电池。

采用导电聚合物作为正极材料,其比能量是现有锂离子电池的3倍,是最新一代的锂离子电池。

【3】1、锂离子电池三类主要正极材料的比较(从左至右):[4]与液态锂离子电池相比,聚合物锂离子电池不但安全性高,同时还具有可薄形化、任意面积化与任意形状化等优点。

不过,其低温放电性能可能还有提升的空间(比如apple devices在冬天有时无法启动),而且造价较贵。

2、锂离子电池在主流电子产品上的应用【5】iphone 4 Li-ion Polymer Batteryiphone 5s Li-ion Polymer Batteryipod touch 5 Li-ion Polymer Batteryipad air[注] Li-ion Polymer Batteryipad mini2[注] Li-ion Polymer Batteryipad mini Li-ion Polymer Batteryipad 4 Li-ion Polymer Battery[注]:ipad air和ipad mini2的拆解图显示电池为Li-ion Battery,但苹果官方材料为Li-ion Polymer Battery由此可见,聚合物锂离子电池在高端便携设备上应用很广。

聚合物锂电池 定义

聚合物锂电池 定义

聚合物锂电池定义聚合物锂电池是一种新型的锂离子电池,其正极材料采用聚合物材料,与传统的锂离子电池相比具有更高的能量密度、更长的循环寿命和更高的安全性能。

本文将从聚合物锂电池的原理、特点、应用和未来发展等方面进行介绍。

一、聚合物锂电池的原理聚合物锂电池的正极材料是由聚合物和锂盐组成的复合材料,负极材料则是由石墨或硅基材料构成。

在充放电过程中,锂离子在正负极之间进行迁移,通过电解质中的离子传导完成电荷的传递。

聚合物锂电池的优势在于其聚合物材料具有较高的离子传导性能,能够提供更高的电池容量和功率输出。

二、聚合物锂电池的特点1. 高能量密度:聚合物材料相比传统的电解质液体更轻薄,能够提供更高的能量密度,使得聚合物锂电池在体积和重量上更具优势。

2. 长循环寿命:聚合物材料具有较好的化学稳定性和耐腐蚀性,能够延长电池的使用寿命,提高循环次数。

3. 高安全性:聚合物材料相比液体电解质具有较高的热稳定性和阻燃性,能够提供更高的安全性能,减少电池的短路和爆炸风险。

4. 快速充电:聚合物锂电池具有较高的电荷传输速率,能够支持快速充电和放电,提高使用效率。

三、聚合物锂电池的应用1. 电动汽车:聚合物锂电池具有高能量密度和长循环寿命的特点,已成为电动汽车的主要动力源。

其轻薄的特点也使得电动汽车更加轻便和节能。

2. 便携设备:由于聚合物锂电池具有高能量密度和较小的体积,因此被广泛应用于便携式电子设备,如手机、平板电脑和笔记本电脑等。

同时,其快速充电的特点也使得用户能够更快速地获取电力。

3. 储能系统:聚合物锂电池在储能系统领域也有广泛的应用,用于储存太阳能和风能等可再生能源,提供持久的电力供应。

4. 特殊领域:聚合物锂电池还应用于航空航天、医疗设备、军事装备等特殊领域,其高能量密度和高安全性能使得其能够满足这些领域对电池的特殊需求。

四、聚合物锂电池的未来发展随着科技的不断进步,聚合物锂电池仍然有进一步的发展空间。

未来,聚合物材料的性能将进一步优化,能量密度和循环寿命将进一步提高,充电速度将更加快速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚合物锂离子电池。

在此之前,先纠正大家容易产生的一个大大的误区!!!
许多人叫得比较顺口,“锂聚合物电池”“固态锂离子电池”:donno其实真正规范的法定学名,应该叫成“聚合物锂离子电池”。

:o
更大更大的误区,是大家以为镍镉、镍氢、锂离子、聚合物锂离子电池是四种不同的种类的电池,其实非常非常的不然,锂离子电池和聚合物锂离子电池之间的关系在这里应该得到澄清一下。

所谓“聚合物锂离子电池”,其实是锂离子电池各种子系列产品中的一种,实际上它的主要部件:正极、负极和电解质以及工作原理都和使用液体电解质的锂离子电池一样,只是隔膜和包装材料不同,因此,归根到底它实质上,就是一种锂离子电池!:
聚合物锂离子(Lithium ion polymer)电池,具有更高能量密度、小型化、薄型化、轻量化、高安全性、长循环寿命与低成本的新型电池。

因此,在未来2~3年内,聚合物锂电池取代锂离子电池市场的份额将达50%。

第一原理篇
锂离子电池目前有液态锂离子电池(LIB)和聚合物锂离子电池(PLIB)两类。

其中,液态锂离子电池是指Li+嵌入化合物为正、负极的二次电池。

正极采用锂化合物LiCoO2,LiNiO2或LiMn2O4,负极采用锂—碳层间化合物LixC6,典型的电池体系为:
(-) C | LiPF6—EC+DEC | LiCoO2 (+)
正极反应:LiCoO2=Li1-xCoO2+xLi++xe- ----------- (2.1)
负极反应:6C+xLi++xe-=LixC6 ----------- (2.2)
电池总反应:LiCoO2+6C=Li1-xCoO2+LixC6 ----------- (2.3)
聚合物锂离子电池的原理与液态锂相同,主要区别是电解液与液态锂不同。

电池主要的构造包括有正极、负极与电解质三项要素。

所谓的聚合物锂离子电池是说在这三种主要构造中至少有一项或一项以上使用高分子材料做为主要的电池系统。

而在目前所开发的聚合物锂离子电池系统中,高分子材料主要是被应用于正极及电解质。

正极材料包括导电高分子聚合物或一般锂离子电池所采用的无机化合物,电解质则可以使用固态或胶态高分子电解质,或是有机电解液,一般锂离子技术使用液体或胶体电解液,因此需要坚固的二次包装来容纳可燃的活性成分,这就增加了重量,另外也限制了尺寸的灵活性。

而聚合物锂离子工艺中没有多余的电解液,因此它更稳定,也不易因电池的过量充电、碰撞或其他损害、以及过量使用而造成危险情况。

新一代的聚合物锂离子电池在形状上可做到薄形化(A TL电池最薄可达0.5毫米,相于一张卡片的厚度)、任意面积化和任意形状化,大大提高了电池造型设计的灵活性,从而可以配合产品需求,做成任何形状与容量的电池,为应用设备开发商在电源解决方案上提供了高度的设计灵活性和适应性,以最大化地优化其产品性能。

同时,聚合物锂离子电池的单位能量比目前的一般锂离子电池提高了50%,其容量、充放电特性、安全性、工作温度范围、循环寿命(超过500 次)与环保性能等方面都较锂离子电池有大幅度的提高。

第二特点与比较
一、聚合物锂离子电池的特点概述
根据锂离子电池所用电解质材料不同,锂离子电池可以分为液态锂离子电池(lithium ion battery, 简称为LIB)和聚合物锂离子电池(polymer lithium ion battery, 简称为LIP)两大类。

聚合物锂离子电池所用的正负极材料与液态锂离子都是相同的,电池的工作原理也基本一致。

它们的主要区别在于电解质的不同,锂离子电池使用的是液体电解质, 而聚合物锂离子电池则以固体聚合物电解质来代替, 这种聚合物可以
是“干态”的,也可以是“胶态”的,目前大部分采用聚合物胶体电解质。

聚合物锂离子电池可分为三类:(1)固体聚合物电解质锂离子电池。

电解质为聚合物与盐的混合物,这种
电池在常温下的离子电导率低,适于高温使用。

(2)凝胶聚合物电解质锂离子电池。

即在固体聚合物电解质中加入增塑剂等添加剂,从而提高离子电导率,使电池可在常温下使用。

(3)聚合物正极材料的锂离子电池。

采用导电聚合物作为正极材料,其比能量是现有锂离子电池的3倍,是最新一代的锂离子电池。

由于用固体电解质代替了液体电解质,与液态锂离子电池相比,聚合物锂离子电池具有可薄形化、任意面积化与任意形状化等优点,也不会产生漏液与燃烧爆炸等安全上的问题,因此可以用铝塑复合薄膜制造电池外壳,从而可以提高整个电池的比容量;聚合物锂离子电池还可以采用高分子作正极材料,其质量比能量将会比目前的液态锂离子电池提高50%以上。

此外,聚合物锂离子电池在工作电压、充放电循环寿命等方面都比锂离子电池有所提高。

基于以上优点,聚合物锂离子电池被誉为下一代锂离子电池。

二、聚合物电池与液态锂电的比较
由于各个厂商生产工艺的不同,目前市场上的聚合物锂电分为卷绕式(索尼、东芝为代表)、叠片式(TC L、ATL为代表)两种不同结构,但适应于手机需求的规格大都在4mm厚度以下。

与液态比较,由于聚合物外包装采用了更薄的铝膜,比钢壳、铝壳更薄,而且生产方式与液态锂电不同,聚合物越薄越好生产,理论上可以生产出0.5mm以下厚度的电池。

液态锂电正好相反,越厚越好生产,低于4mm厚度的电池很难生产,即使生产出来了,容量明显不如聚合物锂电,成本也没优势。

因而,电池越薄,聚合物生产成本越低、液态生产成本越高。

但较厚的规格上,液态锂电供应链成熟,工艺成熟,生产效率高,成品率高,有很强的制造成本优势。

从目前市场来看,5mm、6mm厚度系列的液态锂电池虽然比3mm、4mm厚度系列电池容量高很多,但售价要低很多。

聚合物从理论上来讲,在5mm、6mm厚度规格上的材料成本与液态接近,但目前5mm、6mm系列电池的工艺成本要比液态高出很多,因而,要在此规格上与液态真正形成竞争,还有不少距离。

一般的电池主要的构造包括有正极、负极与电解质三项要素。

所谓的聚合物锂离子电池是说在这三种主要构造中至少有一项或一项以上使用高分子材料做为主要的电池系统。

而在目前所开发的聚合物锂离子电池系统中,高分子材料主要是被应用于正极及电解质。

正极材料包括导电高分子聚合物或一般锂离子电池所采用的无机化合物,电解质则可以使用固态或胶态高分子电解质,或是有机电解液,负极则通常采用锂金属或锂碳层间化合物。

一般锂离子技术使用液体或胶体电解液,因此需要坚固的二次包装来容纳可燃的活性成分,这就增加了重量和成本,另外也限制了尺寸的灵活性。

而聚合物锂离子工艺中没有多余的电解液,因此它更稳定,也不易因电池的过量充电、针刺、碰撞或其他损害、以及过量使用而造成危险情况。

新一代的聚合物锂离子电池在形状上可做到薄形化(最薄0.8毫米)、任意面积化和任意形状化,大大提高了电池造型设计的灵活性,从而可以配合产品需求,做成任何形状与容量的电池,为应用设备开发商在电源解决方案上提供了高度的设计灵活性和适应性,以最大化地优化其产品性能。

同时,聚合物锂离子电池的单位能量比目前的一般锂离子电池提高了50%,其容量、充放电特性、安全性、工作温度范围、循环寿命(超过500 次)与环保性能等方面都较锂离子电池有大幅度的提高。

聚合物锂离子电池
聚合物锂离子电池和平常电池的差别在电解质上。

在20世纪70年代最初的设计中,采用了固态聚合物电解质。

这类电解质类似于塑料薄膜,不能导通电子但是可以让离子交换(能够充电的原子或者原子团)。

聚合物电解质取代了传统的浸透电解液的多孔隔膜。

干态聚合物电解质的设计允许组装简化,提高电池机械强度,安全,并且能够制造成为超薄的几何外形。

单个电池的厚度可以薄到1mm。

设备设计师能够根据他们的想象力来自由设计电池的形状和大小。

不幸的是,固态聚合物锂离子电池受制于其较差的导电性。

内阻太高而无法提供当前通信设备所需要的高脉冲电流,无法驱动笔记本电脑的硬盘。

加热电池到60摄氏度,电导率迅速提高,但是这样的要求不适合在便携设备上应用。

作为一种折中方式,引入了一些凝胶电解质。

目前市场上销售的大部分手机聚合物锂离子电池都是包含了凝胶电解质的混和型电池。

用锂离子聚合物来修正这一系统,使之成为目前唯一用于便携设备的聚合物电源。

加入凝胶电解质以后,锂离子聚合物电池和一般锂离子电池
又有什么不同呢?虽然这两种电池在性能表现上非常相似,但是锂离子聚合物作为唯一固态电解质替代了多孔隔膜。

凝胶电解质只是增加了离子电导。

聚合物锂离子电池并没有像一些分析家预测的那样流行。


的优越性和低制造成本还没有被认识到。

因为其容量并没有得到提高,实际上,容量比标准锂离子电池还有轻微减少。

聚合物锂离子电池的市场在超薄几何形状电源的应用上,例如信用卡电源等类似的应用。

优势:
超薄,电池能够组装进信用卡中
外形灵活:制造商不用局限于标准外形,能够经济地做成合适的大小。

质量轻:采用聚合物电解质的电池无需金属壳来作为保护外包装。

改进了安全:过充更稳定,电解液泄漏的几率更低。

局限:
和锂离子电池相比能量密度和循环次数都有下降。

制造昂贵。

没有标准外形,大多数电池为高容量消费市场而制造。

和锂离子电池相比,价格、能量比较高。

相关文档
最新文档