§3.1 正整数指数函数

合集下载

3.1《正整数指数函数》ppt课件

3.1《正整数指数函数》ppt课件

2 2 x 1 即 3 <3 ,所以
x>1,x∈N+,
故不等式的解集为{x|x>1,且 x∈N+}.
• [规律总结] 由正整数指数函数的性质:y= ax(a>0,a≠1,x∈N+)是增函数,得a>1;y =ax(a>0,a≠1,x∈N+)是减函数,得0<a<1. 根据这一性质可以求参数的取值范围.另外, 我们也可以根据这一性质解不等式.
[规律总结]正确地建立函数模型,用好函数模型,此类问 题就不难了.
在定义域 N+上单调递增. 5x (2)正整数指数函数 y=( ) (x∈N+)的图像如图(2),在定义 6 域 N+上单调递减.
• 利用正整数指数函数的性质解不等式
• 解下列不等式: • (1)4x>23-2x(x∈N+); • (2)0.3×0.4x<0.2×0.6x(x∈N+). • [思路分析] 根据正整数指数函数的性质,将 所给不等式化为一元一次不等式的形式,再 进行求解,一定要注意题中所给未知数的取 值范围.
• [辨析] 第x年的木材蓄积量不是200(1+ 5%·x),而是200(1+5%)x,是指数关系.
• [正解] (1)现有木材的蓄积量为200万立方 米,经过1年后木材蓄积量为200+200×5% =200(1+5%);经过2年后木材蓄积量为 200(1+5%)+200(1+5%)×5%=200(1+ 5%)2; • 所以经过x年后木材蓄积量为200(1+5%)x. • 所以y=f(x)=200(1+5%)x(x∈N+).
[答案] D
)
B.一条下降的曲线 D.一系列下降的点
1 [解析] 底数 0< <1,函数为减函数,图像下降.因为 x∈ 2 N+,所以其图像为一系列下降的点.

正整数指数函数

正整数指数函数

[ 方法总结]
正整数指数函数的图像是由一些孤立的点
组成的.当 0<a<1 时,函数 y=ax(x∈N+)是减函数;当 a>1 时,函数 y=ax(x∈N+)是增函数.
用一用
下面给出的四个正整数指数函数中, 是减函数的为( ) C (A)y=1.2x (x∈N+) (B) y=3x (x∈N+)
(C) y=0.999x (x∈N+)
[误解]
(1)现有木材蓄积量为 200 万立方米, 经过 1 年后
木材蓄积量为 200+200×5%=200(1+5%); 经过 2 年后木材蓄积量为 200(1+5%×2); 经过 x 年后木材蓄积量为 200(1+5%· x); 所以 y=f(x)=200(1+5%· x)(x∈N+). (2)设 x 年后木材蓄积量为 300 万立方米, 则 200(1+5%· x) 1 2 1 100 3 =300,所以 x· 5%= -1,x= = × =10. 2 5 2 5 100 答:经过 10 年,木材蓄积量能达到 300 万立方米.
+n
x
正整数集 N+
(2)am
-n
(3)amn
(4)ambm
am (5)bm
[例 4]
按复利计算利率的一种储蓄,本金为 a 元,每期
利率为 r,设本利和为 y,存期为 x,写出本利和 y 随存期 x 变化的函数关系式.如果存入本金 1000 元,每期利率为 2.25%,试计算 5 期后的本利和是多少? [分析] 复利是一种计算利息的方法, 即把前一期的利息
二、正整数指数幂 正 整 数 指 数 幂 am(a>0 , m ∈ N + ) , 事 实 上 是 一 种 缩 写 : =am.根据缩写的这种意义可以得到如下的性质: (1)anam=an+m; (2)an÷ am=an-m(a≠0); (3)(an)m=amn; (4)(ab)n=anbn;

3.1正整数指数函数

3.1正整数指数函数

练习:下列给出的四个正整数指 数函数中,是增函数的为( )
(1)y=3x (x ∈ N+ ); (2)y=3-x (x∈ N+ ); (3)y=0.93x (x ∈ N+ ); (4)y=(1/2)x (x ∈ N+ ).
小结
1.正整数指数函数的概念; 2.正整数指数函数的图像特征.
第三章指数函数和对数函数3.1正整数源自数函数画板世界人口
例1细胞分裂 例题2氟化物破坏臭氧层
分析理解
问题1研究了随分裂次数增加细胞个 数增加的趋势,可以知道,细胞个数y与 分裂次数n之间存在着函数关系
y=2n ,n∈N+ ;
问题2研究了随年份增加臭氧含量
减少的趋势,同样可知,臭氧含量Q与时
间t之间存在着函数关系
Q=0.9975t ,t∈ N+ .
分析 y=2n ,n∈N+ Q=0.9975t ,t∈ N+
1)底数是常数; 2)自变量在指数的位置上; 3)自变量在正整数范围内取值; 4)自变量的系数为1; 5)幂前面的系数也是1.
正整数指数函数的定义:
一般的,函数y=ax (a>0,a≠1,x ∈ N+ )叫做正整数指数函数,其中x是 自变量,定义域是正整数集N+ .
在研究增长问题、复利问题、浓 度问题中常见这类函数.
练习:判断下列函数是否 为正整数指数函数?
(1)y=3x (x ∈ N+ ); (2)y=3-x (x∈ N+ ); (3)y=2×3x (x ∈ N+ ); (4)y=x3 (x ∈ N+ ).
思考:
在y=ax (a>0,a≠1,x ∈ N+ )中,当 a>1时,增减性如何?当0<a<1呢?

正整数指数函数 教案

正整数指数函数 教案

正整数指数函数教学设计课题正整数指数函数授课人课时安排 1 课型新授授课时间课标依据 1.在实际背景下了解正整数指数函数的概念。

2.理解具体的正整数指数函数的图像特征及单调性。

3.借助计算器、计算机的运算功能,计算一些正整数指数函数值。

教材分析正整数指数函数的引入有两个基础:一是第二章的函数基础,“函数式一种特殊的映射,是从非空数集到非空数集上的映射”,因此,我们可以建立一个正整数集到正整数集的映射--正整数指数函数;二是学生已有这方面的大量生活体验,他们熟悉的增长问题,复利问题等都可以归结为正整数指数函数。

学情分析我们在前两章学习了集合与函数的概念,进一步深化了函数的概念与定义方法,为加强学生应用数学的意识,引导他们把数学只是应用到相关学科和社会生活,培养他们解决实际问题的能力,应多用理论联系实际,加深学生理解。

三维目标知识与能力:了解正整数指数函数的概念;过程与方法:.能画出一些简单的正整数指数函数的图像,了解它们的特征;情感态度与价值观:领会数形结合、分类讨论等数学思想方法.教学重难点教学重点:了解正整数指数函数的概念;教学难点:.能画出一些简单的正整数指数函数的图像,了解它们的特征;教法本课采用PPT教学,让学生在体会细胞分裂的基础上,理解正整与学法数指数函数。

教学资源教学课件教学活动设计师生活动设计意图批注新课导入:1.某种细胞分裂时,由1个分裂为2个,2个分裂为4个,……一直分裂下去(如图)(1)用列表表示一个细胞分裂次数为1.2.3.4.5.6.7.8.时,得到的细胞个数分别为多少?用图像表示1个细胞分裂次数n(n∈N+)与得到的细胞个数y之间的关系:(3)写出y与n之间的关系式,试用科学计算器计算细胞分裂15、20次后得到的细胞个数2.电冰箱使用的氟化物的释放会破坏大气层中的臭氧层。

臭氧含量Q近似满足关系式Q Q0.9975=⨯t,其中0Q是臭氧的初始量,t是时间(年)。

设0Q=1.分裂次数(n)1 2 3 4 5 6细胞个数(y)以生物和生活中的问题导入,引出本节课的内容。

精 品 教 学 设 计3.1正整数指数函数

精 品 教 学 设 计3.1正整数指数函数

精品教学设计§1 正整数指数函数教学目的:1.理解正整数指数函数的概念,了解其图象及性质.2.能初步应用正整数指数函数性质解决实际应用问题教学重点:正整数指数函数的图象、性质教学难点:正整数指数函数的概念及图象.授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教材分析:正整数指数函数是在初中学习了正整数指数幂运算、以及函数的基本概念性质的基础上,并结合实际问题引入.这样既说明指数函数同时,由于正整数指数函数的局限性(定义域为正整数集),为后面学习指数幂概念的扩充及指数函数留下伏笔.教学过程:一、复习引入:引例1:某种细胞分裂时,由一个分裂成2个,2个分裂成4个,……一直分裂下去.(1)用列表表示1个细胞分裂次数分别为1,2,3,4,5,6,7,8时,得到的细胞个数;)与得到的细胞个数(2)用图像表示1个细胞分裂次数n(n∈N+y之间的关系;(3)写出y与n之间的关系式,试用科学计算器计算细胞分裂15、20次得到的细胞个数.)和它的图引例1主要目的是为了得出函数关系:2ny= (n∈N+像.引例2:电冰箱使用的氟化物的释放会破坏大气层中的臭氧层. 臭氧含量 Q 近似满足关系式 Q=Q×0.9975t,其中0Q是臭氧的初始量,t是时间(年). 这里设Q =1.(1)计算经过20,40,60,80,100年,臭氧量Q;(2)用图像表示每隔20年臭氧含量Q 的变化;(3)试分析随着时间的增加,臭氧含量Q 是增加还是减少.引例 2 除了进一步认识函数0.9975()t Q t N +=∈的图像外,又直观感受其单调性.在2n y =(n ∈N + ),0.9975()t Q t N +=∈中指数为正整数的n,t 是自变量,底数是一个大于0且不等于1的常量.我们把这种自变量在指数位置上且自变量取正整数而底数是一个大于0且不等于1的常量的函数叫做正整数指数函数.二、新授内容:1.正整数指数函数的定义:函数(01,)x y a a a x N +=>≠∈且叫做正整数指数函数,其中x 是自变量,函数定义域是正整数集N +.注意: (1)定义域是正整数集;(2)图像是一列孤立的点;(3)当a>1时是增函数,当0<a<1时是减函数.2. 复利和公式:正整数指数函数在研究增长问题,复利问题,质量浓度问题中常有应用. 通过概括这类问题,我们得到一个常用模型,通常称之为“复利和公式”.复利和公式:设本金为a ,年增长率为p ,则x 年后本利和A 为(1)x A a p =+三、讲解范例:例1 某地现有森林面积为1000 h ㎡,每年增长5%.经过x (x ∈N +)年,森林面积为y h ㎡. 写出x,y 间的函数关系式,并求出经过5年,森林的面积.解: y 与x 之间的函数关系式为1000(15%)()x y x N +=+∈.经过5年,森林的面积为 521000(15%)1276.28()hm +=. (答略)例2 已知镭经过100年剩留原来质量的95.76﹪.设质量为1的镭经过x 年后的剩留量为y ,求y 关于x 的函数解析式.解:设经过1年,镭剩留原来质量的a ﹪.则,()100xa y x N +⎛⎫=∈ ⎪⎝⎭∵1000.9576100a ⎛⎫= ⎪⎝⎭, ∴11000.9576.100a = ∴1000.9576,().x y x N +=∈ (答略)例3 某商品1月份降价10﹪,此后价格又上涨三次,使目前价格与1月份降价前相同. 问三次价格的平均上涨率是多少? 解: 设原价格为1,平均上涨率为x ﹪,则 30.9(1%)1x +=∴%1x =.1. (答略) 例4已知光线通过1块玻璃,光线的强度要损失掉10﹪ . 要使通过玻璃的光线的强度减弱到原来的1/3以下,问至少需要重叠多少块玻璃?解: 设需要重叠n 块玻璃,则1(110%)3n -≤ 利用计算器可解得n ≥11. (答略)四、练习:1. 给出下列函数:(1)4x y =;(2)4y x =(x N +∈);(3)4x y =-(x N +∈);(4)(4)x y =-(x N +∈);(5)x y π=(x N +∈);(6)1(21)(,1,)2x y a a a x N +=->≠∈. 其中为正整数函数的是_____.2. 比较大小:(1)191.58,201.58;(2)20080.5,20090.5.3. 按复利计算利息是目前储蓄计息的一种方式.设本金为a 元,每期利率为r ,记本利和为y ,存期为x ,写出本利和y 随存期x 变化的函数关系式.如果存入本金1000元,每期利率为2.25﹪,试求5期后的本利和是多少?(精确到1元)解:本利和y随存期x变化的函数关系式为y a r=+(1)x当a=1000,r=2.25﹪,x=5时,利用计算器可得y≈1118.即5期后的本利和是1118元.4. 画出函数1=(x∈Z)的图像,分析函数图像的对称性,单调性.2xy-函数有无最值?解:(图像略)函数的图像关于直线x=1对称.函数在{x∈Z|x<1}上是减函数;在{x∈Z|x≥1}上是增函数.函数有最小值1.五、小结本节课学习了以下内容:正整数指数函数概念,正整数指数函数的图象和单调性.研究增长等问题常用的“复利和公式”. 六、课后作业:。

正整数指数函数

正整数指数函数

每年比上一年增加 p%.写出年产量随经过年数变化的函数关
系式. y=10 000(1+ p%)m ( m∈N+), 练习4.抽气机每次抽出容器内空气的60%,要使容器内的空气 8 少于原来的0.1%,则至少要抽_________次.
四、小Leabharlann 结1.一般地,函数 y=ax (a>0, a≠1, x∈N+)叫做正整数指数函 数,其中x是自变量,定义域是正整数集N+. 2.正整数指数函数的图像特征: (1)图像是一群点; (2)当a>1时,是单调递增函数; (3)当0<a<1时,是单调递减函数; (4)ax的系数为1.
导入新课:
1992年底世界人口达到54.8亿,若人口的年平 均增长率为2%,到2009年底人口将达到多少亿? 设年数为x,人口数为y,则 y=54.8(1+2%)x,其中 x∈N+
§1 正整数指数函数 一、实例分析: 问题1. 归纳1:细胞分裂次数n与细胞个数 y之间的函数关系式为 y=2n , n∈N+. 问题2. 归纳2: 臭氧含量Q与时间 t之间的函数关系近似地满足 Q=0.9975t , t∈N+. 注意!在研究增长问题、复利问题、质量溶度问题中 常见这类函数.
三、例题与练习: 例1.判断下列函数是否为正整数指数函数: (1) y=3x x∈N+; (2) y=3-x , x∈N+; (3)y=1x; (4) y=2×3x , x∈N+; (5) y=x3 , x∈N+; (6)y=(-2)x; (7)y=2x , x∈R. 练习1.函数 y=(3a-2)x表示正整数指数函数应满足什么条件? 例2.下列给出的四个正整数指数函数中,是减函数的是( A. y=1.2x , x∈N+; B. y=3x , x∈N+; )

高中数学教材目录

高中数学目录必修一第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1交集与全集3.2全集与补集阅读材料第二章函数§1 生活中的变量关系§2 对函数的进一步认识2.1函数概念2.2函数的表示法2.3映射阅读材料生活中的映射§3 函数的单调性§4 二次函数的再研究4.1二次函数的图像4.2二次函数的性质§5 简单的幂函数阅读材料函数概念的发展——从解析式到对应关系课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质2.1指数概念的扩充2.2指数运算的性质§3 指数函数3.1指数函数的概念3.2指数函数y=2x和y=()x的图像和性质3.3指数函数的图像和性质§4 对数4.1对数及其运算4.2换底公式§5 对数函数5.1对数函数的概念5.2 y=log2x的图像和性质5.3对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较阅读材料历史上数学计算方面的三大发明第四章函数应用§1 函数与方程1.1利用函数性质判定方程解的存在1.2利用二分法求方程的近似解§2 实际问题的函数建模2.1实际问题的函数刻画2.2用函数模型解决实际问题2.3函数建模案例阅读材料函数与中学数学探究活动同种商品不同型号的价格问题必修二第一章立体几何初步1.简单几何体1.1简单旋转体1.2简单多面体2.直观图3.三视图3.1简单组合体的三视图3.2由三视图还原成实物图4.空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理5.平行关系5.1平行关系的判定5.2平行关系的性质6.垂直关系6.1垂直关系的判定6.2垂直关系的性质7.简单几何体的面积和体积7.1简单几何体的侧面积7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3球的表面积和体积阅读材料蜜蜂是对的课题学习正方体截面的形状第二章解析几何初步1.直线与直线的方程1.1直线的倾斜角和斜率1.2直线的方程1.3两条直线的位置关系1.4两条直线的交点1.5平面直角坐标系中的距离公式2.圆与圆的方程2.1圆的标准方程2.2圆的一般方程2.3直线与圆、圆与圆的位置关系3.空间直角坐标系3.1空间直角坐标系的建空间直角坐标系中点3.3空间两点间的距离公式阅读材料笛卡尔与解析几何探究活动1 打包问题探究活动2 追及问题必修三第一章统计1.从普查到抽样阅读材料选举的预测2.抽样方法2.1简单随机抽样2.2分层抽样与系统抽样3.统计图表4.数据的数字特征4.1平均数、中位数、众数、极差、方差4.2标准差5.用样本估计总体5.1估计总体的分布5.2估计总体的数字特征阅读材料标准差的用途6.统计活动:结婚年龄的变化7.相关性8.最小二乘估计阅读材料统计小史课题学习调查通俗歌曲的流行趋势第二章算法初步1.算法的基本思想1.1算法案例分析1.2排序问题与算法的多样性阅读材料物不知数2.算法框图的基本结构及设计2.1顺序结构与选择结构2.2变量与赋值2.3循环结构阅读材料美索不达米亚人的开方算法3.几种基本语句3.1条件语句3.2循环语句阅读材料算法的复杂性课题学习确定线段n等分点的算法第三章概率1.随机事件的概率1.1频率与概率1.2生活中的概率2.古典概型2.1古典概型的特征和概率计算公式2.2建立概率模型2.3互斥事件3.模拟方法——概率的应用探究活动用模拟方法估计圆周率π的值附录1 4000以下的素数表附录2上机实现参考程序必修四第一章三角函数1.周期现象2.角的概念与推广3.弧度制4.正弦函数和余弦函数的定义与诱导公式4.1任意角的正弦函数、余弦函数的定义4.2单位圆与周期性4.3单位圆与诱导公式5.正弦函数的性质与图像5.1从单位圆看正弦函数的性质5.2正弦函数的图像5.3正弦函数的性质6.余弦函数的图像和性质6.1余弦函数的图像6.2余弦函数性质7.正切函数7.1正切函数定义7.2正切函数的图像与性质7.3正切函数的诱导公式8.函数y=A sin(ωx+ψ)的图像9.三角函数的简单应用阅读材料数学与音乐课题学习利用现代信息技术探究y=A sin(ωx+ψ)(A>0,ω>0)的图像第二章平面向量1.从位移、速度、力到向量1.1位移、速度和力1.2向量的概念2.从位移的合成到向量的加法2.1向量的加法2.2向量的减法3.从速度的倍数到数乘向量3.1数乘向量3.2平面向量基本定理4.平面向量的坐标4.1平面向量的坐标表示4.2平面向量线性运算的坐标表示4.3向量平行的坐标表示5.从力做的功到向量的数量积6.平面向量数量积的坐标表示7.向量应用举例7.1点到直线的距离公式7.2向量的应用举例阅读材料向量与中学数学第三章三角恒等变形1.同角三角函数的基本关系2.两角和与差的三角函数2.1两角差的余弦函数2.2两角和与差的正弦、余弦函数2.3两角和与差的正切函数3.二倍角的三角函数阅读材料三角函数叠加问问题探究活动升旗中的数学问题必修五第一章数列1.数列1.1数列的概念1.2数列的函数特性2.等差数列2.1等差数列2.2等差数列的前n项和3.等比数列3.1等比数列3.2等比数列的前n项和4.数列在日常经济生活中的应用课题学习教育储蓄第二章解三角形1.正弦定理与余弦定理1.1正弦定理1.2余弦定理2.三角形中的几何计算3.解三角形的实际应用举例第三章不等式1.不等关系1.1不等关系1.2比较关系2.一元二次不等式2.1一元二次不等式的解法2.2一元二次不等式的应用3.基本不等式3.1基本不等式3.2基本不等式与最大(小)值4.简单线性规划4.1二元一次不等式(组)与平面区域4.2简单线性规划4.3简单线性规划的应用阅读材料人的潜能探究活动三角测量选修1-1第一章常用逻辑用语1.命题2.充分条件与必要条件3.全称量词与存在量词4.逻辑联结词“且”“或”“非”第二章圆锥曲线与方程1.椭圆2.抛物线3.双曲线阅读材料1 圆锥曲线的光学性质阅读材料2 曲线与方程第三章变化率与导数1.变化的快慢与变化率2.导数的概念及其几何意义3.计算导数4.导数的四则运算法则第四章导数应用1.函数的单调性与极值2.导数在实际问题中的应用阅读材料数学史上的丰碑——微积分选修1-2第一章统计案例1.回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析阅读材料高尔顿与回归2.独立性检验2.1条件概率与独立事件阅读材料概率与法庭2.2独立性检验2.3独立性检验的基本思想2.4独立性检验的应用统计活动学习成绩与视力之间的关系第二章框图1.流程图2.结构图第三章推理与证明1.归纳与类比1.1归纳推理1.2类比推理2.数学证明3.综合法与分析法3.1综合法3.2分析法4.反证法第四章数系的扩充与复数的引入1.数系的扩充与复数的引入1.1数的概念的扩展1.2复数的有关概念2.复数的四则运算2.1复数的加法与减法2.2复数的乘法与除法阅读材料数的扩充选修2-1第一章常用逻辑用语1.命题2.充分条件与必要条件2.1充分条件2.2必要条件2.3充要条件3.全称量词与存在量词3.1全称量词与全称命题3.2存在量词与特称命题3.3全称命题与特称命题的否定4.逻辑联结词“且”“或”“非”4.1逻辑联结词“且”4.2逻辑联结词“或”4.3逻辑联结词“非”第二章空间向量与立体几何1.从平面向量到空间向量2.空间向量的运算3.向量的坐标表示和空间向量基本定理3.1空间向量的标准正交分解与坐标表示3.2空间向量基本定理3.3空间向量运算的坐标表示4.用向量讨论垂直与平行5.夹角的计算5.1直线间的夹角5.2平面间的夹角5.3直线与平面的夹角6.距离的计算课题学习空间向量在力学中的应用第三章圆锥曲线与方程1.椭圆1.1椭圆及其标准方程1.2椭圆的简单性质2.抛物线2.1抛物线及其标准方程2.2抛物线的简单性质3.双曲线3.1双曲线及其标准方程3.2双曲线的简单性质4.曲线与方程4.1曲线与方程4.2圆锥曲线的共同特征4.3直线与圆锥曲线的交点阅读材料1 圆锥曲线的光学性质阅读材料2 圆与椭圆选修2-2第一章推理与证明1.归纳与类比2.综合法与分析法3.反证法4.数学归纳法第二章变化率与导数1.变化的快慢与变化率2.导数的概念及其几何意义3.计算导数4.导数的四则运算法则5.简单复合函数的求导法则第三章导数应用1.函数的单调性与极值2.导数在实际问题中的应用第四章定积分1.定积分的概念2.微积分基本定理3.定积分的简单应用阅读材料数学史上的丰碑——微积分第五章数系的扩充与复数的引入1.数系的扩充与复数的引入2.复数的四则运算阅读材料数的扩充选修2-2 综合练习探究活动包装的设计附录1 常用函数积分公式表选修2-3第一章计数原理1.分类加法计数原理和分步乘法计数原理2.排列3.组合4.简单计数问题5.二项式定理第二章概率1.离散型随机变量及其分布列2.超几何分布3.条件概率与独立事件4.二项分布5.离散型随机变量的均值与方差6.正态分布第三章统计案例1.回归分析2.独立性检验统计活动学习成绩与视力之间的关系选修2-3 综合练习附录1 模拟“投掷一枚均匀的硬币100次”试验的程序选修3-1第一章数学发展概述1.从数学的起源、早期发展到初等数学形成2.从变量数学到现代数学第二章数与符号1.数的表示与十进制2.数的扩充3.数学符号第三章几何学发展史1.从经验几何到演绎几何2.投影画与射影几何3.解析几何第四章数学史上的丰碑——微积分1.积分思想的渊源2.圆周率3.微积分第五章无限1.初识无限2.实数集的基数第六章名题赏析1.费马大定理2.哥尼斯堡七桥问题3.高次方程4.中国剩余定理5.哥德巴赫猜想附录2 阿基米德的平衡法推导球的体积选修3-3第一章球面的基本性质1.直线、平面与球面的位置关系2.球面直线与球面距离第二章球面上的三角形1.球面三角形2.球面三角形的全等3.球面三角形的边角关系4.球面三角形的面积第三章欧拉公式与非欧几何1.球面上的欧拉公式2.简单多面体的欧拉公式3.欧氏几何与球面几何的比较附录1 立体几何中的几个概念和性质选修3-4第一章平面图形的对称性1.平面图形的对称性2.变换与平面图形的对称性阅读材料等距变换3.变换的合成4.恒等变换、可逆变换第二章平面图形的对称群1.平面图形的对称群2.有向正多边形的对称群3.正多边形的对称群第三章置换1.置换与置换群2.多面体的对称性群3.多项式的对称性阅读材料伽罗瓦理论4.群的定义选修4-1第一章直线、多边形、圆1. 全等与相似2. 圆与直线3. 圆与四边形阅读材料定长闭曲线最大面积问题第二章圆锥曲线1.截面欣赏2.直线与球、平面与球的位置关系3.柱面与平面的截面4.平面截圆锥面5.圆锥曲线的几何性质选修4-2引言第一章平面向量与二阶方阵1.平面向量及向量的运算2.向量的坐标表示及直线的向量方程3.二阶方阵与平面向量的乘法第二章几何变换与矩阵1.几种特殊的矩阵变换2.矩阵变换的性质第三章变换的合成与矩阵乘法1.变换的合成与矩阵乘法2.矩阵乘法的性质第四章逆变换与逆矩阵1.逆变换与逆矩阵2.初等变换与逆矩阵3.二阶行列式与逆矩阵4.可逆矩阵与线性方程组第五章矩阵的特征值与特征向量1.矩阵变换的特征值与特征向量2.特征向量在生态模型中的简单应用选修4-4第一章坐标系1.平面直角坐标系2.极坐标系3.极坐标系和球坐标系阅读材料笛卡尔与坐标系第二章参数方程1.参数方程的概念2.直线和圆锥曲线的参数方程3.参数方程化成普通方程4.平摆线和渐开线阅读材料1 其他摆线阅读材料2 摆线的应用研究选修4-5第一章不等关系与基本不等式1.不等式的性质2.含有绝对值的不等式3.平均值不等式4.不等式的证明5.不等式的应用第二章几个重要的不等式1.柯西不等式2.排序不等式3.数学归纳法与贝努利不等式选修4-6第一章带余除法与数的进位制1. 整除与带余除法1.1整除1.2带余除法2. 二进制课题学习三进制阅读材料进位制第二章可约性1.素数与合数1.1素数的判别1.2素数的个数2.最大公因数与辗转相除法3.算术基本定理及其应用3.1算术基本定理3.2最小公倍数与算术基本定理的应用阅读材料费马数与梅森数4.不定方程第三章同余1.同余及其应用1.1同余1.2同余的性质1.3整除的判断与弃九法2.欧拉定理2.1剩余类2.2欧拉定理?费马小定理阅读材料公开密钥——RSA 体制3.同余方程(组)3.1同余方程(组)3.2孙子定理选修4-7第一章正交试验设计1.试验设计2.拉丁方与试验设计2.1实例分析2.2拉丁方2.3拉丁方设计3.多因素试验设计3.1多因素试验3.2常见试验设计方案3.3实例分析——微波炉加工爆米花4.试验的均衡搭配与正交表4.1试验设计的基本原则——均衡搭配4.2正交表及其基本特征4.3正交表5.正交试验设计5.1利用正交表确定试验方案5.2实例分析阅读材料交互作用第二章优选法1.单因素优选法1.1单因素优选问题及其处理方法1.2误差估计2.分数法2.1两次试验分数法的试验设计2.2三次试验分数法的试验设计2.3 n次试验分数法的试验设计2.4分数法的应用3.0.618法3.1 0.618法3.2 0.618法的应用阅读材料几种有用的选纵横对折法课题学习选题、试验并完成试验报告阅读材料华罗庚与优选法附录2 n次分数法的证明。

北师版数学教材详细目录

第一章 集合§1 集合的含义与表示 §2 集合的基本关系 §3 集合的基本运算3.1 交集与并集 3.2 全集与补集第二章 函数§1 生活中的变量关系 §2 对函数的进一步认识2.1 函数概念 2.2 函数的表示法 2.3 映射§3 函数的单调性 §4 二次函数性质的再研究4.1 二次函数的图像 4.2 二次函数的性质§5 简单的幂函数 第三章 指数函数和对数函数 §1 正整数指数函数 §2 指数扩充及其运算性质2.1 指数概念的扩充 2.2 指数运算的性质§3 指数函数3.1 指数函数的概念3.2 指数函数xy 2=和xy )(21=的图像和性质3.3 指数函数的图像和性质§4 对数4.1 对数及其运算 4.2 换底公式§5 对数函数5.1 对数函数的概念 5.2 x y 2log=的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章 函数应用 §1 函数与方程1.1 利用函数性质判断方程解的存在 1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画 2.2 用函数模型解决实际问题 2.3 函数建模案例第一章 立体几何初步 §1 简单几何体1.1 简单旋转体 1.2 简单多面体 §2 直观图 §3 三视图3.1 简单组合体的三视图 3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识 4.2 空间图形的公理§5 平行关系5.1 平行关系的判定 5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定 6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3 球的表面积和体积§8 面积公式和体积公式的简单应用 第二章 解析几何初步 §1 直线与直线的方程1.1 直线的倾斜角和斜率 1.2 直线的方程 1.3 两条直线的位置关系 1.4 两条直线的交点1.5 平面直角坐标系中的距离公式 §2 圆与圆的方程2.1 圆的标准方程 2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立 3.2 空间直角坐标系中点的坐标 3.3 空间两点间的距离公式第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差4.2 标准差§5 用样本估计总体5.1 估计总体的分别5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2 变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3模拟方法——概率的应用第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与诱导公式§5 余弦函数的性质与图像5.1 从单位圆看正弦函数的性质5.2 正弦函数的图像5.3 正弦函数的性质§6 余弦函数的图像与性质6.1 余弦函数的图像6.2 余弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像和性质7.3 正切函数的诱导公式§8 函数)sin(ϕ+ω=xAy的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的剑法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表述4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数2.3 两角和与差的正切函数§3 二倍角的三角函数必修5第一章数列§1 数列1.1 数列的概念1.2 数列的函数特性§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大(小)值§4 简单线性规划4.1 二元一次不等式(组)与平面区域4.2 简单线性规划4.3 简单线性规划的应用选修1—1第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质第三章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则第四章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.2 函数的极值§2 导数在实际问题中的应用2.1 实际问题中导数的应用2.2 最大值、最小值问题第一章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 条件概率与独立事件2.2 独立性检验2.3 独立性检验的基本思想2.4 独立性检验的应用第二章框图§1 流程图§2 结构图第三章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 数学证明§3 综合法与分析法3.1 综合法3.2 分析法§4 反证法第四章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章空间向量与立体几何§1 从平面向量到空间向量§2 空间向量的运算§3 向量的坐标表示和空间向量基本定理3.1 空间向量的标准正交分解与坐标表示3.2 空间向量基本定理3.3 空间向量运算的坐标表示§4 用向量讨论垂直与平行§5 夹角的计算5.1 直线间的夹角5.2 平面间的夹角5.3 直线与平面的夹角§6 距离的计算第三章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质§4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同特征4.3 直线与圆锥曲线的交点第一章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 综合法与分析法2.1 综合法2.2 分析法§3 反证法§4 数学归纳法第二章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则§5 简单复合函数的求导法则第三章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.3 函数的极值§2 导数在实际问题中的应用2.1 实际问题中导数的应用2.2 最大值、最小值问题第四章定积分§1 定积分的概念1.1 定积分背景——面积和路程问题1.2 定积分§2 微积分基本定理§3 定积分的简单应用3.1 平面图形的面积3.2 简单几何体的体积第五章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法第一章计数原理§1 分类加法计数原理和分步乘法计数原理1.1 分类加法计数原理1.2 分类乘法计数原理§2 排列§3 组合§4 简单计数问题§5 二项式定理5.1 二项式定理5.2 二项式系数的性质第二章概率§1 离散型随机变量及其分布列§2 超几何分布§3 条件概率与独立事件§4 二项分布§5 离散型随机变量的均值与方差§6 正态分布6.1 连续型随机变量6.2 正态分布第三章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 独立性检验2.2 独立性检验的基本思想2.3 独立性检验的应用。

2021学年数学北师大版必修1课件:3-1+正整数指数函数


注意:由于零指数幂和负整数指数幂都要求底数不等于零, 因而,对于整数指数幂而言,也要求底数不等于零,主要是为了 对性质的合理推广.
类型一 正整数指数函数的概念 【例 1】 若 x∈N+,判断下列函数是否是正整数指数函数. (1)y=(-9)x; (2)y=x4; (3)y=25x; (4)y=54x; (5)y=(π-3)x. 【思路探究】 根据正整数指数函数的解析式 y=ax(a>0, a≠1,x∈N+)的特征来判断.
∵8<x0<9,则取 x=9. ∴经过 9 年后林区的木材蓄积量能达到 300 万立方米.
规律方法 由于“递增率”问题多抽象为正整数指数函数形 式,而由正整数指数函数形式来确定相关量的值多需要使用计算 器计算,如果问题要求不严格,就可以通过图像近似求解.
随着天气的变化,某种疾病的感染人数 y 与月份 x(x∈N+, 1≤x≤12)满足关系式 y=a·0.5x+b.现在已知某城市某年 1 月份、 2 月份感染人数分别为 1 万人、1.5 万人,试求该病 3 月份的感 染人数.
【尝试解答】 (1)2012 年的木材蓄积量为 200 万立方米; 经过 1 年后木材蓄积量为 200+200×5%=200(1+5%); 经过 2 年后木材蓄积量为 200(1+5%)+200(1+5%)×5%=200(1+5%)2. ∴经过 x 年后木材蓄积量为 200(1+5%)x. ∴y=f(x)=200(1+5%)x. ∵x 以年为单位,∴函数的定义域为 x∈N+.
【解】 (1)函数 y=(13)x(x∈N+)的图像如图(1)所示,从图像 可知,函数 y=(13)x(x∈N+)是单调递减的.
(2)函数 y=3x(x∈N+)的图像如图(2)所示,从图像可知,函数 y=3x(x∈N+)是单调递增的.

北师大版高一数学必修1第三章《指数函数》

第三章 指数函数第1节 正整数指数函数知识点1:正整数指数函数的概念函数y=a x (a>0,1≠a +∈N x )叫做正整数指数函数,其中x 是自变量,定义域是正整数集N +。

知识点2:正整数指数函数的图像特征及其单调性 1、正整数指数函数的图像是散点图;2、当1>a 时,在定义域上递增;当10<<a 时,在定义域上递减。

知识点3:指数型函数我们把形如xka y =(1,0≠>∈a a R x k ,、)的函数叫作指数型函数。

例:已知正整数指数函数f(x)的图像经过点(3,27). (1)求函数f(x)的解析式; (2)求f (5)的值;(3)函数f(x)有最值吗?如有,试求出;若无,请说明理由。

第2节 指数扩充及其运算性质 知识点1:分数指数幂1、定义:给定正实数a ,对于任意给定的整数m ,n (m ,n 互素),存在唯一的正实数b ,使得mna b =,我们把b 叫作a 的nm次幂,记作n ma b =。

2、意义知识点2:无理数指数幂无理数指数幂αa (a>0,α是无理数)是一个确定的实数。

知识点3:实数指数幂及其运算性质1、当a>0时,对任意的R ∈α,αa 都有意义,且是唯一确定的实数。

2、实数指数幂的运算性质:对任意实数m 、n ,当a>0,b>0时,nm nma a a +=•;()mn nma a =;()n n nb a ab =。

知识点4:根式及其分数指数幂的运算 1、指数幂运算的常用技巧:(1)有括号先算括号里的,无括号先进行指数运算; (2)负指数幂化为正指数幂的倒数;(3)底数是小数,要先化成分数;底数是带分数,要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质. 2、根式化简的步骤:(1)将根式化成分数指数幂的形式; (2)利用分数指数幂的运算性质求解. 3.根式的性质(其中n ∈N +,且n>1); (1)当n 为奇数时,a a n n =;(2)当n 为偶数时,⎩⎨⎧<-≥==0,0,||a a a a a a nn;(3)00=n ;(4)负数没有偶次方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1 正整数指数函数一、教学目标:
1、知识与技能: (1) 结合实例,了解正整数指数函数的概念. (2)能够求出正整数指数函数的解析式,进一步研究其性质.
2、 过程与方法: (1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法. (2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.
3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.
二、教学重点: 正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.
三、学法指导:学生观察、思考、探究.教学方法:探究交流,讲练结合。

四、教学过程
(一)新课导入
[互动过程1]:(1)请你用列表表示1个细胞分裂次数分别
为1,2,3,4,5,6,7,8时,得到的细胞个数;
(2)请你用图像表示1个细胞分裂的次数n(+∈N n )与得到的细
胞个数y 之间的关系;
(3)请你写出得到的细胞个数y 与分裂次数n 之间的关系式,试用
科学计算器计算细胞分裂15次、20次得到的细胞个数.
解:(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,
4,5,6,7,8次后,得到的细胞个数
(2)1个细胞分裂的次数n(n N )+∈与得到的细胞个数y 之间的关系可以用图像表示,它的图像是由一些孤立的点组成
(3)细胞个数y 与分裂次数n 之间的关系式为n y 2,n N +=∈,用科学计算器算得
32768215=,1048576220=
所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.
探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数? 细胞个数y 随着分裂次数n 发生怎样变化?你从哪里看出?
小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数. 细胞个数y 与分裂次数n 之间的关系式为n y 2,
n N +=∈.
细胞个数y 随着分裂次数n 的增多而逐渐增多.
[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q 近似满足关系式Q=Q 00.9975 t ,其中Q 0是臭氧的初始量,t 是时间(年),这里设Q 0=1.
(1)计算经过20,40,60,80,100年,臭氧含量Q ;
(2)用图像表示每隔20年臭氧含量Q 的变化;
(3)试分析随着时间的增加,臭氧含量Q 是增加还是减少.
解:(1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q 的值分别为0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;
(2)用图像表示每隔20年臭氧含量Q 的变化如图所
示,它的图像是由一些孤立的点组成.
(3)通过计算和观察图形可以知道, 随着时间的增加,
臭氧含量Q 在逐渐减少.
探究:从本题中得到的函数来看,自变量和函数值分别
又是什么?此函数是什么类型的函数?,臭氧含量Q 随着
时间的增加发生怎样变化?你从哪里看出?
小结:从本题中可以看出我们得到的臭氧含量Q 都是底数为0.9975的指数,而且指数是变量,取值为正整数. 臭氧含量Q 近似满足关系式Q=0.9975 t ,)
(+∈N t 随着时间的增加,臭氧含量Q 在逐渐减少.
[互动过程3]:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?
正整数指数函数的定义:一般地,函数x y a (a 0,a 1,x N )+=>≠∈叫作正整数指数函数,其中x 是自变量,定义域是正整数集+N .
说明: 1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.
(二)、例题:某地现有森林面积为10002hm ,每年增长5%,经过x )
(+∈N x 年,森林面积为y 2hm .写出x ,y 间的函数关系式,并求出经过5年,森林的面积.
分析:要得到x ,y 间的函数关系式,可以先一年一年的增长变化,找出规律,再写出x ,y 间的函数关系式.
解: 根据题意,经过一年, 森林面积为1000(1+5%)2hm ;经过两年, 森林面积为1000(1+5%)22hm ;经过三年, 森林面积为1000(1+5%)32
hm ;所以y 与x 之间的函数关系式为x y 1000(15%)=+)(+∈N x ,经过5年,森林的面积为1000(1+5%)5=1276.28(hm 2
). 补充例题:高一某学生家长去年年底到银行存入2000元,银行月利率为2.38%,那么如果他第n 个月后从银行全部取回,他应取回钱数为y,请写出n 与y 之间的关系,一年后他全部取回,他能取回多少?
解:一个月后他应取回的钱数为y=2000(1+2.38%),二个月后他应取回的钱数为y=2000(1+2.38%)2;,三个月后他应取回的钱数为y=2000(1+2.38%)3,…, n 个月后他应取回的钱数为y=2000(1+2.38%)n ; 所以n 与y 之间的关系为y=2000(1+2.38%)n (n ∈N +),一年后他全部取回,他能取回的钱数为y=2000(1+2.38%)12.
补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n 年后该厂的年产值为多少?
(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.
2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.
(四)、作业:
五、教学反思:。

相关文档
最新文档