2014年四川省凉山州高考理科数学二模试题及答案解析
2014年普通高等学校招生全国统一考试数学理试题(四川卷,解析版)

2014年普通高等学校招生全国统一考试理科参考答案〔四川卷〕一.选择题:本大题共10小题,每一小题5分,共50分.在每一小题给出的四个选项中,只有一个是符合题目要求的。
1.集合2{|20}A x x x =--≤,集合B 为整数集,如此A B ⋂= A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上 所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 【答案】A【解析】因为,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到4.假设0a b >>,0c d <<,如此一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c < 【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>,由不等式性质知:0a b d c ->->,所以a bd c <5.执行如图1所示的程序框图,如果输入的,x y R ∈,如此输出的S 的最大值为A .0B .1C .2D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2,否如此,S 的值为1.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,如此不同的排法共有 A .192种 B .216种 C .240种 D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。
2014年高考真题——理科数学(四川卷)解析版

2014年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
满分150分。
考试时间120分钟。
第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1、已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B =( )A 、{1,0,1,2}-B 、{2,1,0,1}--C 、{0,1}D 、{1,0}- 【答案】A 【解析】AB A x x 选,,,,2}.10{-1∴2][-1A 01)2)(x -(x 2--2=∩=∴≤+=2、在6(1)x x +的展开式中,含3x 项的系数为( )A 、30B 、20C 、15D 、10 【答案】C 【解析】C x x x C 选 36222615x)x(1∴15=+=3、为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( )A 、向左平行移动12个单位长度 B 、向右平行移动12个单位长度C 、向左平行移动1个单位长度D 、向右平行移动2个单位长度 【答案】A 【解析】Ax y x y x x 选得到左移动把).12sin(21)2sin(∴)21(2sin )12sin(+==+=+4、若0a b >>,0c d <<,则一定有( )A 、a b c d >B 、a b c d <C 、a b d c >D 、a b d c<【答案】D 【解析】Dcbd a c b d a c d b a cd c d d c 选.0∴0--∴01-1-,001-1-∴011∴0<<>>>>>>>><<<<5、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为( ) A 、0 B 、1 C 、2 D 、3【答案】C【解析】..2)0,1(2.2,1,0,0.C y x S y x S y x y x 选处取最大值在点,目标函数画出可行区域为三角形的最大值求限制条件为相性规划问题+=+=≤+≥≥6、六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,则不同的排法共有( )A 、192种B 、216种C 、240种D 、288种 【答案】B【解析】BA A A A A A 选甲不排队尾时,有乙排队首甲排队首时,有分情况.216∴,)2.()1.(441455441555=+7、平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =( )A 、2-B 、1-C 、1D 、2 【答案】D 【解析】Dm m m m m c b a m c b a 选.2∴52208585∴,cos ,cos ).22,4(∴,),2,4(),2,1(=+=+><>=<++=+===8、如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
2014四川高考真题数学理(含解析)

2014 年普通高等学校招生全国统一考试(四川卷)数学(理工类)一、选择题:本大题共10 小题,每小题5 分,共50 分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A ={x | x2 -x - 2 ,集合B 为整数集,则A ().A.{-1, 0,1, 2} B.{-2,-1, 0,1} C.{0, 1} D.{-1, 0}2.在x(1+x)6 的展开式中,含x3 项的系数为().A.30 B.20 C.15 D.103.为了得到函数y = sin(2x +1) 的图象,只需把函数y = sin 2x 的图象上所有的点().A.向左平行移动12个单位长度B.向右平行移动12个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.若a >b > 0,c <d < 0,则一定有().A.a b>B.a <b C.a b>D.c d c d d ca b<d c5.执行如图 1 所示的程序框图,如果输入的x, y ∈R ,则输出的S的最大值为().A.0 B.1 C.2 D.36.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有().A.192种B.216 种C.240 种D.288 种7.平面向量a = (1, 2),b = (4, 2),c =m a +b(m∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =().A.-2 B.-1 C.1 D.28.如图,在正方体ABCD -A1B1C1D1 中,点O 为线段BD的中点.设点P 在线段CC 上,直线OP1与平面A1BD 所成的角为α,则sinα的取值范围是().A.[ 3 ,1]3 B.[ 6 ,1]3C.[ 6 , 2 2 ]3 3D.[2 2 ,1]39.已知f (x) = ln(1+x) - ln(1-x) ,x∈(-1, 1) .现有下列命题:().①f (-x) =-f (x) ;②2xf ( ) = 2 f (x)x 1;③| f (x) |≥ 2 | x | .其中的所2有正确命题的序号是A.①②③B.②③C.①③D.①②1/ 1510.已知F 是抛物线y =x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA⋅OB = 2(其中2O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是().17 28A.2 B.3 C.D.10二、填空题:本大题共5 小题,每小题5 分,共25 分.11.复数2 2i-=1+i.12.设f (x) 是定义在R 上的周期为2 的函数,当x∈[-1, 1) 时,f (x)⎧- 2 +-≤<4x 2, 1 x 0, =⎨x, 0 ≤x <1,⎩,则3f ( ) =.213.如图,从气球 A 上测得正前方的河流的两岸 B,C 的俯角分别为67 ,30 ,此时气球的高是46m ,则河流的宽度 BC 约等于m .(用46m30°67°四舍五入法将结果精确到个位.参考数据:s i n 6 7≈0 . ,cos 67 ≈ 0.39,sin 37 ≈ 0.60 ,cos 37 ≈ 0.80 , 3 ≈1.73)B C14.设m∈R,过定点A的动直线x +my = 0 和过定点B的动直线mx -y -m + 3 = 0交于点P(x, y) ,则| PA|⋅| PB |的最大值是.15.以A 表示值域为 R 的函数组成的集合,B 表示具有如下性质的函数ϕ(x) 组成的集合:对于函数ϕ,存在一个正数M ,使得函数ϕ(x) 的值域包含于区间[-M,M ] .例如,当ϕ=,(x) 1(x) x3 ϕ=时,ϕ1(x)∈A, 2 (x) B2(x) sin xϕ∈.现有如下命题:①设函数f (x) 的定义域为D ,则“f (x)∈A”的充要条件是“∀b∈R,∃a∈D,f (a) =b ”;②函数f (x)∈B 的充要条件是f (x) 有最大值和最小值;③若函数f (x) ,g(x) 的定义域相同,且f (x)∈A,g(x)∈B ,则f (x) +g(x)∉B ;④若函数f (x) =a ln(x + 2) +x(x >-2,a∈R )有最大值,则f (x)∈B .x +12其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6 小题,共75 分.解答须写出文字说明,证明过程或演算步骤.16.已知函数πf (x) = sin(3x +) .4(1)求f (x) 的单调递增区间;(2)若α是第二象限角,(α ) = 4 cos(α+π) cos 2αf3 5 4,求cosα-sinα的值.2/ 1517.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得 10 分,出现两次音乐获得 20 分,出现三次音乐获得 100 分,没有出现音乐则扣除 200 分(即获得 200分).设每次击鼓出现音乐的概率为且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?12,(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.3/ 1518.三棱锥A-BCD及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 为线段BC 的中点;(2)求二面角A-NP-M 的余弦值.4/ 1519.设等差数列{a }的公差为d ,点(a ,b )在函数f (x) = 2x 的图象上(n∈N* ).n n n(1)若a1 =-2 ,点(a ,4b ) 在函数f (x) 的图象上,求数列{a }的前n 项和8 7 n S ;n(a ,b ) 处的切线在x 轴上的截距为2 1(2)若a1 =1,函数f (x) 的图象在点a-,求数列{ n } 2 2b ln 2n 的前n 项和T .n5/ 15x y2 2+=(a >b > 0)的焦距为 4,其短轴的两个端点与长轴的一个端点构成正20.已知椭圆C: 2 2 1a b三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P,Q.(i)证明:OT 平分线段PQ(其中O 为坐标原点);(ii)当|TF || PQ |最小时,求点T 的坐标.6/ 1521.已知函数f (x) = e x -ax2 -bx -1,其中a,b∈R ,e = 2.71828 为自然对数的底数.(1)设g(x) 是函数f (x) 的导函数,求函数g(x) 在区间[0,1]上的最小值;(2)若f (1) = 0,函数f (x) 在区间(0,1) 内有零点,求a 的取值范围.7/ 152014 年普通高等学校招生全国统一考试(四川卷理科)答案解析一、选择题:本大题共10 小题,每小题5 分,共50 分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.A【解析】A ={x -1 ,所以A , 0,1, 2}2.C【解析】x(1+x)6 =x(1+6x+15x2 +20x3 +15x4 +6x5 +x6),所以含x 项的系数为 1533.Ay =x +=x +,所以只需把y = sin 2x 的图像上所有的点向左平移1sin(2 1) sin 2( )1【解析】2 2个单位4.D∴->->,又a >b > 0, a b 01 1 ∴->->, a b【解析】0 ,∴-c >-d > 0 ,∴<d c d c d c 5.C⎧x⎪⎨y【解析】该程序执行以下运算,已知⎪+x y⎩,求S=2x y+的最大值,作出⎧x⎪⎨y⎪+x y⎩表示的区域如图所示,由图可知,当⎧x =1⎨=⎩y 0时,S = 2 x+y的取最大值,最大值为S = 26.B【解析】最左端排甲,有A5 =种排法,最左端排乙,有4A4 = 96种排法,共有120+96 = 216 种5 1204排法7.D【解析】由题意得c ⋅a c ⋅b a b +8 8m+ 20=⇒m = 5 2 528.B【解析】设正方体的棱长为 1,AC =,1 12 AC =,1 3A O =OC =+=, 11 OC =,1 31 12 2 2 8/ 153 3+- 2 12 2cos∠AOC ==所以 1 13 32⨯2 ,sin3 1+-3 32 2 2 2cos∠AOC ==-AOC =, 11 13 332⨯2,sin6AOC =,所以sinα的范围为13⎡⎤6⎢,1⎥3⎣⎦9.C【解析】①f (-x) = ln(1-x) - ln(1+x) =-f (x) ,成立②左边的x可以取任意值,而右边的x ∈ (-1,1) ,故不成立③作出图像易知成立10.B【解析】依题意,1F ( ,0) ,设4A(x , y ),1 1B x y ,则 2 1 2 1 2 2( , ) x =y , 2x =y ,y2 y2 +y y =,得2 2 1 1 2 2y y =-或1 2 2 y y =,因为A ,B 位于x 轴两侧所以,1 2 1y y =-两面积之和为1 2 21 1 12 1 2 9 S =x y -x y +⨯⨯y =+y +⨯y =+y1 2 2 1 1 1 1 12 2 4 y 8 y 81 1二、填空题:本大题共5 小题,每小题5 分,共25 分.11.-2i【解析】2-2i 2(1-i)2= =-2i 1+i (1+i)(1-i)12. 1【解析】3 1 1f ( ) =f (-) =-4⨯+ 2 =12 2 413.60【解析】AC = 92,14.546AB =,cos 67AB =BC ,AB sin 37 60BC =≈sin 30 sin 37 sin 309/ 15【解析】易得A(0, 0) ,B(1, 3) ,设P(x,y) ,则消去m得:x2 +y2 -x-3y =0,所以点P 在以AB为直径的圆上,PA ⊥PB,所以PA ⨯PB AB22515.①③④【解析】①若对任意的b∈R ,都有∃a∈D,使得f (a) =b ,则f (x) 的值域必为R ;反之f (x) 的值域为,则对任意的R ,b∈R,都有∃a∈D,使得f (a) =b ;②比如函数f (x) =x(-1 <x < 1) 属于B ,但是它既无最大值也无最小值,故错误;③正确;④正确三、解答题:本大题共6 小题,共75 分.解答须写出文字说明,证明过程或演算步骤.π16.已知函数f (x) = sin(3x +) .4(1)求f (x) 的单调递增区间;(2)若α是第二象限角,(α ) = 4 cos(α+π ) cos 2αf3 5 4,求cosα-sinα的值.πππ解:(1)2kπ-k ∈Z2 4 23ππ2kπ-,4 42 2kπ-πkππ,3 4 3 12∴求f (x) 的单调递增区间为⎡2kπ-π2kπ+π⎤∈,,k Z .⎢⎥⎣ 3 4 3 12⎦(2)fα=α+π=α+πα,4( ) sin( ) cos( )cos 2 3 4 5 42 4 2( s i n c o s ) ( c o s s i n ) ( c o s α+α=⋅α-α2 α+α, 2 5 22 5(cos sin )α-α=, α是第二象限角,4∴sinα> cosα5∴cosα-sinα=-.217.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得 10 分,出现两次音乐获得 20 分,出现三次音乐获得 100 分,没有出现音乐则扣除 200 分(即获得-200分).设每次击鼓出现音乐的概率为各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?12,且10/ 15(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.解:X 可取 10,20,100,-200.1 2⎛ 1 ⎫⎛ 1 ⎫ 3P(X 10) C 1== ⎪ -⎪=13⎝ 2 ⎭⎝ 2 ⎭82 1⎛ 1 ⎫⎛ 1 ⎫ 3P(X = 20) = C ⎪ 1-⎪=23⎝ 2 ⎭⎝ 2 ⎭83 0⎛ 1 ⎫⎛ 1 ⎫ 1P(X =100) = C ⎪ 1-⎪=33⎝ 2 ⎭⎝ 2 ⎭80 3⎛ 1 ⎫⎛ 1 ⎫ 1P(X 200) C 1=-=0 ⎪ -⎪=3⎝ 2 ⎭⎝ 2 ⎭8X 10 20 100 -200P 3 3 1 18 8 8 8 (2)设至少有一盘出现音乐为事件A .一盘中不出现音乐的概率为1 P =P(X =-200) =.83P =P A =-⎛⎪⎫=( ) 11 511⎝ 8 ⎭512.(3)每一盘游戏的期望为:10E(X ) =10⋅P(X =10) + 20⋅P(X = 20) +100⋅P(X =100) + (-200)⋅P(X =-200) =-8 这说明每盘游戏得分是负分,由概率统计的知识可知:若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.18.三棱锥A-BCD及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 为线段BC 的中点;(2)求二面角A-NP-M 的余弦值.解:(1)由三棱锥A-BCD及其侧视图、俯视图可知,在三棱锥中,平面ABD ⊥平面CBD, AB =AD =BD =CD =CB = 2,设O 为BD的中点,连接OA,OC ,于是OA ⊥BD ,OC ⊥BD ,所以BD ⊥平面OAC ⇒BD ⊥AC,因为M ,N 分别为线段AD ,AB 的中点,所以MN//BD ,11/ 15又 MN ⊥ NP ,故 BD ⊥ NP ,假设 P 不是线段 BC 的中点,则直线 NP 与直线 AC 是平面 ABC 内 相交直线,从而 BD ⊥平面 ABC ,这与 ∠DBC = 60 矛盾,所以 P 是线段 BC 的中点(2)以O 为坐标原点,OB 、OC 、OA 分别为 x 、 y 、 z 轴建立空间直角坐标系,则 A (0, 0, 3) , B,C (0,1, 0) , M (- 1 ,0, 3), (1 ,0, 3)(1, 0, 0)N, 22221 3 P ( , ,0)2 2于是 AN = ( ,0,- 3) , (0, 3 , 3)PN = - , MN = (1, 0, 0) 2 2 2 2设平面 ANP 和平面 NPM 的法向量分别为 m = (x , y , z ) 和 111n = (x , y , z )222由⎧ 1 3 x - z = 0⎪⎧⎪ ⇒ ⎪ ⎨⎨1 12 2 ⎪⎪PN ⋅m = 0 33 ⎩- + =yz ⎪ ⎩ 2211,设 y 1 =1,则 m = ( 3 ,1,1)由 ⎧x = 0 ⎧⎪ ⇒ ⎪ ⎨ ⎨332⎩⎩ PN n ⋅ = 0 - y +z =⎪ ⎪212 2,设 y 2 =1,则 n = (0,1,1) 0 cos2 10 m ⋅n == ⋅ 5m n5 2,所以二面角 A - NP -M 的余弦值 10 5 19.设等差数列{ }a 的公差为 d ,点(a ,b )在函数 f (x ) = 2x 的图象上( n ∈ N * ).nnn(1)若 a 1 = -2 ,点(a ,4b ) 在函数 f (x ) 的图象上,求数列{a }的前 n 项和87nS ;n(a ,b ) 处的切线在 x 轴上的截距为 21a(2)若a1 =1,函数f (x) 的图象在点-,求数列{ n } 2 2b ln 2n 的前n 项和T .nb =,又等差数列{} 【解析】(1)点(a ,b )在函数f (x) = 2x 的图像上,所以 2a 的公差为d ,所ann n n n以b 1 2 2an+1n+==d b 2ann因为点(a8,4b7 ) 在函数f (x) 的图像上,所以b4b = 2a =b ,所以8 d2d == 4 ⇒= 2 ,又87 8 b7a =-,1 2所以n(n -1)S =na + d =-2n +n -n =n -3n2 2n 12( 2 )由 f (x) = 2x ,得到 f '(x ) = x2 l n,函数f (x) 的图像在点(a ,b ) 处的切线方程为2 2by -b2 = (2 ln 2)(x -a2 ) ,所以切线在x 轴上的截距为a a -,得22a=,从而222 2a ln 22 a =n ,b = 2n ,n n得到anbn1=n⋅( )2n1 1 1T =⋅+⋅ 2 +①,1 2 ( ) )nn2 2 212/ 151 1 1 1 1T =⋅+⋅+⋅+n⋅+②,1 ( )2 ( ) ) ( ) ( )2 3 n n 1 n2 2 2 2 2①-②,得1 1 1 1 1 1T =++-n⋅+=-n ++( ) ( ) 1 ( 2)( )2 n 1 n 1 n2 2 2 2 2 21T =-n ++2 ( 2)( )n 1故n2x y2 2+=(a >b > 0)的焦距为 4,其短轴的两个端点与长轴的一个端点构20.已知椭圆 C: 2 2 1a b成正三角形.(1)求椭圆 C 的标准方程;(2)设 F 为椭圆 C 的左焦点,T 为直线x =-3上任意一点,过 F 作 TF 的垂线交椭圆 C 于点 P,Q.(i)证明:OT 平分线段 PQ(其中 O 为坐标原点);(ii)当|TF || PQ |最小时,求点 T 的坐标.解:(1)2c = 4,c = 2a =b, a2 = 3b2 = 4 +b23∴b2 = 2,a2 = 6∴椭圆C 的标准方程:x +y =.2 216 2(2)(i)m - 0 1F(-2, 0), T(-3,m),k ==-m,∴k =FT PQ-3+ 2 m.P Q: y1 (x )m∴=+m⎧=+1() y x m ⎪⎪m ,⎛+⎫++-=3 12 121 x x 6 02⎪⎝m ⎭m m2 2 2, ()m2 + 3 x2 +12x +12 - 6m2 = 0⎨ xy22⎪ += 1⎪⎩ 6 2 ∆ > 0 x + x =P Q12 - 6m2x ⋅ x =PQm2-12 m 2+11144m ()() ()y + y =x + 2 + x + 2 = x + x += PQPQPQ+mmmm m 32PQ 中点⎛ -m ⎫m6 2 ,O T : y = -x + + ⎪ ⎝ m 3 m 3⎭322-6 ⋅⎛- ⎫⎪= 2 m mm 3 3 m 32 + ⎝ ⎭ 2 +∴OT 平分 PQ (ii)TF =-2 + 3 + 0 - m = m +1,222PQ()1 2 6 m m +122 6 m +1 2= 1+=mm3m3 22+2+13 / 15tTF m + 32==PQ m +2 6 12t 2 =()()()2 2m2 m2 m2 m2+ 3 +1 +4 +1 +4 +1 1 1 1 1 1 = = + + + = ()()()24 m +1 24 m +1 24 6 6 m +1 144 6 32 2 2m2 +1 1=当且仅当()24 6 2 1m +时取到等于号,∴(+),m2 +1=2 ,m2 =1,∴T(-3,±1).2m2 1 =421.已知函数f (x) =e x -ax2 -bx -1,其中a,b∈R ,e = 2.71828 为自然对数的底数.(1)设g(x) 是函数f (x) 的导函数,求函数g(x) 在区间[0,1]上的最小值;(2)若f (1) = 0,函数f (x) 在区间(0,1) 内有零点,求a 的取值范围.解:(1)g (x)=f '(x)=e - 2ax -b , g'(x)=e - 2a .因为x∈[0,1],1 ,所以x x①若1a 则2a 所以函数g (x)在区间[0,1]上单增,2g (x)=g ()=-min 0 1 b②若'()()[][]gx=e 1 e<<则1< 2a <e, 于是当0 <x < ln(2a)时,() 2 0,a ,g'x =e x - a <当ln(2a)<x <1时,2 2x-2a>0,ln(2a)ln(2a)1gx,,所以函数在区间上单减,在区间上单增,g x =g ⎣⎡ a ⎦⎤= a - a a -min ln 2 2 2 ln(2 ) b()()③若ea 则2a ()x 2g'x =e - a 所以函数g (x)在区间[0,1]上单减,2g (x)=g ()=e - a -min 1 2 b⎧ -1 1 ba⎪ 2⎪ ⎪1e综上:函数 g (x )在区间[0,1]上的最小值为( )= ⎨ -- < <gx 2a 2a ln(2a ) b a,min2 2 ⎪ ⎪--ee 2a ba ⎪ ⎩2(2)由 f (1)= 0,e - a -b -1= 0,b = e - a -1, 又 f (0) = 0若函数 f (x ) 在区间 (0,1) 内有零点,则函数 f (x ) 在区间(0,1) 内至少有三个单调区间.1由(1)知当 a 或ea函数 f (x ) 在区间(0,1) 上单调,不可能满足条件.若11 ' = - ( ) h x x ln 0,由( )' = - > ⇒ < h x1 e 3< < g (x ) = g ⎡⎣ ( a )⎤⎦ = a - a a - ,令 ( ) ( ) a , min ln 2 2 2 ln(2 ) b h x = x - x ln x -e -1 1< x < e , 2 2 2 ln 2 2xxe14/ 15所以函数h(x) 在区间(1, e)上单增,在区间( e,e) 上单减.3h x =h e = e - e e -e -<即()()()ln 1 0g min x < 0 恒成立.max2于是,函数f (x) 在区间(0,1) 内至少有三个单调区间⎧(0)= 2 -+> 0 ⎧>- 2⎪g e a a e⇔⎨⇒⎨,g (1)=-a +1> 0 a <1⎪⎩⎩又1 e<a <,所以e-2 <a <1.2 2综上,a 的取值范围为(e - 2,1).15/ 15。
2014年四川高考理科数学试题逐题详解(解析版)

cos 37 0.80 , 3 1.73 )
B
C
[答案] 60
[解析]
AC
92 ,
BC
AC sin B
sin
A
92 sin 67
sin
37
92 0.92
0.60
60
[2014 年四川卷(理 14)]设 m R ,过定点 A 的动直线 x my 0 和过定点 B 的动直线
mx y m 3 0 交于点 P(x, y) ,则| PA | | PB | 的最大值是
令 g(x) f (x) 2x ln(1 x) ln(1 x) 2x ( x [0,1) )
因为 g(x)
1 1 x
1 1 x
2
2x2 1 x2
0 ,所以 g(x) 在[0,1) 单增,
g(x) f (x) 2x g(0) 0
即 f (x) 2x ,又 f (x) 与 y 2x 为奇函数,所以| f (x) | 2 | x | 成立故③正确
1
点向左平行移动 个单位长度得到
2
1
[2014 年四川卷(理 04)]若 a b 0 , c d 0 ,则一定有
A. a b B. a b C. a b
cd
cd
dc
D. a b dc
[答案]D
[解析]由 c d 0 1 1 0 ,又 a b 0 , dc
由不等式性质知: a b 0 ,所以 a b
[M , M ] 。例如,当1(x) x3 ,2 (x) sin x 时,1(x) A ,2 (x) B 。现有如下命
题:
①设函数 f (x) 的定义域为 D ,则“ f (x) A ”的充要条件是“ b R , a D ,
最新2014年全国高考理科数学二模试题及答案-四川卷

最新2014年全国高考理科数学二模试题及答案(四川卷)数 学(理工类)参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k kn k n n P k C p p k n …-=-=第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i-=( ) A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于0 4、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED ,则sin CED ∠=( )A 、10B 、10C 、10D 、155、函数1(0,1)xy a a a a=->≠的图象可能是( )A B C D 6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2014二模理科数学答案-推荐下载

一、1.D
二、1. x
三、1.(1)1 (2)10
§21.3 二次根式的加减(一)
一、1.C 2.A
2.A
2 2.
3.C
3
3
,
3.B
3 2x ,
2. x 3 3
二、1.(答案不唯一,如: 20 、 45 ) 2. 3 < x < 3 3 3. 1
三、1.(1) 4 3 (2) 16 2 (3)2 (4) 3 3
一、1.B
二、1. 1
2.D
2. -3 3. -2
3.B
∴
x1
三、1.(1) x1 5 , x2 5 (2) x 1 2 (3) x1 x2 1 (4)没有实数
根
2.(1) 2x 1 4, 2x 1 4 4x. x 1 . 经检验 x 1 是原方程的解.
(3) y1 1,y2 13 (6) x1 9 , x2 2
2m 112 4m 1 3m2 2 ,整理得 3m2 6m 0
(2) x1 2- 1,x- 12 2
(4) x1 7,x2 2
2.∵ x1 x2 2 ∴ m 2 原方程为 x2 2x 3 0 解得 x1 3 , x2 1
(2)∵ x1 x2 k , x1 x2 1,又 x1 x2 x1 x2 ∴ k 1 ∴ k 1 §22.3 实际问题与一元二次方程(一)
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014四川高考数学试卷(理工类)及部分参考答案
2x 2 f x ; 2 1 x
3 f x 2 x . ○
其中的所有正确命题的序号是(
C
) 1
诗蜀博士特教育
预祝四川学子金榜题名
2 ○ 3 (B)○ 1 ○ 3 (C)○ 1 ○ 2 (D)○
1 ○ 2 ○ 3 (A)○
10、已知 F 为抛物线 y 2 x 的焦点,点 A,B 在该抛物线上且位于 x 轴的两侧, OA OB 2 (其中 O 为坐标原点) , 则△ ABO 与△ AFO 面积之和的最小值是( (A)2 (B)3 (C) 第Ⅱ卷
6 ,1 3
(C)
6 2 2 , 3 3
(D)
2 2 ,1 3
第8题 图
9、已知 f x ln 1 x ln 1 x ,x 1,1 ,现有下列命题:
1 f x f x ; ○ 2 f ○
诗蜀博士特教育
预祝四川学子金榜题名
2014 年全国普通高等学校招生统一考试数
第Ⅰ卷 (选择题 共 50 分) 注意事项: 必须使用 2B 铅笔在答题卡上将所选答案对应的标号涂黑。 一、选择题. 1、已知集合 A {x x x 2 0} ,集合 B 为整数集,则 A
2
学(四川卷理工类)
(ii)
当
TF 最小时,求点 T 的坐标. PQ
21. (本小题满分 14 分) 已知函数 f x e ax bx 1 其中 a,b R,e 2.71828
x 2
为自然对数的底数.
(Ⅰ)设 g x 是函数 f x 的导函数,求函数 g x 在区间 0 ,1 上的最小值; (Ⅱ)若 f 1 0 ,函数 f ( x) 在区间 0,1 内有零点,求 a 的取值范围.
凉山州2014届高中毕业班第二次诊断性测试 理科数学试题
正视图和侧视图都是直角三角形,其直角边均为正视图侧视图
俯视图
元的冬季奥运会门票中任选3张,则选取的
79120
2324
试题卷第1页共4页)
的值为()
D.1
是该双曲线上一点,满足PF 1+PF 2=9,
D.2
2+y 2=2相交于点A(x 1,y 1),射线2最大时,cosα的值为(D.2√-6
√4
内的一切实数时,所有集合An 的并集a 4
+3b
取得最小值时,a 的值为
D.±3
√结束
输入m ,n
求m 除以n 的余数r
m=n n=r r=0?输出m
是否
开始页)
A 1
B C 1
A
B
C
E
O
用所抽取学生的成绩在各个分数段的频率表示概率
望分数的学生人数和优等生的人数;
设考试成绩在[80,90)的学生成绩如下:80,81,83,84,86,89;
名学生出来检查数学知识的掌握情况,
数的人数为ξ,求ξ的分布列和数学期望.
(13分)设非零平面向量m、n,θ=〈m,n
y2b
2=1(a>b>0)的左、右焦点,点M、N。
2014年高考真题(理科数学)四川卷 纯Word版解析可编辑
2014·四川卷(理科数学)1.[2014·四川卷] 已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B =( ) A .{-1,0,1,2} B .{-2,-1,0,1} C .{0,1} D .{-1,0} 1.A [解析] 由题意可知,集合A ={x |-1≤x ≤2},其中的整数有-1,0,1,2,故A ∩B ={-1,0,1,2},故选A.2.[2014·四川卷] 在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15 D .102.C [解析] x (1+x )6的展开式中x 3项的系数与(1+x )6的展开式中x 2项的系数相同,故其系数为C 26=15.3.[2014·四川卷] 为了得到函数y =sin (2x +1)的图像,只需把函数y =sin 2x 的图像上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度3.A [解析] 因为y =sin(2x +1)=sin2⎝⎛⎭⎫x +12,所以为得到函数y =sin(2x +1)的图像,只需要将y =sin 2x 的图像向左平行移动12个单位长度.4.[2014·四川卷] 若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c4.D [解析] 因为c <d <0,所以1d <1c <0,即-1d >-1c >0,与a >b >0对应相乘得,-a d >-b c >0,所以a d <bc.故选D. 5.,[2014·四川卷] 执行如图1-1所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )图1-1A .0B .1C .2D .35.C [解析] 题中程序输出的是在⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0的条件下S =2x +y 的最大值与1中较大的数.结合图像可得,当x =1,y =0时,S =2x +y 取得最大值2,2>1,故选C.6.[2014·四川卷] 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种6.B [解析] 当甲在最左端时,有A 55=120(种)排法;当甲不在最左端时,乙必须在最左端,且甲也不在最右端,有A 11A 14A 44=4×24=96(种)排法,共计120+96=216(种)排法.故选B.7.[2014·四川卷] 平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .27.2 [解析] c =m a +b =(m +4,2m +2),由题意知a ·c |a |·|c |=b ·c |b |·|c |,即(1,2)·(m +4,2m +2)12+22=(4,2)·(m +4,2m +2)42+22,即5m +8=8m +202,解得m =2.图1-28.[2014·四川卷] 如图1-2,在正方体ABCD - A 1B 1C 1D 1中,点O 为线段BD 的中点,设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A.⎣⎡⎦⎤33,1B.⎣⎡⎦⎤63,1 C.⎣⎡⎦⎤63,223 D.⎣⎡⎦⎤223,1 8.B [解析] 连接A 1O ,OP 和P A 1,不难知∠POA 1就是直线OP 与平面A 1BD 所成的角(或其补角)设正方体棱长为2,则A 1O = 6.(1)当P 点与C 点重合时,PO =2,A 1P =23,且cos α=6+2-122×6×2=-33,此时α=∠A 1OP 为钝角,sin α=1-cos 2α=63; (2)当P 点与C 1点重合时,PO =A 1O =6,A 1P =22,且cos α=6+6-82×6×6=13,此时α=∠A 1OP 为锐角,sin α=1-cos 2 α=223;(3)在α从钝角到锐角逐渐变化的过程中,CC 1上一定存在一点P ,使得α=∠A 1OP =90°.又因为63<223,故sin α的取值范围是⎣⎡⎦⎤63,1,故选B. 9.[2014·四川卷] 已知f (x )=ln(1+x )-ln(1-x ),x ∈(-1,1).现有下列命题: ①f (-x )=-f (x );②f ⎝⎛⎭⎫2x1+x 2=2f (x );③|f (x )|≥2|x |.其中的所有正确命题的序号是( )A .①②③B .②③C .①③D .①② 9.A [解析] f (-x )=ln(1-x )-ln(1+x ) =ln1-x 1+x =-ln 1+x1-x=-[]ln (1+x )-ln (1-x ) =-f (x ),故①正确;当x ∈(-1,1)时,2x 1+x 2∈(-1,1),且f ⎝⎛⎭⎫2x 1+x 2=ln ⎝⎛⎭⎫1+2x 1+x 2-ln ⎝⎛⎭⎫1-2x 1+x 2=ln 1+2x1+x 21-2x 1+x 2=ln 1+x 2+2x 1+x 2-2x =ln ⎝ ⎛⎭⎪⎫1+x 1-x 2=2ln 1+x 1-x =2[ln(1+x )-ln(1-x )]=2f (x ),故②正确;由①知,f (x )为奇函数,所以|f (x )|为偶函数,则只需判断当x ∈[0,1)时,f (x )与2x 的大小关系即可.记g (x )=f (x )-2x ,0≤x <1,即g (x )=ln(1+x )-ln(1-x )-2x ,0≤x <1,g ′(x )=11+x +11-x -2=2x 21-x 2,0≤x <1.当0≤x <1时,g ′(x )≥0,即g (x )在[0,1)上为增函数,且g (0)=0,所以g (x )≥0, 即f (x )-2x ≥0,x ∈[0,1),于是|f (x )|≥2|x |正确. 综上可知,①②③都为真命题,故选A. 10.,[2014·四川卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.1010.B [解析] 由题意可知,F ⎝⎛⎭⎫14,0.设A (y 21,y 1),B (y 22,y 2),∴OA →·OB →=y 1y 2+y 21y 22=2,解得y 1y 2=1或y 1y 2=-2.又因为A ,B 两点位于x 轴两侧,所以y 1y 2<0,即y 1y 2=-2. 当y 21≠y 22时,AB 所在直线方程为y -y 1=y 1-y 2y 21-y 22(x -y 21)= 1y 1+y 2(x -y 21), 令y =0,得x =-y 1y 2=2,即直线AB 过定点C (2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =12×2|y 1|+12×2|y 2|+12×14|y 1|=18(9|y 1|+8|y 2|)≥18×29|y 1|×8|y 2|=3,当且仅当9|y 1|=8|y 2|且y 1y 2=-2时,等号成立.当y 21=y 22时,取y 1=2,y 2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =2×12×2×2+12×14×2=1728,而1728>3,故选B. 11.[2014·四川卷] 复数2-2i1+i =________.11.-2i [解析] 2-2i 1+i =2(1-i )2(1+i )(1-i )=-2i.12.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 12.1 [解析] 由题意可知,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12=f ⎝⎛⎭⎫-12=-4⎝⎛⎭⎫-122+2=1. 13.,[2014·四川卷] 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高度是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73)图1-313.60 [解析] 过A 点向地面作垂线,记垂足为D ,则在Rt △ADB 中,∠ABD =67°,AD =46 m ,∴AB =AD sin 67°=460.92=50(m),在△ABC 中,∠ACB =30°,∠BAC =67°-30°=37°,AB =50 m , 由正弦定理得,BC =AB sin 37°sin 30°=60 (m),故河流的宽度BC 约为60 m. 14.,[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.14.5 [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直,则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10.∴|P A ||PB |≤|P A |2+|PB |22=5,当且仅当|P A |=|PB |时等号成立. 15.,[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)15.①③④ [解析] 若f (x )∈A ,则f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得f (x )的值域包含于[-M ,M ]=[-1,1],但此时f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (a 0)=b -g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1 (x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确. 16.,,,[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.16.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z .所以,函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos α cos π4-sin αsin π4(cos 2 α-sin 2 α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角, 得α=3π4+2k π,k ∈Z ,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 17.,,,[2014·四川卷] 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.17.解:(1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为:X 10 20 100 -200 P38381818(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3),则 P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3)由(1)知,X 的数学期望为EX =10×38+20×38+100×18-200×18=-54.这表明,获得分数X 的均值为负.因此,多次游戏之后分数减少的可能性更大. 18.,,,[2014·四川卷] 三棱锥A - BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 是线段BC 的中点; (2)求二面角A - NP - M 的余弦值.图1-418.解:(1)如图所示,取BD 的中点O ,连接AO ,CO . 由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP . 又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.(2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ .由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A - NP - M 的一个平面角.由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点, 所以BR =AB 2-⎝⎛⎭⎫AC 22=102.因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC , 所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点, 所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中, cos ∠MNQ =MN 2NQ =BD 4NQ =105.故二面角A - NP - M 的余弦值是105. 方法二:由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝⎛⎭⎫-12,0,32,N ⎝⎛⎭⎫12,0,32,P ⎝⎛⎭⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝⎛⎭⎫0,32,-32. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0, 从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0, 即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎫0,32,-32=0, 从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1). 设二面角A - NP - M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105. 故二面角A -NP -M 的余弦值是105. 19.,[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .19.解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以 2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 其在x 轴上的截距为a 2-1ln 2.由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1.从而a n =n ,b n =2n ,所以数列{a n b n }的通项公式为a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以,T n =2n +1-n -22n.20.,,[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点);②当|TF ||PQ |最小时,求点T 的坐标.20.解:(1)由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1.(2)①证明:由(1)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ), 则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m .直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1.消去x ,得(m 2+3)y 2-4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.设M 为PQ 的中点,则M 点的坐标为⎝ ⎛⎭⎪⎫-6m 2+3,2m m 2+3.所以直线OM 的斜率k OM =-m3,又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上,因此OT 平分线段PQ .②由①可得,|TF |=m 2+1,|PQ |=(x 1-x 2)2+(y 1-y 2)2=(m 2+1)[(y 1+y 2)2-4y 1y 2]=(m 2+1)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫4m m 2+32-4·-2m 2+3 =24(m 2+1)m 2+3. 所以|TF ||PQ |=124·(m 2+3)2m 2+1= 124⎝⎛⎭⎫m 2+1+4m 2+1+4≥124(4+4)=33. 当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值. 故当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1). 21.,[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值;(2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b .所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增, 因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减, 因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e 2时,令g ′(x )=0,得x =ln(2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增,于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ; 当12<a <e 2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e 2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b . (2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负.故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点; 当a ≥e 2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意. 所以12<a <e 2. 此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2,则g (0)=a -e +2>0,g (1)=1-a >0,解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )).若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0,故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值范围是(e -2,1).。
2014年高三数学二模试卷(理科含答案)
1 / 42014年高考模拟考试试卷高三数学(理科)(考试时间120分钟,满分150分)考生注意:1. 每位考生应同时领到试卷与答题纸两份材料,所有解答必须写在答题纸上规定位置,写在试卷上或答题纸上非规定位置一律无效;2. 答卷前,考生务必将姓名、准考证号码等相关信息在答题纸上填写清楚; 3. 本试卷共23道试题,满分150分,考试时间120分钟。
一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1、经过点 (1, 0)A 且法向量为(2, 1)n =-的直线l 的方程是 .2、已知集合1|1, A x x R x ⎧⎫=<∈⎨⎬⎩⎭,集合B 是函数lg (1)y x =+的定义域,则A B = .3、方程22124x y m +=+表示焦点在y 轴上的双曲线,则实数m 取值范围是 .4、已知数列{}n a 是首项为1,公差为2的等差数列,()n S n N *∈表示数列{}n a 的前n 项和,则2lim1nn S n →∞=- .5、在261)x x-(的展开式中,含3x 项的系数等于 .(结果用数值作答) 6、方程sin cos 1x x +=-的解集是 . 7、实系数一元二次方程20x ax b ++=的一根为131ix i+=+(其中i 为虚数单位),则 a b += .8、某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在 全校学生中抽取1名学生,抽到高二年级女生的概率为0.19,现采用分层抽样(按年级分层) 在全校抽取100人,则应在高三年级中抽取的人数等于 .9、已知()2x f x =的反函数为111(), ()(1)(1)y f x g x f x f x ---==--+,则不等式()0g x <的解集是.10、已知圆柱M 的底面圆的半径与球O 的半径相同,若圆柱M 与球O 的表面积相等,则它们的体积之比V V 圆柱球:= (结果用数值作答). 11、在极坐标系中,圆4sin ρθ=的圆心到直线 ()6R πθρ=∈的距离等于 .12、如果函数(]()210,1()311,ax x f x ax x ⎧-∈⎪=⎨-∈+∞⎪⎩,2()log g x x =,关于x 的不等式()()0f x g x ⋅≥ 对于任意(0, )x ∈+∞恒成立,则实数a 的取值范围是 .2 / 413、已知二次函数2() ()f x x ax a x R =-+∈同时满足:①不等式()0f x ≤的解集有且只有一个元素;②在定义域内存在120x x <<,使得不等式12()()f x f x >成立.设数列{}n a 的前n 项 和为n S ,且()n S f n =.规定:各项均不为零的数列{}n b 中,所有满足10i i b b +⋅<的正整数i 的个数称为这个数列{}n b 的变号数.若令1n nab a =-(*n N ∈),则数列{}n b 的变号数等 于 .14、已知圆22: (01)O x y c c +=<≤,点 (, )P a b 是该圆面(包括⊙O 圆周及内部)上一点,则a b c ++的最小值等于 .二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
启用前☆请保密 【考试时间:2014年3月15日下午15:00~17:00】
2014年四川省凉山州高考理科数学二模试题及答案解析
数 学(理科) 第I 卷(选择题 50分)
一、选择题(共10个小题,每小题5分,在每小题所给出的四个选项中,只有一个符合要求)
1.设集合{}0432≥+-=x x x A ,集合{}
1log 2>x x B =,则=⋂B C A B ( )
A. ()2-,
∞ B.(]2-,∞ C.()2,0 D.(]2,0 2.若命题p :,N n ∈∃使20142>n
,则p ⌝为( )
A.,N n ∈∃20142≤n
B.,N n ∈∃20142≥n
C.,N n ∈∃20142≤n
D.,N n ∈∃20142<n
3.如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1的球体的表面积是( ) A.21+ B.222+ C.
3
1
D.22+
4.从500张100元,3张200元,2张300元的冬奥会门票中任选3张,则3张
相同的门票价格的概率是( )
A.
41 B.12079 C.43 D.24
23
5.如图所示的程序框图,如果输入135,225==n m ,那么输出的值为( ) A.45 B.5 C.15 D.90
6.函数x x x f sin 3log )(2-=的零点个数为( )
A.4
B.3
C.2
D.1
7.若21F F 、是双曲线15
42
2=-y x 的两个焦点,点P 是该双曲线上一点,满足921=+PF PF ,则=∙21PF PF A.4 B.5 C.
4
25
D.2 8.若顶点在原点,始边为x 轴的非负半轴的钝角α的终边与圆22
2
=+y x 相交于()11,y x A ,射线OA 绕点O 顺时针旋转30°后,与圆22
2
=+y x 相交于()22,y x B ,当21x x -有最大值时,=αcos ( )
A.23-
B.22-
C.426-
D.4
6
2- 9.设集合()(
){
}
0ln 412
<n n x x x A n +---=,当n 取遍区间()3,1内的一切实数,所有的集合n A 的并集是( )
A.()3ln 131
-, B.()61, C.()∞+,1 D.()21, 10.设函数()02)(2
2
≠--=ab x b a x f ,当11≤≤-x 时,()0≥x f 恒成立,当b
a 3
4+取得最小值时,a 值为( )
A.2
B.3
C.2±
D.3±
第II 卷(非选择题 100分)
二、填空题(每小题5分,共5个小题,满分25分)
11.若Z 是纯虚数,且2=z ,则=Z _______________. 12.在(
)
20
-
1x
的展开式中,系数为有理数的项共有________项.
13.已知()y x P ,满足⎪⎩
⎪
⎨⎧≥+-≥≤03211y x y x ,则点P 到直线0943=--y x 的距离的最小值为_____________.
14.设函数(
)
[]()2,2,02
sin
2)(2
-≥∈+=a x x
ax x x g π的值域为[]0,2-,则实数a 的值为_____________.
15.设数列{}n a 的前n 项和为n S ,且()....3,2,12,111===+n S a a n n ,给出下列四个命题: ①数列{}n a 是等比数列;②数列{}n S 是等比数列;③∃常数0>c ,使
()+=∈≤∑N n c a n
i i
11
恒成立;④若()()....3,2,10223=≥+-n a S n n γ恒成立,则⎪⎭⎫ ⎝
⎛
∞∈310-,γ.以上命题中正确的命题是__________________(写出所有正确命题的序号).
三、解答题(共6个小题,满分75分)
16.(本小题满分12分) 已知数列{}n a 是各项均为正数的等比数列,且,11=a 又1,4,1332--+a S a 成等差数列.
(I )求数列{}n a 的通项公式;(II )求数列{}
12log ++n n a a 的前n 项和.
17.(本小题满分12分)在△ABC 中,三个内角A,B,C 所对应边分别为c b a ,,,且a A b B A a 2c o s s i n s
i n 2
=+.
(I )求a
b
的值; (II )若A,B,C 成等差数列,求C cos 的大小.
18.(本小题满分12分)三棱柱111C B A ABC -,平面11ABB A ⊥平面ABC ,
21==AB AA ,︒=∠601AB A ,2==BC AC .O,E 分别是1,CC AB 中点.
(I )求证://OE 平面B C A 11;(II )求直线1BC 与平面11A ABB 所成角的大小.
19.(本小题满分12分)在学习完统计学知识后,两位同学对所在年级的1200名同学一次数学考试成绩作抽样调查,两位同学采用简单随机抽样方法抽取100名学生的成绩,并将所选的数学成绩制成如下统计表,设本次考
试的最低期望分数为90分,优等生最低分130分,并且考试成绩分数在[)90,85的学生通过自身努力能达到最低期望分数
.
(I )求出各分数段的频率并作出频率分布直方图;(II )用所抽学生的成绩在各个分数段的频率表示概率,请估计该校学生数学成绩达到最低期望的学生分数和优等生人数;(III )设考试成绩在[)90,85的学生成绩如下:80,81,83,84,86,89,从分数在[)90,85的学生中抽取2人出来检查数学知识的掌握情况,记所抽取学生中通过自身努力达到最低期望分数的人数为ξ,求ξ的分布列和期望.
20.(本小题满分13分)设非零平面向量,,()
,=θ,规
定θi n
n m =⊗.21F F ,是椭圆:C ()0122
22>>b a b
y a x =+的左、右焦点,点N M ,分别是其上的顶点,右顶点,且26=⊗,离心率31=e
(I )求椭圆C 的方程;(II )过点2F 的直线交椭圆C 于点B A ,,求:OB OA ⊗的取值范围.
21.(本小题满分14分)设函数ax x x f +=ln )(.
(I )当1-=a 时,求)(x f 的最大值;(II )若)(x f 在定义域上恒为增函数,求a 取值范围;
(III )设B A ,是函数图像上任意两点,AB 的中点为M ,若直线l 是)(x f y =的切线,且切点为N ,且
MN l //,证明:MN 与x 轴不可能垂直.。