人教版初中数学第19章 矩形、菱形与正方形四边形最值问题常见考题

合集下载

矩形菱形正方形(共39题)(解析版)--2023年中考数学真题分项汇编

矩形菱形正方形(共39题)(解析版)--2023年中考数学真题分项汇编

矩形菱形正方形(39题)一、单选题1(2023·湖南·统考中考真题)如图,菱形ABCD中,连接AC,BD,若∠1=20°,则∠2的度数为()A.20°B.60°C.70°D.80°【答案】C【分析】根据菱形的性质可得BD⊥AC,AB∥CD,则∠1=∠ACD,∠ACD+∠2=90°,进而即可求解.【详解】解:∵四边形ABCD是菱形∴BD⊥AC,AB∥CD,∴∠1=∠ACD,∠ACD+∠2=90°,∵∠1=20°,∴∠2=90°-20°=70°,故选:C.【点睛】本题考查了菱形的性质,熟练掌握是菱形的性质解题的关键.2(2023·湖南常德·统考中考真题)如图1,在正方形ABCD中,对角线AC、BD相交于点O,E,F分别为AO,DO上的一点,且EF∥AD,连接AF,DE.若∠FAC=15°,则∠AED的度数为()A.80°B.90°C.105°D.115°【答案】C【分析】首先根据正方形的性质得到∠OAD=∠ODA=45°,AO=DO,然后结合EF∥AD得到OE= OF,然后证明出△AOF≌△DOE SAS,最后利用三角形内角和定理求解即可.【详解】∵四边形ABCD是正方形∴∠OAD=∠ODA=45°,AO=DO∵EF∥AD∴∠OEF=∠OAD=45°,∠OFE=∠ODA=45°∴∠OEF=∠OFE∴OE=OF又∵∠AOF=∠DOE=90°,AO=DO∴△AOF ≌△DOE SAS∴∠ODE =∠FAC =15°∴∠ADE =∠ODA -∠ODE =30°∴∠AED =180°-∠OAD -∠ADE =105°故选:C .【点睛】此题考查了正方形的性质,全等三角形的性质和判定,等腰直角三角形三角形的性质等知识,解题的关键是熟练掌握以上知识点.3(2023·湖南常德·统考中考真题)下列命题正确的是()A.正方形的对角线相等且互相平分B.对角互补的四边形是平行四边形C.矩形的对角线互相垂直D.一组邻边相等的四边形是菱形【答案】A 【分析】根据正方形、平行四边形、矩形、菱形的各自性质和构成条件进行判断即可.【详解】A 、正方形的对角线相等且互相垂直平分,描述正确;B 、对角互补的四边形不一定是平行四边形,只是内接于圆,描述错误;C 、矩形的对角线不一定垂直,但相等,描述错误;D 、一组邻边相等的平行四边形才构成菱形,描述错误.故选:A .【点睛】本题考查平行四边形、矩形、菱形、正方形的性质和判定,解题的关键是熟悉掌握各类特殊四边形的判定和性质.4(2023·浙江·统考中考真题)如图,在菱形ABCD 中,AB =1,∠DAB =60°,则AC 的长为()A.12B.1C.32D.3【答案】D 【分析】连接BD 与AC 交于O .先证明△ABD 是等边三角形,由AC ⊥BD ,得到∠OAB =12∠BAD =30°,∠AOB =90°,即可得到OB =12AB =12,利用勾股定理求出AO 的长度,即可求得AC 的长度.【详解】解:连接BD 与AC 交于O .∵四边形ABCD是菱形,∴AB∥CD,AB=AD,AC⊥BD,AO=OC=12AC,∵∠DAB=60°,且AB=AD,∴△ABD是等边三角形,∵AC⊥BD,∴∠OAB=12∠BAD=30°,∠AOB=90°,∴OB=12AB=12,∴AO=AB2-OB2=12-12 2=123,∴AC=2AO=3,故选:D.【点睛】此题主要考查了菱形的性质、勾股定理、等边三角形的判定和性质、30°角所对直角边等于斜边的一半,关键是熟练掌握菱形的性质.5(2023·上海·统考中考真题)在四边形ABCD中,AD∥BC,AB=CD.下列说法能使四边形ABCD 为矩形的是()A.AB∥CDB.AD=BCC.∠A=∠BD.∠A=∠D【答案】C【分析】结合平行四边形的判定和性质及矩形的判定逐一分析即可.【详解】A:∵AB∥CD,AD∥BC,AB=CD∴ABCD为平行四边形而非矩形故A不符合题意B:∵AD=BC,AD∥BC,AB=CD∴ABCD为平行四边形而非矩形故B不符合题意C:∵AD∥BC∴∠A+∠B=180°∵∠A=∠B∴∠A=∠B=90°∵AB=CD∴ABCD为矩形故C符合题意D:∵AD∥BC∴∠A+∠B=180°∵∠A=∠D∴∠D+∠B=180°∴ABCD不是平行四边形也不是矩形故D不符合题意故选:C.【点睛】本题主要考查平行线的性质,平行四边形的判定和性质及矩形的判定等知识,熟练掌握以上知识并灵活运用是解题的关键.6(2023·浙江宁波·统考中考真题)如图,以钝角三角形ABC 的最长边BC 为边向外作矩形BCDE ,连结AE ,AD ,设△AED ,△ABE ,△ACD 的面积分别为S ,S 1,S 2,若要求出S -S 1-S 2的值,只需知道()A.△ABE 的面积B.△ACD 的面积C.△ABC 的面积D.矩形BCDE 的面积【答案】C【分析】过点A 作FG ∥BC ,交EB 的延长线于点F ,DC 的延长线于点G ,易得:FG =BC ,AF ⊥BE ,AG⊥CD ,利用矩形的性质和三角形的面积公式,可得S 1+S 2=12S 矩形BCDE ,再根据S =S △ABC +S 矩形BCDE -S 1-S 2=S △ABC +12S 矩形BCDE ,得到S -S 1-S 2=S △ABC ,即可得出结论.【详解】解:过点A 作FG ∥BC ,交EB 的延长线于点F ,DC 的延长线于点G ,∵矩形BCDE ,∴BC ⊥BE ,BC ⊥CD ,BE =CD ,∴FG ⊥BE ,FG ⊥CD ,∴四边形BFGC 为矩形,∴FG =BC ,AF ⊥BE ,AG ⊥CD ,∴S 1=12BE ⋅AF ,S 2=12CD ⋅AG ,∴S 1+S 2=12BE AF +AG =12BE ⋅BC =12S 矩形BCDE ,又S =S △ABC +S 矩形BCDE -S 1-S 2=S △ABC +12S 矩形BCDE ,∴S -S 1-S 2=S △ABC +12S 矩形BCDE -12S 矩形BCDE =S △ABC ,∴只需要知道△ABC 的面积即可求出S -S 1-S 2的值;故选C .【点睛】本题考查矩形的性质,求三角形的面积.解题的关键是得到S 1+S 2=12S 矩形BCDE 7(2023·湖南·统考中考真题)如图所示,在矩形ABCD 中,AB >AD ,AC 与BD 相交于点O ,下列说法正确的是()A.点O 为矩形ABCD 的对称中心B.点O 为线段AB 的对称中心C.直线BD 为矩形ABCD 的对称轴D.直线AC 为线段BD 的对称轴【答案】A【分析】由矩形ABCD是中心对称图形,对称中心是对角线的交点,线段AB的对称中心是线段AB的中点,矩形ABCD是轴对称图形,对称轴是过一组对边中点的直线,从而可得答案.【详解】解:矩形ABCD是中心对称图形,对称中心是对角线的交点,故A符合题意;线段AB的对称中心是线段AB的中点,故B不符合题意;矩形ABCD是轴对称图形,对称轴是过一组对边中点的直线,故C,D不符合题意;故选A【点睛】本题考查的是轴对称图形与中心对称图形的含义,矩形的性质,熟记矩形既是中心对称图形也是轴对称图形是解本题的关键.8(2023·四川宜宾·统考中考真题)如图,边长为6的正方形ABCD中,M为对角线BD上的一点,连接AM并延长交CD于点P.若PM=PC,则AM的长为()A.33-1B.333-2C.63-1D.633-2【答案】C【分析】先根据正方形的性质、三角形全等的判定证出△ADM≅△CDM,根据全等三角形的性质可得∠DAM=∠DCM,再根据等腰三角形的性质可得∠CMP=∠DCM,从而可得∠DAM=30°,然后利用勾股定理、含30度角的直角三角形的性质求解即可得.【详解】解:∵四边形ABCD是边长为6的正方形,∴AD=CD=6,∠ADC=90°,∠ADM=∠CDM=45°,在△ADM和△CDM中,DM=DM∠ADM=∠CDM=45°AD=CD,∴△ADM≅△CDM SAS,∴∠DAM=∠DCM,∵PM=PC,∴∠CMP=∠DCM,∴∠APD=∠CMP+∠DCM=2∠DCM=2∠DAM,又∵∠APD+∠DAM=180°-∠ADC=90°,∴∠DAM=30°,设PD=x,则AP=2PD=2x,PM=PC=CD-PD=6-x,∴AD=AP2-PD2=3x=6,解得x=23,∴PM=6-x=6-23,AP=2x=43,∴AM=AP-PM=43-6-23=63-1,故选:C.【点睛】本题考查了正方形的性质、勾股定理、含30度角的直角三角形的性质、等腰三角形的性质等知识点,熟练掌握正方形的性质是解题关键.9(2023·四川乐山·统考中考真题)如图,菱形ABCD 的对角线AC 与BD 相交于点O ,E 为边BC 的中点,连结OE .若AC =6,BD =8,则OE =()A.2B.52C.3D.4【答案】B【分析】先由菱形的性质得AC ⊥BD ,OC =12AC =12×6=3,OB =12BD =12×8=4,再由勾股定理求出BC =5,然后由直角三角形斜边的中线等于斜边的一半求解.【详解】解:∵菱形ABCD ,∴AC ⊥BD ,OC =12AC =12×6=3,OB =12BD =128=4,∴由勾股定理,得BC =OB 2+OC 2=5,∵E 为边BC 的中点,∴OE =12BC =12×5=52故选:B .【点睛】本考查菱形的性质,勾股定理,直角三角形的性质,熟练掌握菱形的性质,直角三角形的性质是解题的关键.10(2023·甘肃武威·统考中考真题)如图,将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH .若AB =2,BC =4,则四边形EFGH 的面积为()A.2B.4C.5D.6【答案】B【分析】由题意可得四边形EFGH 是菱形,FH =AB =2,GE =BC =4,由菱形的面积等于对角线乘积的一半即可得到答案.【详解】解:∵将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH ,∴EF ⊥GH ,EF 与GH 互相平分,∴四边形EFGH 是菱形,∵FH =AB =2,GE =BC =4,∴菱形EFGH的面积为12FH⋅GE=12×2×4=4.故选:B【点睛】此题考查了矩形的折叠、菱形的判定和性质等知识,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.11(2023·浙江绍兴·统考中考真题)如图,在矩形ABCD中,O为对角线BD的中点,∠ABD=60°.动点E在线段OB上,动点F在线段OD上,点E,F同时从点O出发,分别向终点B,D运动,且始终保持OE =OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2.在整个过程中,四边形E1E2F1F2形状的变化依次是()A.菱形→平行四边形→矩形→平行四边形→菱形B.菱形→正方形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→菱形→平行四边形D.平行四边形→菱形→正方形→平行四边形→菱形【答案】A【分析】根据题意,分别证明四边形E1E2F1F2是菱形,平行四边形,矩形,即可求解.【详解】∵四边形ABCD是矩形,∴AB∥CD,∠BAD=∠ABC=90°,∴∠BDC=∠ABD=60°,∠ADB=∠CBD=90°-60°=30°,∵OE=OF、OB=OD,∴DF=EB∵对称,∴DF=DF2,BF=BF1,BE=BE2,DE=DE1∴E1F2=E2F1∵对称,∴∠F2DC=∠CDF=60°,∠EDA=∠E1DA=30°∴∠E1DB=60°,同理∠F1BD=60°,∴DE1∥BF1∴E1F2∥E2F1∴四边形E1E2F1F2是平行四边形,如图所示,当E,F,O三点重合时,DO=BO,∴DE1=DF2=AE1=AE2即E1E2=E1F2∴四边形E1E2F1F2是菱形,如图所示,当E,F分别为OD,OB的中点时,设DB=4,则DF2=DF=1,DE1=DE=3,在Rt△ABD中,AB=2,AD=23,连接AE,AO,∵∠ABO=60°,BO=2=AB,∴△ABO是等边三角形,∵E为OB中点,∴AE⊥OB,BE=1,∴AE=22-12=3,根据对称性可得AE1=AE=3,∴AD2=12,DE21=9,AE21=3,∴AD2=AE21+DE21,∴△DE1A是直角三角形,且∠E1=90°,∴四边形E1E2F1F2是矩形,当F,E分别与D,B重合时,△BE1D,△BDF1都是等边三角形,则四边形E1E2F1F2是菱形∴在整个过程中,四边形E1E2F1F2形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A.【点睛】本题考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.12(2023·重庆·统考中考真题)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.3C.1D.2【答案】D【分析】连接AF ,根据正方形ABCD 得到AB =BC =BE ,∠ABC =90°,根据角平分线的性质和等腰三角形的性质,求得∠BFE =45°,再证明△ABF ≌△EBF ,求得∠AFC =90°,最后根据直角三角形斜边上的中点等于斜边的一半,即可求出OF 的长度.【详解】解:如图,连接AF ,∵四边形ABCD 是正方形,∴AB =BE =BC ,∠ABC =90°,AC =2AB =22,∴∠BEC =∠BCE ,∴∠EBC =180°-2∠BEC ,∴∠ABE =∠ABC -∠EBC =2∠BEC -90°,∵BF 平分∠ABE ,∴∠ABF =∠EBF =12∠ABE =∠BEC -45°,∴∠BFE =∠BEC -∠EBF =45°,在△BAF 与△BEF ,AB =EB∠ABF =∠EBF BF =BF,∴△BAF ≌△BEF SAS ,∴∠BFE =∠BFA =45°,∴∠AFC =∠BAF +∠BFE =90°,∵O 为对角线AC 的中点,∴OF =12AC =2,故选:D .【点睛】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得∠BFE =45°是解题的关键.二、解答题13(2023·湖南怀化·统考中考真题)如图,矩形ABCD 中,过对角线BD 的中点O 作BD 的垂线EF ,分别交AD ,BC 于点E ,F .(1)证明:△BOF ≌△DOE ;(2)连接BE 、DF ,证明:四边形EBFD 是菱形.【答案】(1)见解析;(2)见解析【分析】(1)根据矩形的性质得出AD ∥BC ,则∠1=∠2,∠3=∠4,根据O 是BD 的中点,可得BO =DO ,即可证明△BOF ≌△DOE AAS ;(2)根据△BOF ≌△DOE 可得ED =BF ,进而可得四边形EBFD 是平行四边形,根据对角线互相垂直的四边形是菱形,即可得证.【详解】(1)证明:如图所示,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠1=∠2,∠3=∠4,∵O 是BD 的中点,∴BO =DO ,在△BOF 与△DOE 中∠1=∠2∠3=∠4BO =DO,∴△BOF ≌△DOE AAS ;(2)∵△BOF ≌△DOE∴ED =BF ,又∵ED ∥BF∴四边形EBFD 是平行四边形,∵EF ⊥BD∴四边形EBFD 是菱形.【点睛】本题考查了矩形的性质,全等三角形的性质与判定,菱形的判定,熟练掌握特殊四边形的性质与判定是解题的关键.14(2023·湖北随州·统考中考真题)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若BC =3,DC =2,求四边形OCED 的面积.【答案】(1)见解析;(2)3【分析】(1)先根据矩形的性质求得OC =OD ,然后根据有一组邻边相等的平行四边形是菱形分析推理;(2)根据矩形的性质求得△OCD 的面积,然后结合菱形的性质求解.【详解】(1)解:∵ DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,又∵矩形ABCD 中,OC =OD ,∴平行四边形OCED 是菱形;(2)解:矩形ABCD 的面积为BC ⋅DC =3×2=6,∴△OCD 的面积为14×6=32,∴菱形OCED 的面积为2×32=3.【点睛】本题考查矩形的性质、菱形的判定,属于中考基础题,掌握矩形的性质和菱形的判定方法,正确推理论证是解题关键.15(2023·湖南永州·统考中考真题)如图,已知四边形ABCD 是平行四边形,其对角线相交于点O ,OA =3,BD =8,AB =5.(1)△AOB 是直角三角形吗?请说明理由;(2)求证:四边形ABCD 是菱形.【答案】(1)△AOB 是直角三角形,理由见解析.(2)见解析【分析】(1)根据平行四边形对角线互相平分可得BO =12BD =4,再根据勾股定理的逆定理,即可得出结论;(2)根据对角线互相垂直的平行四边形是菱形,即可求证.【详解】(1)解:△AOB 是直角三角形,理由如下:∵四边形ABCD 是平行四边形,∴BO =12BD =4,∵OA 2+OB 2=32+42=52=AB 2,∴△AOB 是直角三角形.(2)证明:由(1)可得:△AOB 是直角三角形,∴∠AOB =90°,即AC ⊥BD ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.【点睛】本题主要考查了平行四边形的性质,勾股定理的逆定理,菱形的判定,解题的关键是掌握平行四边形对角线互相平分,对角线互相垂直的平行四边形是菱形.16(2023·新疆·统考中考真题)如图,AD 和BC 相交于点O ,∠ABO =∠DCO =90°,OB =OC .点E 、F 分别是AO 、DO的中点.(1)求证:OE =OF ;(2)当∠A =30°时,求证:四边形BECF 是矩形.【答案】(1)见解析;(2)见解析【分析】(1)直接证明△AOB ≌△DOC ASA ,得出OA =OD ,根据E 、F 分别是AO 、DO 的中点,即可得证;(2)证明四边形BECF 是平行四边形,进而根据∠A =30°,推导出△BOE 是等边三角形,进而可得BC =EF ,即可证明四边形BECF 是矩形.【详解】(1)证明:在△AOB 与△DOC 中,∠ABO =∠DCO =90°OB =OC∠AOB =∠DOC∴△AOB ≌△DOC ASA ,∴OA =OD ,又∵E 、F 分别是AO 、DO 的中点,∴OE =OF ;(2)∵OB =OC ,OF =OE ,∴四边形BECF 是平行四边形,BC =2OB ,EF =2OE ,∵E 为AO 的中点,∠ABO =90°,∴EB =EO =EA ,∵∠A =30°,∴∠BOE =60°,∴△BOE 是等边三角形,∴OB =OE ,∴BC =EF ,∴四边形BECF 是矩形.【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质与判定,矩形判定,熟练掌握以上知识是解题的关键.17(2023·云南·统考中考真题)如图,平行四边形ABCD 中,AE 、CF 分别是∠BAD 、∠BCD 的平分线,且E 、F 分别在边BC 、AD 上,AE =AF .(1)求证:四边形AECF 是菱形;(2)若∠ABC =60°,△ABE 的面积等于43,求平行线AB 与DC 间的距离.【答案】(1)证明见解析;(2)43【分析】(1)先证AD ∥BC ,再证AE ∥FC ,从而四边形AECF 是平行四边形,又AE =AF ,于是四边形AECF 是菱形;(2)连接AC ,先求得∠BAE =∠DAE =∠ABC =60°,再证AC ⊥AB ,∠ACB =90°-∠ABC =30°=∠EAC ,于是有33=AB AC,得AB =33AC ,再证AE =BE =CE ,从而根据面积公式即可求得AC =43.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠BAD =∠BCD ,∴∠BEA =∠DAE ,∵AE 、CF 分别是∠BAD 、∠BCD 的平分线,∴∠BAE =∠DAE =12∠BAD ,∠BCF =12∠BCD ,∴∠DAE =∠BCF =∠BEA ,∴AE ∥FC ,∴四边形AECF 是平行四边形,∵AE =AF ,∴四边形AECF 是菱形;(2)解:连接AC ,∵AD ∥BC ,∠ABC =60°,∴∠BAD =180°-∠ABC =120°,∴∠BAE =∠DAE =∠ABC =60°,∵四边形AECF 是菱形,∴∠EAC =12∠DAE =30°,∴∠BAC =∠BAE +∠EAC =90°,∴AC ⊥AB ,∠ACB =90°-∠ABC =30°=∠EAC ,∴AE =CE ,tan30°=tan ∠ACB =AB AC 即33=AB AC,∴AB =33AC ,∵∠BAE =∠ABC ,∴AE =BE =CE ,∵△ABE 的面积等于43,∴S △ABC =12AC ⋅AB =12AC ⋅33AC =36AC 2=83,∴平行线AB 与DC 间的距离AC =43.【点睛】本题考查了平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离,熟练掌握平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离等知识是解题的关键.18(2023·四川遂宁·统考中考真题)如图,四边形ABCD 中,AD ∥BC ,点O 为对角线BD 的中点,过点O 的直线l 分别与AD 、BC 所在的直线相交于点E 、F .(点E 不与点D 重合)(1)求证:△DOE ≌△BOF ;(2)当直线l ⊥BD 时,连接BE 、DF ,试判断四边形EBFD 的形状,并说明理由.【答案】(1)见解析;(2)四边形EBFD 为菱形;理由见解析【分析】(1)根据AAS 证明△DOE ≌△BOF 即可;(2)连接EB 、FD ,根据△DOE ≌△BOF ,得出ED =BF ,根据ED ∥BF ,证明四边形EBFD 为平行四边形,根据EF ⊥BD ,证明四边形EBFD 为菱形即可.【详解】(1)证明:∵点O 为对角线BD 的中点,∴BO =DO ,∵AD ∥BC ,∴∠ODE =∠OBF ,∠OED =∠OFB ,在△DOE 和△BOF 中,∠ODE =∠OBF∠OED =∠OFB BO =DO,∴△DOE ≌△BOF AAS ;(2)解:四边形EBFD 为菱形,理由如下:连接EB 、FD ,如图所示:根据解析(1)可知,△DOE ≌△BOF ,∴ED =BF ,∵ED ∥BF ,∴四边形EBFD 为平行四边形,∵l ⊥BD ,即EF ⊥BD ,∴四边形EBFD 为菱形.【点睛】本题主要考查了三角形全等的判定和性质,菱形的判定,平行线的性质,解题的关键是熟练掌握三角形全等的判定方法和菱形的判定方法.19(2023·浙江嘉兴·统考中考真题)如图,在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,连接EF(1)求证:AE =AF ;(2)若∠B =60°,求∠AEF 的度数.【答案】(1)证明见解析;(2)60°【分析】(1)根据菱形的性质的三角形全等即可证明AE =AF .(2)根据菱形的性质和已知条件可推出∠BAD 度数,再根据第一问的三角形全等和直角三角形的性质可求出∠BAE 和∠DAF 度数,从而求出∠EAF 度数,证明了等边三角形AEF ,即可求出∠AEF 的度数.【详解】(1)证明:∵菱形ABCD ,∴AB =AD ,∠B =∠D ,又∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°.在△AEB 和△AFD 中,∠AEB =∠AFD∠B =∠D AB =AD,∴△ABE ≌△ADF (AAS ).∴AE =AF .(2)解:∵菱形ABCD ,∴∠B +∠BAD =180°,∵∠B =60°,∴∠BAD =120°.又∵∠AEB =90°,∠B =60°,∴∠BAE =30°.由(1)知△ABE ≌△ADF ,∴∠BAE =∠DAF =30°.∴∠EAF =120°-30°-30°=60°.∵AE =AF ,∴△AEF 等边三角形.∴∠AEF =60°.【点睛】本题考查了三角形全等、菱形的性质、等边三角形的性质,解题的关键在于熟练掌握全等的方法和菱形的性质.20(2023·湖北鄂州·统考中考真题)如图,点E是矩形ABCD的边BC上的一点,且AE=AD.(1)尺规作图(请用2B铅笔):作∠DAE的平分线AF,交BC的延长线于点F,连接DF.(保留作图痕迹,不写作法);(2)试判断四边形AEFD的形状,并说明理由.【答案】(1)见解析;(2)四边形AEFD是菱形,理由见解析【分析】(1)根据题意结合尺规作角平分线的方法作图即可;(2)根据矩形的性质和平行线的性质得出∠DAF=∠AFE,结合角平分线的定义可得∠EFA=∠EAF,则AE=EF,然后根据平行四边形和菱形的判定定理得出结论.【详解】(1)解:如图所示:(2)四边形AEFD是菱形;理由:∵矩形ABCD中,AD∥BC,∴∠DAF=∠AFE,∵AF平分∠DAE,∴∠DAF=∠EAF,∴∠EFA=∠EAF,∴AE=EF,∵AE=AD,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,又∵AE=AD,∴平行四边形AEFD是菱形.【点睛】本题主要考查了尺规作角平分线,矩形的性质,平行线的性质,等腰三角形的判定,平行四边形的判定以及菱形的判定等知识,熟练掌握相关判定定理和性质定理是解题的关键.21(2023·吉林长春·统考中考真题)将两个完全相同的含有30°角的直角三角板在同一平面内按如图所示位置摆放.点A,E,B,D依次在同一直线上,连结AF、CD.(1)求证:四边形AFDC是平行四边形;(2)己知BC=6cm,当四边形AFDC是菱形时.AD的长为cm.【答案】(1)见解析;(2)18【分析】(1)由题意可知△ACB≌△DFE易得AC=DF,∠CAB=∠FDE=30°即AC∥DF,依据一组对边平行且相等的四边形是平行四边形可证明;(2)如图,在Rt△ACB中,由30°角所对的直角边等于斜边的一半和直角三角形锐角互余易得AB=2BC= 12cm,∠ABC=60°;由菱形得对角线平分对角得∠CDA=∠FDA=30°,再由三角形外角和易证∠BCD=∠CDA即可得BC=BD=6cm,最后由AD=AB+BD求解即可.【详解】(1)证明:由题意可知△ACB≌△DFE,∴AC=DF,∠CAB=∠FDE=30°,∴AC∥DF,∴四边形AFDC地平行四边形;(2)如图,在Rt△ACB中,∠ACB=90°,∠CAB=30°,BC=6cm,∴AB=2BC=12cm,∠ABC=60°,四边形AFDC是菱形,∴AD平分∠CDF,∴∠CDA=∠FDA=30°,∵∠ABC=∠CDA+∠BCD,∴∠BCD=∠ABC-∠CDA=60°-30°=30°,∴∠BCD=∠CDA,∴BC=BD=6cm,∴AD=AB+BD=18cm,故答案为:18.【点睛】本题考查了全等三角形的性质,平行四边形的判定,菱形的性质,30°角所对的直角边等于斜边的一半和直角三角形锐角互余,三角形外角及等角对等边;解题的关键是熟练掌握相关知识综合求解.22(2023·湖南张家界·统考中考真题)如图,已知点A,D,C,B在同一条直线上,且AD=BC,AE= BF,CE=DF.(1)求证:AE∥BF;(2)若DF=FC时,求证:四边形DECF是菱形.【答案】(1)见解析;(2)见解析【分析】(1)根据题意得出AC=BD,再由全等三角形的判定和性质及平行线的判定证明即可;(2)方法一:利用全等三角形的判定和性质得出DE=CF,又EC=DF,再由菱形的判定证明即可;方法二:利用(1)中结论得出∠ECA=∠FDB,结合菱形的判定证明即可.【详解】(1)证明:∵AD=BC,∴AD+DC=BC+DC,即AC=BD在△AEC和△BFD中,AC=BDAE=BFCE=DF,∴△AEC≌△BFD SSS∴∠A=∠B,∴AE∥BF(2)方法一:在△ADE和△BCF中,AE=BF∠A=∠BAD=BC,∴△ADE≌△BCF SAS∴DE=CF,又EC=DF,∴四边形DECF是平行四边形∵DF=FC,∴▱DECF是菱形;方法二:∵△AEC≌△BFD,∴∠ECA=∠FDB∴EC∥DF,又EC=DF,∴四边形DECF是平行四边形∵DF=FC,∴▱DECF是菱形.【点睛】题目主要考查全等三角形的判定和性质,菱形的判定和性质,理解题意,熟练掌握运用这些知识点是解题关键.23(2023·湖南郴州·统考中考真题)如图,四边形ABCD是平行四边形.(1)尺规作图;作对角线AC的垂直平分线MN(保留作图痕迹);(2)若直线MN分别交AD,BC于E,F两点,求证:四边形AFCE是菱形【答案】(1)见解析;(2)见解析【分析】(1)根据垂直平分线的作图方法进行作图即可;(2)设EF与AC交于点O,证明△AOE≌△COF ASA,得到OE=OF,得到四边形AFCE为平行四边形,根据EF⊥AC,即可得证.【详解】(1)解:如图所示,MN 即为所求;(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠CAE =∠ACF ,如图:设EF 与AC 交于点O ,∵EF 是AC 的垂直平分线,∴AO =OC ,EF ⊥AC ,∵∠AOE =∠COF ,∴△AOE ≌△COF ASA ,∴OE =OF ,∴四边形AFCE 为平行四边形,∵EF ⊥AC ,∴四边形AFCE 为菱形.【点睛】本题考查基本作图-作垂线,平行四边形的判定和性质,全等三角形的判定和性质,菱形的判定.熟练掌握菱形的判定定理,是解题的关键.24(2023·湖北十堰·统考中考真题)如图,▱ABCD 的对角线AC ,BD 交于点O ,分别以点B ,C 为圆心,12AC ,12BD 长为半径画弧,两弧交于点P ,连接BP ,CP .(1)试判断四边形BPCO的形状,并说明理由;(2)请说明当▱ABCD的对角线满足什么条件时,四边形BPCO是正方形?【答案】(1)平行四边形,见解析;(2)AC=BD且AC⊥BD【分析】(1)根据平行四边形的性质,得到BP=12AC=OC,CP=12BD=OB,根据两组对边分别相等的四边形是平行四边形判定即可.(2)根据对角线相等、平分且垂直的四边形是正方形判定即可.【详解】(1)四边形BPCO是平行四边形.理由如下:∵▱ABCD的对角线AC,BD交于点O,∴AO=OC,BO=OD,∵以点B,C为圆心,12AC,12BD长为半径画弧,两弧交于点P,∴BP=12AC=OC,CP=12BD=OB∴四边形BPCO是平行四边形.(2)∵对角线相等、平分且垂直的四边形是正方形,∴AC=BD且AC⊥BD时,四边形BPCO是正方形.【点睛】本题考查了平行四边形的判定和性质,正方形的判定和性质,熟练掌握判定和性质是解题的关键.25(2023·四川内江·统考中考真题)如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:AF=BD;(2)连接BF,若AB=AC,求证:四边形ADBF是矩形.【答案】(1)见解析;(2)见解析;【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明三角形全等,再由全等三角形的性质容易得出结论;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形判定即可.【详解】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△EDC中,∠AFE=∠DCE∠AEF=∠DECAE=DE,∴△EAF≌△EDC(AAS);∴AF=CD,∵CD=BD,∴AF=BD;(2)证明:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.【点睛】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.26(2023·湖南岳阳·统考中考真题)如图,点M在▱ABCD的边AD上,BM=CM,请从以下三个选项中①∠1=∠2;②AM=DM;③∠3=∠4,选择一个合适的选项作为已知条件,使▱ABCD为矩形.(1)你添加的条件是(填序号);(2)添加条件后,请证明▱ABCD为矩形.【答案】(1)答案不唯一,①或②;(2)见解析【分析】(1)根据有一个角是直角的平行四边形是矩形进行选取;(2)通过证明△ABM≌△DCM可得∠A=∠D,然后结合平行线的性质求得∠A=90°,从而得出▱ABCD 为矩形.【详解】(1)解:①或②(2)添加条件①,▱ABCD为矩形,理由如下:在▱ABCD中AB=CD,AB∥CD,在△ABM和△DCM中AB=CD∠1=∠2 BM=CM ,∴△ABM≌△DCM ∴∠A=∠D,又∵AB∥CD,∴∠A+∠D=180°,∴∠A =∠D =90°,∴▱ABCD 为矩形;添加条件②,▱ABCD 为矩形,理由如下:在▱ABCD 中AB =CD ,AB ∥CD ,在△ABM 和△DCM 中AB =CDAM =DM BM =CM,∴△ABM ≌△DCM ∴∠A =∠D ,又∵AB ∥CD ,∴∠A +∠D =180°,∴∠A =∠D =90°,∴▱ABCD 为矩形【点睛】本题考查矩形的判定,全等三角形的判定和性质,掌握平行四边形的性质和矩形的判定方法(有一个角是直角的平行四边形是矩形)是解题关键.27(2023·四川乐山·统考中考真题)如图,在Rt △ABC 中,∠C =90°,点D 为AB 边上任意一点(不与点A 、B 重合),过点D 作DE ∥BC ,DF ∥AC ,分别交AC 、BC 于点E 、F ,连接EF.(1)求证:四边形ECFD 是矩形;(2)若CF =2,CE =4,求点C 到EF 的距离.【答案】(1)见解析;(2)455【分析】(1)利用平行线的性质证明∠CED =∠CFD =90°,再利用四边形内角和为360°,证明∠EDF =90°,即可由矩形判定定理得出结论;(2)先由勾股定理求出EF =CF 2+CE 2=25,再根据三角形面积公式求解即可.【详解】(1)证明:∵DE ∥BC ,DF ∥AC ,∴四边形ECFD 为平行四边形,∵∠C =90°,∴四边形ECFD 是矩形.(2)解:∵∠C =90°,CF =2,CE =4,∴EF =CF 2+CE 2=25设点C 到EF 的距离为h ,∵S △CEF =12CE ⋅CF =12EF ⋅h ∴2×4=25h∴h=455答:点C到EF的距离为45 5.【点睛】本题考查矩形的判定,平行线的性质,勾股定理.熟练掌握矩形的判定定理和利用面积法求线段长是解题的关键.28(2023·浙江台州·统考中考真题)如图,四边形ABCD中,AD∥BC,∠A=∠C,BD为对角线.(1)证明:四边形ABCD是平行四边形.(2)已知AD>AB,请用无刻度的直尺和圆规作菱形BEDF,顶点E,F分别在边BC,AD上(保留作图痕迹,不要求写作法).【答案】(1)见解析;(2)见解析【分析】(1)先证明∠ADB=∠CBD,再证明180°-∠ADB+∠A=180°-∠CBD+∠C,即∠ABD=∠CDB,从而可得结论;(2)作对角线BD的垂直平分线交AD于F,交BC于E,从而可得菱形BEDF.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵∠A=∠C,∴180°-∠ADB+∠A=180°-∠CBD+∠C,即∠ABD=∠CDB.∴AB∥CD.∴四边形ABCD是平行四边形.(2)如图,四边形BEDF就是所求作的菱形.【点睛】本题考查的是平行四边形的判定与性质,作线段的垂直平分线,菱形的判定,熟练的利用菱形的判定进行作图是解本题的关键.三、填空题29(2023·黑龙江齐齐哈尔·统考中考真题)如图,在四边形ABCD中,AD=BC,AC⊥BD于点O.请添加一个条件:,使四边形ABCD成为菱形.【答案】AD∥BC(荅案不唯一)【分析】根据题意,先证明四边形ABCD是平行四边形,根据AC⊥BD,可得四边形ABCD成为菱形.【详解】解:添加条件AD∥BC∵AD=BC,AD∥BC∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD成为菱形.添加条件AB=CD∵AD=BC,AB=CD∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD成为菱形.添加条件OB=OD∵AC⊥BD,∴∠AOD=∠COB=90°∵AD=BC,OB=OD,∴Rt△AOD≌Rt△COB HL∴AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD成为菱形.添加条件∠ADB=∠CBD在△AOD与△COB中,∠ADB=∠CBD ∠AOD=∠COB AD=BC∴△AOD≌△COB∴AD=BC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD成为菱形.故答案为:AD∥BC(AB=CD或OB=OD或∠ADB=∠CBD等).【点睛】本题考查了平行四边形的判定,菱形的判定,熟练掌握菱形的判定定理是解题的关键.30(2023·辽宁大连·统考中考真题)如图,在菱形ABCD中,AC、BD为菱形的对角线,∠DBC=60°, BD=10,点F为BC中点,则EF的长为.。

八年级下数学第19章矩形、菱形与正方形测试题及参考答案(2021年整理)

八年级下数学第19章矩形、菱形与正方形测试题及参考答案(2021年整理)

八年级下数学第19章矩形、菱形与正方形测试题及参考答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级下数学第19章矩形、菱形与正方形测试题及参考答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级下数学第19章矩形、菱形与正方形测试题及参考答案(word版可编辑修改)的全部内容。

第4题图OFE DCBA八年级下数学第19章 矩形、菱形与正方形测试题(时限:100分钟 满分:100分)一、选择题(本大题共12小题,每小题2分,共24分)1.□ABCD 中,∠A 比∠B 大40°,则∠C 的度数为( )A. 60° B 。

70° C. 100° D 。

110° 2.□ABCD 的周长为40cm ,△ABC 的周长为25cm,则对角线AC 长为( ) A 。

5cm B 。

6cm C 。

8cm D 。

10cm3。

在□ABCD 中,∠A =43°,过点A 作BC 和CD 的垂线,那么这两条垂线的夹角度为( ) A. 113° B. 115° C 。

137° D 。

90° 4。

如图,在□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1。

3,则四边形BCEF 的周长为( )A. 8。

3 B 。

9。

6 C. 12.6D. 13。

65.下列命题:①一组对边平行,另一组对边相等的四边形 是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD 中,AB =AD,BC =DC ,那么这个四边形ABCD 是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确命题的个数是( )A. 0个B. 1个C. 3个 D 。

初中数学 矩形、菱形与正方形测试题含答案

初中数学 矩形、菱形与正方形测试题含答案

矩形、菱形与正方形测试题一、选择题1.能判定四边形ABCD为平行四边形的题设是().(A)AB∥CD,AD=BC; (B)∠A=∠B,∠C=∠D;(C)AB=CD,AD=BC; (D)AB=AD,CB=CD2.在给定的条件中,能画出平行四边形的是().(A)以60cm为一条对角线,20cm、34cm为两条邻边;(B)以6cm、10cm为对角线,8cm为一边;(C)以20cm、36cm为对角线,22cm为一边;(D)以6cm为一条对角线,3cm、10cm为两条邻边3.正方形具有而菱形不一定具有的性质是()(A)对角线互相平分; (B)对角线相等;(C)对角线平分一组对角; (D)对角线互相垂直4.在下列说法中不正确的是()(A)两条对角线互相垂直的矩形是正方形;(B)两条对角线相等的菱形是正方形;(C)两条对角线垂直且相等的平行四边形是正方形;(D)两条对角线垂直且相等的四边形是正方形5.下列说法不正确的是()(A)对角线相等且互相平分的四边形是矩形;(B)对角线互相垂直平分的四边形是菱形;(C)一组对边平行且不等的四边形是梯形;(D)一边上的两角相等的梯形是等腰梯形6.不能判定四边形ABCD为平行四边形的题设是()(A)AB=CD,AD=BC (B)AB//CD(C)AB=CD,AD∥BC (D)AB∥CD,AD∥BC7.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的题设是()(A)AO=CO,BO=DO; (B)AO=CO=BO=DO;(C)AO=CO,BO=DO,AC⊥BD; (D)AO=BO=CO=DO,AC⊥BD8.下列说法不正确的是()(A)只有一组对边平行的四边形是梯形;(B)只有一组对边相等的梯形是等腰梯形;(C)等腰梯形的对角线相等且互相平分;(D)在直角梯形中有且只有两个角是直角9.如图1,在□ABCD中,MN分别是AB、CD的中点,BD分别交AN、CM于点P、Q,在结论:①DP=PQ=QB ②AP=CQ ③CQ=2MQ ④S △ADP=14S ABCD中,正确的个数为().(A)1 (B)2 (C)3 (D)4(1) (2) (3)10.如图2,在梯形ABCD中,AD∥CB,AD=2,BC=8,AC=6,BD=8,则梯形ABCD的面积为().(A)24 (B)20 (C)16 (D)12二、填空题11.在□ABCD中,AC与BD交于O,则其中共有_____对全等的三角形.12.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为_______,矩形的面积为________.13.一个菱形的两条对角线长分别为6cm,8cm,这个菱形的边长为_______,•面积S=______.14.如果一个四边形的四个角的比是3:5:5:7,则这个四边形是_____形.15.如图3,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.16.如图4,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_______.(4) (5) (6)17.在长为1.6m,宽为1.2m的矩形铅板上,剪切如图5所示的直角梯形零件(•尺寸单位为mm),则这块铅板最多能剪出______个这样的零件.18.如图6,ABCD中,过对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,则四边形CDFE周长为________.19.已知等腰梯形的一个锐角等于60•°,•它两底分别为15cm,•49cm,•则腰长为_______.20.已知等腰梯形ABCD中AD∥BC,BD平分∠ABC,BD•⊥DC,•且梯形ABCD•的周长为30cm,则AD=_____.三、计算题21.如图,已知等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,AD=3cm,BC=7cm,•DE•⊥BC 于E,试求DE的长.四、证明题22.如图,已知四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是菱形.23.已知如图,梯形ABCD中,AD∥BC,AM=MB,DN=NC.求证:MN∥BC,MN=12(BC+AD).答案:1.(C) 2.(C) 3.(B) 4.(D) 5.(D)6.(C) 7.(D) 8.(C) 9.(C) 10.(A)11.4 12.40cm 4003cm213.5cm 24cm2 14.直角梯形15.15 16.15° •17.12 18.8.6cm 19.34cm20.如图,作AE⊥BC于E,DF⊥BC于F,∴AD=EF,设BE=x.则AB=2x,DC=2x,FC=x,∴BD平分∠ABC,∴∠DBC=30°.∴DC=12BC,∴BC=4x.∴EF=2x=AD.又∵AB+BC+CD+AD=30,∴4x+6x=30,x=3,∴AD=6(cm).21.过D点作DF∥AC,交BC的延长线于点F,则四边形ACFD为平行四边形,•所以AC=DF,AD=CF.因为四边形ABCD为等腰梯形,所以AC=BD,所以BD=DF,又已知AC⊥BD,DF∥AC,•所以BD⊥DF,则△BDF为等腰直角三角形.又因为DF⊥BC,所以DE=12BF=12(BC+CF)=12(BC+AD)=12(7+3)=5(cm).22.证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF=12AC,HG=12AC,FG=12BD,EH=12BD.∴EF=HG=12AC,FG=EH=12BD.又∵AC=BD,∴EF=HG=FG=EH.∴四边形EFGH是菱形.23.证明:如图,连接AN并延长,交BC的延长线于点E.∵DN=NC,∠1=∠2,∠D=∠3,∴△ADN≌△ECN,∴AN=EN,AD=EC.又AM=MB,∴MN是△ABE的中位线.∴MN∥BC,MN=12BE(三角形中位线定理)∵BE=BC+CE=BC+AD,∴MN=12(BC+AD).。

2019年中考数学矩形菱形与正方形真题汇编(含解析)

2019年中考数学矩形菱形与正方形真题汇编(含解析)

A . 52 B. 48 C. 40 D. 20 【分析】 由勾股定理即可求得 AB 的长,继而求得菱形 ABCD 的周长. 【解答】 解:∵菱形 ABCD 中, BD=24 , AC=10 ,
2
∴OB=12 , OA=5 , 在 Rt△ABO 中, AB=
=13 ,
∴菱形 ABCD 的周长 =4AB=52 , 故选: A .


∴△ APH ≌△ FGH (ASA ),
∴AP=GF=1 , GH=PH= PG,
∴PD=AD ﹣ AP=1 , ∵CG=2 、 CD=1 , ∴DG=1 ,
则 GH= PG= ×
=,
4
故选: C.
A.1 B.
C.
D.
【分析】根据轴对称图形的性质,解决问题即可; 【解答】解:∵四边形 ABCD 是正方形, ∴直线 AC 是正方形 ABCD 的对称轴, ∵EG⊥ AB . EI⊥ AD , FH ⊥ AB , FJ⊥ AD ,垂足分别为 G, I,H , J. ∴根据对称性可知:四边形 EFHG 的面积与四边形 EFJI 的面积相等,
A.1 B.
C.
D.
【分析】延长 GH 交 AD 于点 P,先证 △APH ≌△ FGH 得 AP=GF=1 , GH=PH= PG,再利用勾股定理求得 PG= ,
从而得出答案. 【解答】解:如图,延长
GH 交 AD 于点 P,
∵四边形 ABCD 和四边形 CEFG 都是矩形, ∴∠ ADC= ∠ ADG= ∠ CGF=9°0 , AD=BC=2 、 GF=CE=1 , ∴AD ∥ GF, ∴∠ GFH= ∠PAH , 又∵ H 是 AF 的中点, ∴AH=FH , 在△APH 和 △FGH 中,

矩形、菱形和正方形 专题复习——特殊四边形中的最值问题 2021--2022学年八年级数学

矩形、菱形和正方形  专题复习——特殊四边形中的最值问题  2021--2022学年八年级数学

专题特殊四边形中的最值问题1、如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B,C重合),PE⊥AB与E,PF⊥AC于F,则EF的最小值为()A. 4B. 4.8C. 5.2D. 62、如图,在周长为12的菱形ABCD中,AE=1,AF=2. 若P为对角线BD上一动点,则 EP+FP的最小值为()A.1B. 2C. 3D. 43、如图,在菱形ABCD中,AB=6,∠BAD=60︒,点E为AB的中点,点P是对角线AC上的一个动点,则PE+PB的最小值为()A.3 B.6 C.33D.634、如图,正方形ABCD的周长为24,P为对角线AC上的一个动点,+的最小值为()E是CD的中点,则PE PDA.35B.32C.6D.55、如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为()A.3 B.4 C.5 D.66、如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以AP,PC为边作平行四边形PAQC,则对角线PQ的最小值为 .7、如图,折叠矩形纸片ABCD,使点B的对应点E落在CD边上,GH为折痕,已知AB=6,BC=10.当折痕GH最长时,线段BH的长为_________.【例题讲解】3.如图,菱形ABCD中,对角线AC=6,BD=8,M、N 分别是BC、CD上的动点,P是线段BD上的一个动点,则PM+PN的最小值是()A.95B.125C.165D.2455.如图,在平行四边形ABCD中,BC=AC,E、F分别是AB、CD的中点,连接CE、AF.(1)求证:四边形AECF是矩形;(2)当平行四边形ABCD的边或角满足什么关系时,四边形AECF是正方形?请说明理由.(3)在(2)的条件下,若AE=4,点M为EC中点,当点P在线段AC上运动时,求PE+PM的最小值.【巩固练习】1、如图,MN是正方形ABCD的一条对称轴,点P直线MN上的一个动点,当PC+PD最小时,∠PCD的度数为()A.60°B. 90°C. 45°D. 75°2、如图,点P是矩形ABCD对角线BD上的一个动点,AB=6 ,AD=8 ,则PA+PC的最小值为.3、如图,菱形ABCD中,2AB=,120∠=︒,N是AB的中点,M是对角线B+的最小值是()AC上的一个动点,则MN MBA.2B3C5D.44、如图,四边形ABCD是菱形,AC=8,DB=6,P,Q分别是AC,AD上的动点,连接DP,PQ,则DP+PQ的最小值为.5、如图所示,菱形ABCD中,∠B=60°,AB=2,点E,F分别是AB,AD上的动点,且满足BE=AF,连结EF,EC,CF.(1)求证△EFC是等边三角形.试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.。

初中数学专题《四边形中的最值问题》专项训练30道含答案解析

初中数学专题《四边形中的最值问题》专项训练30道含答案解析

专题18.8 四边形中的最值问题专项训练(30道)【人教版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可强化学生对四边形中最值问题模型的记忆与理解!一.选择题(共10小题)1.(2022春•重庆期末)如图,矩形ABCD中,AB=23,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是( )A.43+3B.221C.23+6D.45【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【解答】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE 的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC=AB2+BC2=43,∴AC=2AB,∴∠ACB=30°,AC=2AB=43,∵∠BCE=60°,∴∠ACE=90°,∴AE=(43)2+62=221,故选:B.2.(2022•灞桥区校级模拟)如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是( )2 A.5B.7C.72D.72【分析】如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=AM,CM=4,DA=DM.∠ADM=90°,推出△ADM是等腰直角三角形,推出AD=22推出当AM的值最大时,AD的值最大,利用三角形的三边关系求出AM的最大值即可解决问题;【解答】解:如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,∴△ADM是等腰直角三角形,AM,∴AD=22∴当AM的值最大时,AD的值最大,∵AM≤AC+CM,∴AM≤7,∴AM的最大值为7,,∴AD的最大值为722故选:D .3.(2022春•中山市期末)如图,在边长为a 的正方形ABCD 中,E 是对角线BD 上一点,且BE =BC ,点P 是CE 上一动点,则点P 到边BD ,BC 的距离之和PM +PN 的值( )A .有最大值aB .有最小值22a C .是定值a D .是定值22a 【分析】连接BP ,作EF ⊥BC 于点F ,由正方形的性质可知△BEF 为等腰直角三角形,BE =a ,可求EF ,利用面积法得S △BPE +S △BPC =S △BEC ,将面积公式代入即可.【解答】解:如图,连接BP ,作EF ⊥BC 于点F ,则∠EFB =90°,∵正方形的性质可知∠EBF =45°,∴△BEF 为等腰直角三角形,∵正方形的边长为a ,∴BE =BC =a ,∴BF =EF =22BE =22a ,∵PM ⊥BD ,PN ⊥BC ,∴S △BPE +S △BPC =S △BEC ,∴12BE ×PM +12BC ×PN =12BC ×EF ,∵BE =BC ,∴PM +PN =EF =22a .则点P 到边BD ,BC 的距离之和PM +PN 的值是定值22a .故选:D .4.(2022春•三门峡期末)如图,在矩形ABCD 中,AB =2,AD =1,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A.2B.4C.2D.22【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP 的最小值为BP1的长,由勾股定理求解即可.【解答】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,CE.∴P1P2∥CE且P1P2=12当点F在EC上除点C、E的位置处时,有DP=FP.CF.由中位线定理可知:P1P∥CE且P1P=12∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB=2,AD=1,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=1.∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角BCP1中,CP1=BC=1.∴BP1=2.∴PB的最小值是2.故选:C.5.(2022春•滨湖区期末)如图,已知菱形ABCD的面积为20,边长为5,点P、Q分别是边BC、CD上的动点,且PC=CQ,连接PD、AQ,则PD+AQ的最小值为( )A.45B.89C.10D.72【分析】过点A作AM⊥BC于点M,延长AM到点A′,使A′M=AM,根据菱形的性质和勾股定理可得BM=3,以点B为原点,BC为x轴,垂直于BC方向为y轴,建立平面直角坐标系,可得B(0,0),A(3,4),C(5,0),D(8,4),A′(3,﹣4),然后证明△ABP≌△ADQ(SAS),可得AP=AQ=A′P,连接A′D,AP,A′P,由A′P+PD>A′D,可得A′,P,D三点共线时,PD+A′P取最小值,所以PD+AQ 的最小值=PD+A′P的最小值=A′D,利用勾股定理即可解决问题.【解答】解:如图,过点A作AM⊥BC于点M,延长AM到点A′,使A′M=AM,∵四边形ABCD是菱形,∴AB=BC=AD=5,∠ABC=∠ADC,∵菱形ABCD的面积为20,边长为5,∴AM=4,在Rt△ABM中,根据勾股定理得:BM=AB2−AM2=3,以点B为原点,BC为x轴,垂直于BC方向为y轴,建立平面直角坐标系,∴B(0,0),A(3,4),C(5,0),D(8,4),A′(3,﹣4),∵PC=CQ,BC=CD,∴BP=DQ,在△ABP和△ADQ中,AB=AD∠ABC=∠ADC,BP=DQ∴△ABP≌△ADQ(SAS),∴AP=AQ=A′P,连接A′D,AP,A′P,∵A′P+PD>A′D,∴A′,P,D三点共线时,PD+A′P取最小值,∴PD+AQ的最小值=PD+A′P的最小值=A′D=(8−3)2+(4+4)2=89.故选:B.6.(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是( )A.2B.1C.5−1D.5−2【分析】根据正方形的性质可得AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,然后利用“HL”证明Rt△ADM和Rt△BCN全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△DCE和△BCE全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AFD=90°,取AD的中点O,连接OF、OC,根据直角AD=1,利用勾股定理列式求出OC,然三角形斜边上的中线等于斜边的一半可得OF=12后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.【解答】解:在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,AD=BCAM=BN,∴Rt△ADM≌Rt△BCN(HL),∴∠1=∠2,在△DCE和△BCE中,BC=CD∠DCE=∠BCE,CE=CE∴△DCE≌△BCE(SAS),∴∠2=∠3,∴∠1=∠3,∵∠ADF+∠3=∠ADC=90°,∴∠1+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,AD=1,则OF=DO=12在Rt△ODC中,OC=DO2+DC2=12+22=5,根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=5−1.故选:C.7.(2022•龙华区二模)如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为13−2.其中正确的有( )A.1个B.2个C.3个D.4个【分析】连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的判定和性质即可得到PE=PC;故②正确;连接EF,推出点E、P、F、C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且EPCF四点共圆,EC=FC=3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO =1AE,推出点P在以O为圆心,AE为直径的圆上,当OC最小时,CP的值最小,根2据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.【解答】解:连接AE,过E作EH⊥AB于H,则EH=BC,∵AB=BC,∴EH=AB,∵EG⊥AF,∴∠BAF+∠AGP=∠BAF+∠AFB=90°,∴∠EGH=∠AFB,∵∠B=∠EHG=90°,∴△HEG≌△ABF(AAS),∴AF=EG,故①正确;∵AB∥CD,∴∠AGE=∠CEG,∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,∵∠BAF=∠PCF,∴∠AGE=∠PCE,∴∠PEC=∠PCE,∴PE=PC;故②正确;连接EF,∵∠EPF=∠FCE=90°,∴点E、P、F、C四点共圆,∴∠FEC=∠FPC=45°,∴EC=FC,∴BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且E、P、C、F四点共圆,EC=FC=3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE的中点O,连接PO,CO,AE,∴AO=PO=12∵∠APE=90°,∴点P在以O为圆心,AE为直径的圆上,∴当OC最小时,CP的值最小,∵PC ≥OC ﹣OP ,∴PC 的最小值=OC ﹣OP =OC −12AE ,∵OC =22+(72)2=652,在Rt △ADE 中,AE =42+12=17,∴PC 的最小值为652−172,故④错误,故选:B .8.(2022•南平校级自主招生)如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点(且点P 不与点B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F .则EF 的最小值为( )A .4B .4.8C .5.2D .6【分析】先由矩形的判定定理推知四边形PEAF 是矩形;连接PA ,则PA =EF ,所以要使EF ,即PA 最短,只需PA ⊥CB 即可;然后根据三角形的等积转换即可求得PA 的值.【解答】解:如图,连接PA .∵在△ABC 中,AB =6,AC =8,BC =10,∴BC 2=AB 2+AC 2,∴∠A =90°.又∵PE ⊥AB 于点E ,PF ⊥AC 于点F .∴∠AEP =∠AFP =90°,∴四边形PEAF 是矩形.∴AP =EF .∴当PA 最小时,EF 也最小,即当AP ⊥CB 时,PA 最小,∵12AB •AC =12BC •AP ,即AP =AB ⋅AC BC =6×810=4.8,∴线段EF 长的最小值为4.8;故选:B .9.(2022春•崇川区期末)如图,正方形ABCD 边长为1,点E ,F 分别是边BC ,CD 上的两个动点,且BE =CF ,连接BF ,DE ,则BF +DE 的最小值为( )A .2B .3C .5D .6【分析】连接AE ,利用△ABE ≌△BCF 转化线段BF 得到BF +DE =AE +DE ,则通过作A 点关于BC 对称点H ,连接DH 交BC 于E 点,利用勾股定理求出DH 长即可.【解答】解:连接AE ,如图1,∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°.又BE =CF ,∴△ABE ≌△BCF (SAS ).∴AE =BF .所以BF +DE 最小值等于AE +DE 最小值.作点A 关于BC 的对称点H 点,如图2,连接BH ,则A 、B 、H 三点共线,连接DH ,DH 与BC 的交点即为所求的E 点.根据对称性可知AE =HE ,所以AE +DE =DH .在Rt △ADH 中,AD =1,AH =2,∴DH =AH 2+AD 2=5,∴BF +DE 最小值为5.故选:C .10.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为( )A.2B.2C.22D.4【分析】连接AE,那么,AE=CG,所以这三个d的和就是AE+EF+FC,所以大于等于AC,故当AEFC四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=2AB=22,∴d1+d2+d3最小=AC=22,故选:C.二.填空题(共10小题)11.(2022春•江城区期末)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=6,BC=2.运动过程中点D到点O的最大距离是 3+13 .【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于的一半可得OE=12第三边可得OD过点E时最大.【解答】解:如图:取线段AB的中点E,连接OE,DE,OD,∵AB=6,点E是AB的中点,∠AOB=90°,∴AE=BE=3=OE,∵四边形ABCD是矩形,∴AD=BC=2,∠DAB=90°,∴DE=AE2+AD2=13,∵OD≤OE+DE,∴当点D,点E,点O共线时,OD的长度最大.∴点D到点O的最大距离=OE+DE=3+13,故答案为:3+13.12.(2022•东莞市校级一模)如图,在矩形ABCD中,AB=6,AD=5,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+DQ的最小值为 13 .【分析】连接BP,在BA的延长线上截取AE=AB=6,连接PE,CE,PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=6,则PC+QD=PC+PB=PC+PE≥CE,根据勾股定理可得结果.【解答】解:如图,连接BP,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,∴PC+QD=PC+PB,∴PC+QD的最小值转化为PC+PB的最小值,如图,在BA的延长线上截取AE=AB=6,连接PE,CE,∵PA⊥BE,∴PA是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,∴PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,BC=AD=5,∴CE=BE2+BC2=13.∴PC+DQ的最小值为13.故答案为:13.13.(2022•钱塘区一模)如图,在矩形ABCD中,线段EF在AB边上,以EF为边在矩形ABCD内部作正方形EFGH,连结AH,CG.若AB=10,AD=6,EF=4,则AH+CG的最小值为 62 .【分析】方法一:延长DA至A′,使A′A=EH=EF=4,连接A′E,EG,可得四边形AA′EH是平行四边形,所以A′E=AH,则AH+CG的最小值即为A′E+CG的最小值,根据勾股定理即可解决问题.方法二:过点G作GA′∥AH交AF于点A′,可得四边形AHGA′是平行四边形,进而可以解决问题.【解答】解:方法一:如图,延长DA至A′,使A′A=EH=EF=4,连接A′E,EG,∵HE⊥AB,AA′⊥AB,∴AA′∥EH,∵A′A=EH,∴四边形AA′EH是平行四边形,∴A′E=AH,则AH+CG的最小值即为A′E+CG的最小值,∵四边形EFGH是正方形,∴EF=FG=4,∴EG=42,∵A′D=AD+AA′=6+4=10,在Rt△A′DC中,DC=AB=10,∴A′C=A′D2+DC2=102,∴A′E+CG=A′C﹣EG=62.方法二:如图,过点G作GA′∥AH交AF于点A′,∴四边形AHGA′是平行四边形,∴AA′=HG=4,A′G=AH,∴A′B=AB﹣AA′=6,∵BC=6,∴A′C=62,∴AH+CG=A′G+CG≥A′C,则AH+CG的最小值为62.故答案为:62.14.(2022春•东城区期中)在正方形ABCD中,AB=5,点E、F分别为AD、AB上一点,且AE=AF,连接BE、CF,则BE+CF的最小值是 55 .【分析】连接DF,根据正方形的性质证明△ADF≌△ABE(SAS),可得DF=BE,作点D关于AB的对称点D′,连接CD′交AB于点F′,连接D′F,则DF=D′F,可得BE+CF=DF+CF=D′F+CF≥CD′,所以当点F与点F′重合时,D′F+CF最小,最小值为CD′的长,然后根据勾股定理即可解决问题.【解答】解:如图,连接DF,∵四边形ABCD是正方形,∴AD=AB,∠BAE=∠DAF=90°,在△ADF 和△ABE 中,AD =AB ∠FAD =∠EAB AF =AE,∴△ADF ≌△ABE (SAS ),∴DF =BE ,作点D 关于AB 的对称点D ′,连接CD ′交AB 于点F ′,连接D ′F ,则DF =D ′F ,∴BE +CF =DF +CF =D ′F +CF ≥CD ′,∴当点F 与点F ′重合时,D ′F +CF 最小,最小值为CD ′的长,在Rt △CDD ′中,根据勾股定理得:CD ′=CD 2+DD′2=52+102=55,∴BE +CF 的最小值是55.故答案为:55.15.(2022春•虎林市期末)如图,在Rt △ABC 中,∠BAC =90°,且BA =12,AC =16,点D 是斜边BC 上的一个动点,过点D 分别作DE ⊥AB 于点E ,DF ⊥AC 于点F ,点G 为四边形DEAF 对角线交点,则线段GF 的最小值为 245 .【分析】由勾股定理求出BC 的长,再证明四边形DEAF 是矩形,可得EF =AD ,根据垂线段最短和三角形面积即可解决问题.【解答】解:连接AD 、EF ,∵∠BAC =90°,且BA =9,AC =12,∴BC =AB 2+AC 2=122+162=20,∵DE ⊥AB ,DF ⊥AC ,∴∠DEA =∠DFA =∠BAC =90°,∴四边形DEAF 是矩形,∴EF =AD ,∴当AD ⊥BC 时,AD 的值最小,此时,△ABC 的面积=12AB ×AC =12BC ×AD ,∴12×16=20AD ,∴AD =485∴EF 的最小值为485,∵点G 为四边形DEAF 对角线交点,∴GF =12EF =245;故答案为:245.。

中考数学复习《四边形的最值问题》专项测试卷(带答案)

中考数学复习《四边形的最值问题》专项测试卷(带答案)

中考数学复习《四边形的最值问题》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.如图,正方形ABCD 中4AB =,点E ,F 分别在边AB ,BC 上,点P 在对角线AC 上EF AC ∥,PE PF m +=下列结论错误..的是( )A .若2BE =,则m 的最小值为4B .若m 的最小值为4,则2BE =C .若0.5BE ,则m 的最小值为5D .若m 的最小值为5,则0.5BE2.如图,已知矩形ABCD ,AB=8,BC=12,点M 为矩形内一点,点E 为BC 边上任意一点,则MA MD ME ++的最小值为( )A .642+B .4413+C .863+D .203.如图,在ABC 中345AB AC BC ===,,,P 为边BC 上一动点,且PE AB ⊥于点E ,PF AC ⊥于点F ,则线段EF 的最小值为( )A .2B .2.2C .2.4D .2.54.如图,ABC 和ABE 是等腰三角形2AB BC BE ===,120ABC ∠= D 为AE 的中点,线段CD 的最大值为( )A .2 B1 C .1 D 15.如图是一个轴对称的房型图案.测得矩形BCDE 中3BC =,CD=8,ABE 中5AB =,现用一个半径为r 的圆形纸片将其完全覆盖,则r 的最小值是( )A .133B .256CD 6.如图,菱形ABCD 的对角线相交于点O ,AC=12,DB=16,点P 为边BC 上一点,且P 不与点B 、C 重合.过P 作PE AC ⊥于E ,PF BD ⊥于F ,连EF ,则EF 的最小值等于( ).A .3.6B .4.8C .5D .67.如图,在Rt ABC △中90C ∠=︒,BC=3,AC=4,M 为斜边AB 上一动点,过M 作MD AC ⊥于点D ,过M 作ME CB ⊥于点E ,则线段DE 的最小值为( )A .125B .5C .245D .2.58.如图,菱形ABCD 中点M 为BC 的中点,点N 为对角线AC 上一个动点,连接BN 、MN ,若5MN BN +=,则AB 的最大值为( )A .53B 53C 103D .3二、填空题9.如图,在矩形ABCD 中2AD = 3AB = 点P 为BC 边上一点 则12AP PC +的最小值等于 .10.如图 在ABC 中AB AC = 8BC = 30ACB ∠=︒ D 为边AC 上一动点(C 点除外) 以BD 为一边作正方形BDEF 连接CE 则CDE 面积的最大值为 .11.如图 在平面直角坐标系中点()20A -, ()01B , ()03C ,将线段AB 沿x 轴向右平移得到A B '' 连接A C ' B C ' 则A C B C ''+的最小值为 .12.如图 在边长为2的正方形ABCD 中E F 分别是边AB BC 上的动点(可与端点重合) M N 分别是ED EF 的中点 则MN 的最大值为 .13.如图 平行四边形ABCD 的面积为28 7AB = 45BAD ∠=︒.E 为对角线BD 上任意一点 连接AE得ABE 和ADE ;已知ABE CDF △≌△ ADE CBG ≌△△ 则五边形CFDBG 的对角线GF 的最小值为 .三、解答题14.已知正方形ABCD 和正方形EFGH 按图1所示叠放在一起 其中4AB = 2EF = 点O 为AB 和EF 的中点.(1)图2中正方形EFUV 为图1中正方形EFGH 关于直线AB 的轴对称图形 求点D 和点U 的连结线段DU 的长度;(2)将图1中的正方形EFGH 绕点O 旋转 如图3所示 求运动过程中点D 和点G 之间距离的最大值和最小值.15.在矩形ABCD 中E 是CD 上一个动点 连接AE(1)如图1 若AB AE = 5AB = 3AD = 求EC 的长;(2)如图2 点P 是AE 中点 将直线AE 绕点P 顺时针旋转α︒后 恰好经过点B 交AD 于点F 连接EF 若DEF EAB α=∠+∠.求证:2FB FP FE =+.(3)如图3 若点P 是AE 上一点 直线AE 绕P 点顺时针旋转90° 恰好经过点D .若5AB = 3AD = 连接PC 请直接写出....PC 的最小值.16.已知:将ABCD 沿对角线AC 折叠 DAC 折到FAC 位置.(1)证明BE EF =;(2)如果6AC cm = B 、D 两点间距离为8cm 请在对角线AC 上找一点O 使得OB OF +的值最小 并求最小值;(3)探索:线段AF 与BC 满足什么关系时 点D 、C 、F 在同一条直线上 请给出证明.17.如图1 菱形ABCD 中B α∠= 2BC = E 是边BC 上一动点(不与点,B C 重合) 连接DE点C 关于直线DE 的对称点为C ' 连接AC '并延长交直线DE 于点,P F 是AC '的中点 连接,DC DF '.(1)填空:DC '=______ APD ∠=______(用含α的代数式表示);(2)如图2 当90α=︒ 题干中其余条件均不变 连接BP .求证:BP =.(3)(2)的条件下 连接AC .①若动点E 运动到边BC 的中点处时 ACC '△的面积为______.①在动点E 的整个运动过程中ACC '△面积的最大值为______.18.综合与实践课上 老师让同学们以“矩形与垂直”为主题开展数学活动.(1)操作判断如图1 正方形纸片ABCD 在边BC 上任意取一点E 连接AE 过点B 作BF AE ⊥于点G 与边CD 交于点F .根据以上操作 请直接写出图1中线段AE 与线段BF 的关系.(2)迁移探究小华将正方形纸片换成矩形纸片 继续探究 过程如下:如图2 在矩形纸片ABCD 中::=AB AD m n 在边BC 上任意取一点E 连接AE 过点B 作BF AE ⊥于点G 与边CD 交于点F 请求出线段AE 与BF 的关系 并说明理由.(3)拓展应用如图3 已知正方形纸片ABCD 的边长为2 动点E 由点A 向终点D 做匀速运动 动点F 由点D 向终点C 做匀速运动 动点E 、F 同时开始运动 且速度相同 连接AF 、BE 交于点G 连接GD 则线段GD 长度的最小值为______.(直接写出答案不必说明理由)参考答案:1.D2.C3.C4.B5.A6.B7.A8.C9.5 210.611121314.(1)解:延长FG 交CD 于点P①90GFB B C ∠=∠=∠=︒①四边形BFPC 是矩形①4PF BC ==①1PC BF OB OF ==-=①3DP CD PC =-=①DU == (2)解:连接OG①2FG = 1OF =①OG =①点G 在以点O 为圆心 OG 长为半径的圆上 ①当点G 在线段OD 上时 DG 取得最小值; 当点G 在DO 延长线上时 DG 取得最大值;①2OA = 4=AD ①222425OD +=如图1DG 最小值为2555如图2DG 取得最大值为5535= 15.(1)解:①矩形ABCD①CD AB = 90D ①2222534DE AE AD -=-=①1EC DC DE =-=;(2)过A 作AM EF ∥交PB 于M 点①PAM PEF ∠=∠①P 是AE 中点①AP EP =在EPF 与APM △中PEF PAM EP APEPF APM ∠=∠⎧⎪=⎨⎪∠=∠⎩①(ASA)EPF APM △≌△;①EF AM = PF MP①矩形ABCD①AB CD ∥①DEP BAP ∠=∠①DEP PEF PAB PAM ∠-∠=∠-∠即DEF MAB ∠=∠ ①旋转角APF DEF EAB α=∠=∠+∠ PAB 中有APF EAB PBA ∠=∠+∠①DEF PBA ∠=∠ MAB PBA ∠=∠①MB AM =①MB EF =①2FB FM MB FP PM EF FP FE =+=++=+; (3)解:直线AE 绕P 点顺时针旋转90° 恰好经过点D ①90APD ∠=︒取AD 的中点O 连接,OP OC则:1322OP OD AD ===①矩形ABCD①90ADC ∠=︒ 5CD AB == ①22109OC CD OD =+=①10932PC OC OP ≥-=-①PC 1093-.16.(1)解:证明:如图1中四边形ABCD 是平行四边形AD BC AD BC ∴=∥,DAC ACB ∴∠=∠ DAC 翻折得到FACAD AF DAC FAC ∴=∠=∠,ACB FAC ∴∠=∠AE CE ∴=,AD BC AD AF ==BC AF ∴=BE EF ∴=;(2)连接BD 交AC 于点O 连接OF点F 与D 关于AC 对称OD OF ∴=∴当点O 为AC 与BD 交点时 OB OF +的值最小 最小值为线段BD 的长 即最小值为8cm ;(3)当线段AF 与BC 互相平分时 点D 、C 、F 在同一条直线上. 理由:AF 与BC 互相平分 AF BC =EA EB EC EF ∴===,EAC ECA ECF F ∴∠=∠∠=∠180EAC ECA ECF F ∠+∠+∠+∠=︒90ECA ECF ∴∠+∠=︒即90ACF ∠=︒ DAC 翻折得到FAC90ACF ACD ∴∠=∠=︒∴点D 、C 、F 在同一条直线上.17.(1)解:四边形ABCD 是菱形ADC B α∠=∠= 2AD CD AB ===C '是C 关于DE 的对称点CD ∴沿DE 翻折后可得到C D '2C D CD '∴== 12CDP C DP CDC ''∠=∠=∠AD C D '∴= F 是AC '的中点12C DF ADC ''∴∠=∠ DF AC '⊥ 即90DFC '=︒∠FDP C DF C DP ∴∠=∠+'∠'1122ADC CDC ''=∠+∠12ADC =∠ 12α= ①190902APD DFP α=︒-=︒-∠∠. 故答案:2 1902α︒-. (2)证明:如图 过A 作GA PA ⊥ 交PD 的延长线于G90GAP ∴∠=︒四边形ABCD 是菱形 90B∴四边形ABCD 是正方形90ADC BAD ∴∠=∠=︒ AB AD =由(1)得:19090452DPF ∴∠=︒-⨯︒=︒45G DPF ∴∠=∠=︒AG AP ∴=在Rt AGP △中2PG AP =2DP DG ∴+=;90DAG DAP ∠+∠=︒90BAP DAP ∠+∠=︒BAP DAG ∴∠=∠在BAP △和DAG 中AB ADBAP DAGAG AP=⎧⎪∠=∠⎨⎪=⎩∴BAP DAG ≌(SAS )BP DG ∴=BP DP ∴+.在Rt DFP △中DP =①)BP AF FP =+①BP =(3)解:①如图 连接BD 交AC 于O连接PC由(2)得:45APB G ∠=∠=︒90BPD BPA DPF ∴∠=∠+∠=︒90BPD BCD ∴∠=∠=︒∴B 、P 、C 、D 四点共圆 O 为圆心四边形ABCD 是正方形OA OC ∴=A ∴在O 上90APC ∴∠=︒ E 是BC 的中点112CE BE CD ∴===2222125DE CE CD ∴++BEP DEC ∠=∠ 90BPE DCE ∠=∠=︒BPE DCE ∴∽BEBP PEDE DC CE ∴==215BP PE==25BP ∴= 5PE =25DG BP ∴==52552=410AP ∴=由(2)得:45FPD FDP ∠=∠=︒ ∴22PD DF FP ==65PD PE DE =+=310DF FP ∴==在Rt AFD △中2210AF AD DF =-=10C F '∴210C P FP C F ''∴=-=由(1)折叠得:210CP C P '==12ACC SAC CP ''∴=⋅12=45=. ①如图 过C '作C M AC '⊥ 交AC 于M C '的运动轨迹是以D 为圆心 2C D '=为半径的AC AC 与BD 交于Q12ACC S AC C M ''∴=⋅2AC ==12ACC S M M '''∴=⨯=∴当C M '取最大时 ACC S '△最大如图 当C '与Q 重合时 即C M QO'=C M '最大BD AC ==12DM BD ∴==2C M C D DM ''∴=-=22ACC S '∴==故ACC '△面积的最大值为22. 18.(1)解:①四边形ABCD 是正方形 90,,ABC BCD AB BC ∴∠=∠=︒= 又,AE BF ⊥90,AGB ∴∠=︒90,BAE ABG ABG FBC ∴∠+∠=∠+∠=︒ ,BAE FBC ∴∠=∠在ABE 和BCF △中,,,BAE FBC AB BC ABE BCF ∠=∠=∠=∠ (),ABE BCF ASA ∴≌;AE BF ∴=(2)AE m BF n=.理由如下: ①四边形ABCD 是矩形90,,ABC BCF AD BC ∴∠=∠=︒= 又,AE BF ⊥90,AGB ∴∠=︒90,BAE ABG ABG FBC ∴∠+∠=∠+∠=︒ ,BAE FBC ∴∠=∠,ABE BCF ∴∽,AE AB BF BC∴= ,AB AB m AD BC n== AE m BF n∴=; (3)如图 取AB 的中点M 连接,DM GM 由题意知 AE DF =由(1)可得Rt ABE Rt DAF ≌ 同理可得:90AGB ∠=︒①M 是AB 的中点 2AB =①1AM MB MG ===在Rt ADM中MD在MGD中≥-=GD MD MG1,①GD11.。

中考数学专题训练:矩形、菱形、正方形(附参考答案)

中考数学专题训练:矩形、菱形、正方形(附参考答案)

中考数学专题训练:矩形、菱形、正方形(附参考答案)1.下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形2.如图,D ,E ,F 分别是△ABC 各边的中点,则以下说法错误的是( )A .△BDE 和△DCF 的面积相等B .四边形AEDF 是平行四边形C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形3.如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,CE ,DF 交于点G ,连接AG .下列结论:①CE =DF ;②CE ⊥DF ;③∠AGE =∠CDF .其中正确的结论是( )A .①②B .①③C .②③D .①②③4.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接EO 并延长交AD 于点F ,∠ABC =60°,BC =2AB .下列结论:①AB ⊥AC ;②AD =4OE ;③四边形AECF 是菱形;④S △BOE =14S △ABC .其中正确结论的个数是( )A .4B .3C .2D .15.如图,在矩形ABCD中,AB=6 cm,BC=9 cm,点E,F分别在边AB,BC上,AE=2 cm,BD,EF交于点G.若G是EF的中点,则BG的长为______cm.6.如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC的中点,则EF的长为_____.7.已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.8.如图,在菱形ABCD中,E,F,G,H分别是AB,BC,CD,AD上的点,且BE =BF=CG=AH.若菱形的面积等于24,BD=8,则EF+GH=_____.9.如图,在矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.10.(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC 到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.参考答案1.A 2.C 3.A 4.D5.√13 6.5 7.(1)证明略 (2)略8.6解析:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是菱形,BD =8,∴AB =BC =AD =CD ,AC ⊥BD ,AO =OC =12AC ,BO =OD =12BD =4. ∵S 菱形ABCD =12AC ·BD =24,∴AC =6,∴AO =3,∴AB =√AO 2+BO 2=5=AD .∵BE =BF =CG =AH ,∴AE =CF =DH =DG ,∴BE AE =BF CF ,∴EF ∥AC .同理可得GH ∥AC ,设BE =BF =CG =AH =a ,则有DH =5-a ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴BE AB =EF AC ,即a 5=EF 6,∴EF =65a ,同理可得DH DA =GH CA ,即5−a 5=GH 6,∴GH =6-65a ,∴EF +GH =6.9.(1)证明略(2)与△OBF相似的三角形有△ECF,△BAF,理由略(3)DE=3+√1910.(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°.∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF.(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°.∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF.∵CH=DE,∴CF=CH.∵点H在BC的延长线上,∴∠DCH=∠DCF=90°.又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H.∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H.(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG. ∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11.∵CF+CG=FG,∴CF=FG-CG=11-8=3,即CF的长为3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四边形最值问题
类型一、将军饮马
1.如图,在正方形ABCD中,点E在BC上,BE=2, EC=1, 点P在BD上,则PE+PC的最小值是.
2.如图,在正方形ABCD中,P是BD上的一个动点,E在BC上,且BE=1,CE=2,则PE+PC 的最小值为。

3.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()
A、6
B、23
C、3
D、26
类型二、点到直线距离垂线段最短
1.在边长为2菱形ABCD中,∠ABC=60°,M、N分别为线段BC和BD上两个动点,则MN+CN 的最小值是。

2.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上
的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最
小值为_________
3.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB
于E,PF⊥AC于F,M为EF中点,则AM的最小值为.
类型三、平行线间的距离为最值
1.如图,菱形ABCD的边长为5,面积为20,P为CD边上一动点
(异于C、D),点M、N分别在BD、BC上运动,则PM+MN的
最小值为.
2.如上左图,菱形ABCD中,AB=4,∠A=120°,点M、N、P分别为线段AB、AD、BD 上的任意一点,则PM+PN的最小值为________
类型四、利用三角形三边关系、三点共线取最值
1.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,
当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状
保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离
为()
A、2+1
B、5
C、145
5
D、
5
2
2.如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON 上运动,当正方形的边长为2时,OD的最大值为.
3如图,正方形ABCD的边长为4,点P为边AD上一动点,AE⊥BP,垂足为E,连DE,求DE的最小值.
4.如上右图,E、F是正方形ABCD的边上两个动点,满足AE=DF,连接CF交BD于G,连接BE交AG于点H,连DH,若正方形的边长为4,则线段DH长度的最小值是_________
5.如上右图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿,MN所在的直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是。

类型五、中位线+三点共线求最值
1.如图,已知△ABC中,∠ACB=90°,BC=6,AC=12,点D在AC上,且AD=8,将线段AD 绕点A旋转至D
B'的中点,连结CF,则线段CF的最大值为多少?
A',F为D
2. 如图,在△ABC中,AC=4,点F为BC边的中点,BD=6,点E为AD边的中点,将线段BD绕点D旋转,则EF的最小值是.
类型六、旋转+三点共线求最值
1.如图,P A=2,PB=4,以AB为一边做正方形ABCD,使P,D两点落在直线AB的两侧,当∠APB变化时。

(1)当∠APB=90°时,求PD的长;
(2)求PD的最大值
2.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD
上任意一点,将BM绕点B逆时针旋转60°得到BN,连结AM、CM、EN。

(1)求证:△AMB≌△ENB
(2)①当M点在何处时,AM+CM的值最小;
②当M在何处时,AM+BM+CM的值最小,并说明理由。

3..如图,△ABC为等边三角形,P为外部一点.若PB=5,P A=2,则PC的最小值为多少?
4..如图,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,
AC=4,以BC为边在BC的下方作等边△PBC,则AP的最大
值为.。

相关文档
最新文档