《机械优化设计》复习题
《机械优化设计》试卷及答案 新 全

《机械优化设计》复习题及答案一、选择题1、下面 方法需要求海赛矩阵。
A 、最速下降法B 、共轭梯度法C 、牛顿型法D 、DFP 法2、对于约束问题()()()()2212221122132min 44g 10g 30g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 。
A .内点;内点B. 外点;外点C. 内点;外点D. 外点;内点3、内点惩罚函数法可用于求解__________优化问题。
A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1<b 1,计算出f(a 1)<f(b 1),则缩短后的搜索区间为___________。
A [a 1,b 1]B [ b 1,b]C [a1,b]D [a,b1]5、_________不是优化设计问题数学模型的基本要素。
A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽f(x k),下列不属于H k必须满足的条件的是________。
A. H k之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的。
A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,__________在构成搜索方向时没有使用到目标函数的一阶或二阶导数。
A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)f在R上为凸函数的(X(Xf为定义在凸集R上且具有连续二阶导数的函数,则)充分必要条件是海塞矩阵G(X)在R上处处。
A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是,。
机械优化设计试题及答案

机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。
2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。
#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。
如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。
2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。
若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。
#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。
机械优化设计复习题全集

一、 填空题1. 用最速下降法求()()2211f x =100)1x x -+-(x 最优解时,设()[]00.5,0.5T x =-,第一步迭代的搜索方向为_______________。
2. 机械优化设计采用数学的规划法,其核心一是最佳步长,二是搜索方向。
3. 当优化问题是凸规划的情况下,在任何局部最优解就是全域最优解。
4. 应用外推法来确定搜索区间时,最后得到的三点,即为搜索区间的始点,中间点和终点,他们的函数值形成趋势高低高。
5. 包含n 个设计变量的优化问题,称为 n 维优化问题。
6. 函数12T T x Hx B x c ++的梯度为_________。
7. 与负梯度成锐角的方向为函数值下降方向,与梯度成直角的方向为函数值的不变方向。
8. 设G 为n n ⨯对称正定矩阵,若n 维空间中有两个非零向量0d ,1d ,满足()010d Gd =,则0d ,1d 之间存在共轭关系。
9. 设计变量,目标函数,约束条件是优化设计问题的数学模型的基本要素。
10. 对于无约束二元函数()12,f x x ,若在()01234,x x x =点处取得极小值,其必要条件是在0x 点的梯度为0,充分条件是在0x 点的海赛矩阵正定。
11. K-T 条件可以叙述为在极值点处目标函数的负梯度为起作用的各约束函数梯度的非负线性组合。
12. 用黄金分割法求一元函数()21036f x x x =-+的极值点,初始搜索区间[][],10,10a b =-,经第一次区间消去后得到新区间_________。
13. 优化设计问题的数学模型的基本要素有设计变量,目标函数,约束条件。
14. 牛顿法搜索方向k d =()()21()k k f x f x --∇∇,其计算是大,且要求初始在级极小点附近位置。
15. 将函数()2112121210460f x x x x x x x =+---+表示成的形式_______。
16. 存在矩阵H ,向量1d ,2d ,当满足()0T i j d Hd =向量1d 和向量2d 是关于H 共轭方向。
~机械优化设计复习试题与答案

机械优化设计复习题则目标函数的极小值为(g(X)=c+x 0的最优化设计问题, 用外点罚函0.186 C (X)在区间[X 1,X 3]上为单峰函数,X 2为区间中一点,X 4为利用二次插值法公式求得的近似极值点。
如X 4- X 2>0,且F(X 4)>F(X 2),那么为求F(X)的极小值,X 4点在下一次搜索区间内将作为 ()。
一. 单项选择题 1.一个多元函数 X * 附近偏导数连续, 则该点位极小值点的充要条件为A . FX 0 B. 0, H X * 为正定 C . HX 0 D. 0, H X * 为负定2. 为克服复合形法容易产生退化的缺点,对于 维问题来说, 复合形的顶点数 K应( ) K n 1 B. K 2n C. K 2n D. n K 2n 13.目标函数 F (x )=4x 12 +5x 22 ,具有等式约束, 其等式约束条件为h(x)=2x 1+3x 2-6=0,A .1B . 19.05C . D.数法求解时,其惩罚函数表达式①A. aX+b+MB. aX+b+M (k){min [0,c+X ]}2, (k){min [0,c+X ]}2,C. aX+b+M (k){maX [c+X,0 ] }2, D. aX+b+M(k){maX [c+X,0 ]}2,10C. 13A 16 DM (k)为递增正数序列M 为递减正数序列 M (k) 为递增正数序列 hn M (k) 为递减正数序列(X,M (k))为()。
4. 对于目标函数 F(X)=ax+b 受约束于14.外点罚函数法的罚因子为()。
8.内点罚函数法的罚因子为续占八、、(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的()。
A. 凸函数B. 凹函数C. 严格凸函数D.严格凹函数10C. 13A 16 D11.在单峰搜索区间[X 1 X 3] (X 1<X 3)内,取一点X 2,用二次插值法计算得 X 4(在[X 1X 3]内),若X 2>X 4,并且其函数值F ( X 4) <F(X 2),则取新区间为( B.[X 2 X 3] C . [X1X 2] D. [X 4 X 3]n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为()7.已知二元二次型函数 F(X)= 1X T AX ,其中 A= 12 2 2,则该二次型是()的。
机械优化设计复习题最新版

机械优化设计复习题一、单项选择题5. 机械最优化设计问题多属于什么类型优化问题( )(P19-24)A .约束线性B .无约束线性C .约束非线性D .无约束非线性6. 工程优化设计问题大多是下列哪一类规划问题( )(P22-24)A .多变量无约束的非线性B .多变量无约束的线性C .多变量有约束的非线性D .多变量有约束的线性7. n 元函数在()k x 点附近沿着梯度的正向或反向按给定步长改变设计变量时,目标函数值( )(P25-28)A .变化最大B .变化最小C .近似恒定D .变化不确定8.()f x ∇方向是指函数()f x 具有下列哪个特性的方向( )(P25-28)A . 最小变化率B .最速下降C . 最速上升D .极值9. 梯度方向是函数具有( )的方向 (P25-28)A .最速下降B .最速上升C .最小变化D .最大变化率10. 函数()f x 在某点的梯度方向为函数在该点的()(P25-28)A .最速上升方向B .上升方向C .最速下降方向D .下降方向11. n 元函数()f x 在点x 处梯度的模为( )(P25-28)A.f ∇= B .12...nf f f f x x x ∂∂∂∇=++∂∂∂ C .22212()()...()n f f f f x x x ∂∂∂∇=++∂∂∂ D.f ∇=12.更适合表达优化问题的数值迭代搜索求解过程的是( ) (P25-31)A .曲面或曲线B .曲线或等值面C .曲面或等值线D .等值线或等值面13.一个多元函数()f x 在*x 点附近偏导数连续,则该点为极小值点的充要条件( )(P29-31)A.*()0f x ∇=B. *()0G x =C. 海赛矩阵*()G x 正定D. **()0G()f x x ∇=,负定14.12(,)f x x 在点*x 处存在极小值的充分条件是:要求函数在*x 处的Hessian 矩阵*()G x 为( )(P29-31) A .负定 B .正定 C .各阶主子式小于零 D .各阶主子式等于零15.在设计空间内,目标函数值相等点的连线,对于四维以上问题,构成了( )(P29-33)A .等值域B .等值面C .同心椭圆族D .等值超曲面16.下列有关二维目标函数的无约束极小点说法错误的是( )(P31-32)A .等值线族的一个共同中心点B .梯度为零的点C .驻点D .海赛矩阵不定的点17.设()f x 为定义在凸集D 上且具有连续二阶导数的函数,则()f x 在D 上为凸函数的充分必要条件是海赛矩阵()G x 在D 上处处( )(P33-35)A .正定B .半正定C .负定D .半负定18.下列哪一个不属于凸规划的性质( )(P33-35)A.凸规划问题的目标函数和约束函数均为凸函数B.凸规划问题中,当目标函数()f x 为二元函数时,其等值线呈现为大圈套小圈形式C.凸规划问题中,可行域{|()01,2,...,}i D x g x j m =≤=为凸集D.凸规划的任何局部最优解不一定是全局最优解19.拉格朗日乘子法是求解等式约束优化问题的一种经典方法,它是一种( )(P36-38)A .降维法B .消元法C .数学规划法D .升维法20.若矩阵A 的各阶顺序主子式均大于零,则该矩阵为( )矩阵(P36-45)A .正定B .正定二次型C .负定D .负定二次型21.约束极值点的库恩-塔克条件为1()()qi i i f x g x λ=∇=-∇∑,当约束条件()0(1,2,...)i g x i m ≤=和0i λ≥时,则q 应为( )(P39-47) A .等式约束数目 B .起作用的等式约束数目C .不等式约束项目D .起作用的不等式约束数目22.一维优化方法可用于多维优化问题在既定方向上寻求下述哪个目的的一维搜索( )(P48-49)A .最优方向B .最优变量C .最优步长D .最优目标23.在任何一次迭代计算过程中,当起始点和搜索方向确定后,求系统目标函数的极小值就是求( )的最优值问题(P48-49)A .约束B .等值线C .步长D .可行域24.求多维优化问题目标函数的极值时,迭代过程每一步的格式都是从某一定点()k x 出发,沿使目标函数满足下列哪个要求所规定方向()k d 搜索,以找出此方向的极小值(1)k x +( )(P48-49)A .正定B .负定C .上升D .下降25.对于一维搜索,搜索区间为[a,b],中间插入两个点1111a b a b <、,,计算出11()()f a f b <,则缩短后的搜索区间为( )(P49-51)A . [a 1,b 1]B . [b 1,b]C . [a 1,b]D . [a,b 1]26.函数()f x 为在区间[10,20]内有极小值的单峰函数,进行一搜索时,取两点13和16,若f (13)<f(16),则缩小后的区间为( )(P49-51)A.[10,16]B.[10,13]C. [13,16]D. [16,20]27.为了确定函数单峰区间内的极小点,可按照一定的规律给出若干试算点,依次比较各试算点的函数值大小,直到找到相邻三点的函数值按()变化的单峰区间为止 (P49-52)A .高-低-高B .高-低-低C .低-高-低D .低-低-高28.0.618法是下列哪一种缩短区间方法的直接搜索方法( )(P51-53)A .等和B .等差C .等比D .等积29.假设要求在区间[a,b]插入两点12αα、,且12αα< ,下列关于一维搜索试探方法——黄金分割法的叙述,错误的是( )(P51-53)A.其缩短率为0.618B.1()b b a αλ=--C.1()a b a αλ=+-D.在该方法中缩短搜索区间采用的是区间消去法。
机械优化设计复习题

一、填空题1.优化问题的三要素指的是:(1) ; 2);(3)。
2.采用间接法求解约束优化问题时,将函数进行特殊的加权处理,再结合,构成新的目标函数,即将原约束优化问题转化为问题,再进行求解。
3.优化问题的维数是的个数决定的。
4.优化设计问题的基本解法有和。
5.可行域是指满足。
6.惩罚函数法分为,和。
7.在随机方向法中,为了确定可行搜索方向,需要随机产生k个随机点,则需要个伪随机数。
8.可行搜索方向是指9.若n维空间中存在两个非零向量d0和d1,满足(d)T Gd1=0,则d、d1之间存在关系。
10.已知iq为(0,1)区间的伪随机数,则活动(a,b)区间伪随机数可通过表达式:进行计算。
11.数学规划法的迭代公式是,其核心是和。
12.设计空间是指。
13.机械优化设计数学模型建立的要素包括:(1);(2);(3);(4)。
14. 在优化设计中,优化问题的维数是由的个数决定的。
15. 最速下降法的搜索方向为。
16. 可行域是指满足所有的点的集合。
17.区分各种不同的优化方法的主要依据是的不同。
18. 等值线是针对 函数而言的。
19.牛顿法的搜索方向为 。
二、简答题(本大题共4小题,每小题5分,共20 分)1.简要说明单纯形替换法的基本思路。
2. 请写出最速下降法的基本思路。
3.判断图中哪些约束函数是起作用约束?(1)图1中有无起作用约束?若有,写出是哪个约束函数?(2)图2中有无起作用约束?若有,写出是哪个约束函数?4. 请列出库恩塔克条件的数学表达式,并简述其几何意义?5.简述机械优化设计的过程分哪两部分内容。
6. 可行方向指的是同时满足两个条件,并分别写出数学表达式。
7.简述内点惩罚函数法惩罚因子的变化趋势。
8.已知 i q 为(0,1)区间的伪随机数,如何获得(0.5,3.5)区间伪随机数。
三、计算题1、某项工程需成套的横截面积相同且长度不同的钢梁,每一套由7根2m 长与2根7m 长的钢梁组成。
《机械优化设计》复习题
《机械优化设计》复习题一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 。
2、机械优化设计采纳数学规划法,其核心一是 ,二是 。
3、当优化问题是________的情形下,任何局部最优解确实是全域最优解。
4、应用外推法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 趋势。
5、包含n 个设计变量的优化问题,称为 维优化问题。
6、函数 C X B HX X T T ++21的梯度为 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在______关系。
8、与负梯度成锐角的方向为函数值 方向,与梯度成直角的方向为函数值 方向。
9、 、 、 是优化设计问题数学模型的差不多要素。
10、关于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 ,充分条件是 。
11、 条件能够叙述为在极值点处目标函数的负梯度为起作用的各约束函数梯度的非负线性组合。
12、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 。
13、优化设计问题的数学模型的差不多要素有 、 、 。
14、牛顿法的搜索方向d k = ,其运算量 ,且要求初始点在极小点 位置。
15、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 。
16、存在矩阵H ,向量 d 1,向量 d 2,当满足 ,向量 d 1和向量 d 2是关于H 共轭。
17、采纳外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩处因子r 数列,具有 特点。
机械优化设计复习题及答案
机械优化设计复习题一.单项选择题1.一个多元函数()F X在X* 附近偏导数连续,则该点位极小值点的充要条件为()A.()*0F X∇= B. ()*0F X∇=,()*H X为正定C.()*0H X= D. ()*0F X∇=,()*H X为负定2.为克服复合形法容易产生退化的缺点,对于n维问题来说,复合形的顶点数K应()A.1K n≤+ B. 2K n≥ C. 12n K n+≤≤ D. 21n K n≤≤-3.目标函数F(x)=4x21+5x22,具有等式约束,其等式约束条件为h(x)=2x1+3x2-6=0,则目标函数的极小值为()A.1 B. 19.05 C.0.25 D.0.14.对于目标函数F(X)=ax+b受约束于g(X)=c+x≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M(k))为( )。
A. ax+b+M(k){min[0,c+x]}2,M(k)为递增正数序列B. ax+b+M(k){min[0,c+x]}2,M(k)为递减正数序列C. ax+b+M(k){max[c+x,0]}2,M(k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A0.186 C6.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。
如x 4-x 2>0,且F(x 4)>F(x 2),那么为求F(X)的极小值,x 4点在下一次搜索区间内将作为( )。
A.x 1 B.x 3 C.x 2D.x 47.已知二元二次型函数F(X)=AX X 21T ,其中A=⎥⎦⎤⎢⎣⎡4221,则该二次型是( )的。
A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为( )。
-机械优化设计复习题及答案
机械优化设计复习题一。
单项选择题1.一个多元函数在X* 附近偏导数连续,则该点位极小值点的充要条件为()A. B. ,为正定C. D。
,为负定2.为克服复合形法容易产生退化的缺点,对于n维问题来说,复合形的顶点数K应()A. B。
C。
D。
3.目标函数F(x)=4x+5x,具有等式约束,其等式约束条件为h(x)=2x1+3x2—6=0,则目标函数的极小值为()A.1 B. 19。
05 C.0。
25 D.0。
14.对于目标函数F(X)=ax+b受约束于g(X)=c+x0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M(k))为()。
A. ax+b+M(k){min[0,c+x]}2,M(k)为递增正数序列B。
ax+b+M(k){min[0,c+x]}2,M(k)为递减正数序列C. ax+b+M(k){max[c+x,0]}2,M(k)为递增正数序列hnD。
ax+b+M(k){max[c+x,0]}2,M(k)为递减正数序列1。
B 2.C 3。
B 4。
B 5.A 6.B 7。
D 8。
B 9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17。
D 18。
A19.B。
20。
D 21。
A 22。
D 23.C 24。
B 25.D 26。
D 27。
A 28。
B 29。
B 30.B5。
黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是()。
A。
0.382 B.0.186 C.0.618 D。
0.8166.F(X)在区间[x1,x3]上为单峰函数,x2为区间中一点,x4为利用二次插值法公式求得的近似极值点。
如x4—x2〉0,且F(x4)>F(x2),那么为求F(X)的极小值,x4点在下一次搜索区间内将作为().A。
x1 B。
x3 C。
x2D。
x47.已知二元二次型函数F(X)=,其中A=,则该二次型是()的.A。
正定 B。
负定 C.不定 D.半正定8.内点罚函数法的罚因子为()。
《机械优化设计》试卷和答案
《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50] 。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向 二是计算最佳步长因子 。
3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数 C X B HX X T T ++21的梯度为 HX+B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在_共轭_____关系。
8、 设计变量 、 约束条件 、 目标函数 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 梯度为零 ,充分条件是 海塞矩阵正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36,2.36] 。
12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数 、13、牛顿法的搜索方向d k = ,其计算量 大 ,且要求初始点在极小点 逼近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足 (d1)TGd2=0 ,向量 d 1和向量 d 2是关于H 共轭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机械优化设计》复习题一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 。
2、机械优化设计采用数学规划法,其核心一是 ,二是 。
3、当优化问题是________的情况下,任何局部最优解就是全域最优解。
4、应用外推法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 趋势。
5、包含n 个设计变量的优化问题,称为 维优化问题。
6、函数 C X B HX X T T ++21的梯度为 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在______关系。
8、与负梯度成锐角的方向为函数值 方向,与梯度成直角的方向为函数值 方向。
9、 、 、 是优化设计问题数学模型的基本要素。
10、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 ,充分条件是 。
11、 条件可以叙述为在极值点处目标函数的负梯度为起作用的各约束函数梯度的非负线性组合。
12、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 。
13、优化设计问题的数学模型的基本要素有 、 、 。
14、牛顿法的搜索方向d k = ,其计算量 ,且要求初始点在极小点 位置。
15、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 。
16、存在矩阵H ,向量 d 1,向量 d 2,当满足 ,向量 d 1和向量 d 2是关于H 共轭。
17、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有 特点。
18、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求 。
二、选择题1、下面 方法需要求海赛矩阵。
A 、最速下降法B 、共轭梯度法C 、牛顿型法D 、DFP 法2、对于约束问题()()()()2212221122132min 44g 10g 30g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 。
A .内点;内点B. 外点;外点C. 内点;外点D. 外点;内点3、内点惩罚函数法可用于求解__________优化问题。
A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、拉格朗日乘子法是求解等式约束优化问题的一种经典方法,它是一种___________。
A 、降维法B 、消元法C 、数学规划法D 、升维法5、对于一维搜索,搜索区间为[a,b],中间插入两个点a1、b1,a1<b1,计算出f(a1)<f(b1),则缩短后的搜索区间为___________。
A [a1,b1]B [ b1,b]C [a1,b]D [a,b1]6、_________不是优化设计问题数学模型的基本要素。
A设计变量B约束条件C目标函数D 最佳步长7、变尺度法的迭代公式为x k+1=x k-αk H k▽f(x k),下列不属于H k必须满足的条件的是________。
A. H k之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定8、函数)f在某点的梯度方向为函数在该点的。
(XA、最速上升方向B、上升方向C、最速下降方向D、下降方向9、下面四种无约束优化方法中,__________在构成搜索方向时没有使用到目标函数的一阶或二阶导数。
A 梯度法B 牛顿法C 变尺度法D 坐标轮换法10、设)(Xf在R上为凸函数f为定义在凸集R上且具有连续二阶导数的函数,则)(X的充分必要条件是海塞矩阵G(X)在R上处处。
A 正定B 半正定C 负定D 半负定11、通常情况下,下面四种算法中收敛速度最慢的是A 牛顿法B 梯度法C 共轭梯度法D 变尺度法12、一维搜索试探方法——黄金分割法比二次插值法的收敛速度。
A、慢B、快C、一样D、不确定13、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是,假设要求在区间[a,b]插入两点α1、α2,且α1<α2。
A、其缩短率为0.618B、α1=b-λ(b-a)C、α1=a+λ(b-a)D、在该方法中缩短搜索区间采用的是外推法。
14、与梯度成锐角的方向为函数值方向,与负梯度成锐角的方向为函数值方向,与梯度成直角的方向为函数值方向。
A、上升B、下降C、不变D、为零15、二维目标函数的无约束极小点就是。
A、等值线族的一个共同中心B、梯度为0的点C、全局最优解D、海塞矩阵正定的点16、最速下降法相邻两搜索方向d k 和d k+1必为 向量。
A 相切B 正交C 成锐角D 共轭17、下列关于共轭梯度法的叙述,错误的是 。
A 需要求海赛矩阵B 除第一步以外的其余各步的搜索方向是将负梯度偏转一个角度C 共轭梯度法具有二次收敛性D 第一步迭代的搜索方向为初始点的负梯度18、下列关于内点惩罚函数法的叙述,错误的是 。
A 可用来求解含不等式约束和等式约束的最优化问题。
B 惩罚因子是不断递减的正值C 初始点应选择一个离约束边界较远的点。
D 初始点必须在可行域内三、问答题1、试述两种一维搜索方法的原理,它们之间有何区别?2、共轭梯度法是利用梯度求共轭方向的,那共轭方向与梯度之间有什么关系?3、惩罚函数法求解约束优化问题的基本原理是什么?4、与最速下降法和牛顿法比较,试述变尺度法的特点。
5、在变尺度法中,为使变尺度矩阵k H 与1 k G 近似,并具有容易计算的特点,k H 必须附加哪些条件?6、试述数值解法求最佳步长因子的基本思路。
7、试述求解无约束优化问题的最速下降法与牛顿型方法的优缺点。
8、写出用数学规划法求解优化设计问题的数值迭代公式,并说明公式中各变量的意义,并说明迭代公式的意义。
9、变尺度法的搜索方向是什么?变尺度矩阵应满足什么条件?变尺度矩阵在极小点处逼近什么矩阵?并写出其初始形式。
10、什么是共轭方向?满足什么关系?共轭与正交是什么关系?11、请写出应用MATLAB 优化工具箱处理约束优化设计问题的基本步骤。
四、解答题1、试用梯度法求目标函数f(X)=1.5x 12+0.5x 22- x 1x 2-2x 1的最优解,设初始点x (0)=[-2,4]T ,选代精度ε=0.02(迭代一步)。
2、试用牛顿法求f( X )=(x 1-2)2+(x 1-2x 2)2的最优解,设初始点x (0)=[2,1]T 。
3、设有函数 f(X)=x 12+2x 22-2x 1x 2-4x 1,试利用极值条件求其极值点和极值。
4、求目标函数f( X )=x 12+x 1x 2+2x 22 +4x 1+6x 2+10的极值和极值点。
5、试证明函数 f( X )=2x 12+5x 22 +x 32+2x 3x 2+2x 3x 1-6x 2+3在点[1,1,-2]T 处具有极小值。
6、给定约束优化问题min f(X)=(x 1-3)2+(x 2-2)2s.t. g 1(X)=x 12+x 22-5≤0g 2(X)=x 1+2x 2-4≤0g 3(X)=-x 1≤0g 4(X)=-x 2≤0验证在点T X ]2[,1=Kuhn-Tucker 条件成立。
7、设非线性规划问题1)(0)(0)(..)2()(min2221322112221≤-+-=≤-=≤-=+-=x x X g x X g x X g t s x x X f 用K-T 条件验证[]T X 0,1*=为其约束最优点。
8、用共轭梯度法求函数12122212122123),(x x x x x x x f --+=的极小点。
9、已知目标函数为f(X)= x 1+x 2,受约束于:g 1(X)=-x 12+x 2≥0g 2(X)=x 1≥0写出内点罚函数。
10、已知目标函数为f(X)=( x 1-1)2+(x 2+2)2受约束于:g 1(X)=-x 2-x 1-1≥0g 2(X)=2-x 1-x 2≥0g 3(X)=x 1≥0g 4(X)=x 2≥0试写出内点罚函数。
11、如图,有一块边长为6m 的正方形铝板,四角截去相等的边长为x 的方块并折转,造一个无盖的箱子,问如何截法(x 取何值)才能获得最大容器的箱子。
试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序。
12、某厂生产一个容积为8000cm3的平底无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型以及用MATLAB软件求解的程序。
13、一根长l的铅丝截成两段,一段弯成圆圈,另一段弯折成方形,问应以怎样的比例截断铅丝,才能使圆和方形的面积之和为最大,试写出这一优化设计问题的数学模型以及用MATLAB软件求解的程序。
14、求表面积为300m2的体积最大的圆柱体体积。
试写出这一优化设计问题的数学模型以及用MATLAB软件求解的程序。
15、薄铁板宽20cm,折成梯形槽,求梯形侧边多长及底角多大,才会使槽的断面积最大。
写出这一优化设计问题的数学模型,并用matlab软件的优化工具箱求解(写出M文件和求解命令)。
16、已知梯形截面管道的参数是:底边长度为c,高度为h,面积A=64516mm2,斜边与底边的夹角为θ,见图1。
管道内液体的流速与管道截面的周长s的倒数成比例关系(s只包括底边和两侧边,不计顶边)。
试按照使液体流速最大确定该管道的参数。
写出这一优化设计问题的数学模型。
并用matlab软件的优化工具箱求解(写出M文件和求解命令)。
17、某电线电缆车间生产力缆和话缆两种产品。
力缆每米需用材料9kg,3个工时,消耗电能4kW·h,可得利润60元;话缆每米需用材料4kg,10个工时,消耗电能5kW·h,可得利润120元。
若每天材料可供应360kg,有300个工时消耗电能200kW·h可利用。
如要获得最大利润,每天应生产力缆、话缆各多少米?写出该优化问题的数学模型以及用MATLAB软件求解的程序。