数学二次根式测试题(1)

合集下载

初中-数学-华东师大版-第二十一章 二次根式 单元测试卷(一)

初中-数学-华东师大版-第二十一章 二次根式 单元测试卷(一)

第二十一章二次根式单元测试卷(一)一、选择题1不是同类二次根式的是()A. B.D.C.2x应满足()A. x≠1B. x≥1C. x≤1D. x<13、下列计算正确的是()A. 5== B. 2C. =D. =4、下列式子不是二次根式的是()A. B.C. D.5、下列计算错误的是()A. =B. =C. =D. =6可化简为()C. D. 67是同类二次根式的是()A. B.C. D.+⋅=,若b是整数,则a的值可能是()8、已知(3a bA. B. 3C. 3+D. 29、下列计算,正确的是()A. =B. 13222 -=-C. =D.112 2-⎛⎫= ⎪⎝⎭10、若|m+1|0,则2m+n的值为()A. -1B. 0C. 1D. 311=a b,用含有a,b,下列表示正确的是()A. 20.1ab B. 30.1a bC. 20.2ab D. 2ab12)A. 5和6B. 6和7C. 7和8D. 8和9二、填空题13、函数124yx=-的自变量x的取值范围是______.14、当x>2150,0)a b>的结果是______.16是同类二次根式,则a=______.三、解答题1718、先观察下列等式,再回答问题:=1+1=2;②2212+2+()2=2+ 12=2 12; ③2213+2+()3=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.19、化简:(1)00=,22=______,2(2)-=______.,2a =______.; (2)30=0,333=______,33(3)-=______,33a =______;(3)根据以上信息,观察a b 、所在位置,完成化简:()()2323a b a a b +--+20、小明解答“先化简,再求值:21211x x ++-21211x x ++-,其中31x =+.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.21、计算:5-31562;(2)2×(12855-31)2;(4)( 352352).参考答案1、【答案】B【分析】根据最简二次根式的定义选择即可.【解答】A=A不正确;B不是同类二次根式,故B正确;C=是同类二次根式,故C不正确;D=是同类二次根式,故D不正确;故选:B.2、【答案】C【分析】根据二次根式有意义的条件可得1-x≥0,再解即可.【解答】解:由题意得:1−x⩾0,解得:x⩽1,故选C.3、【答案】B【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【解答】解:A、与A选项错误;B、原式,所以B选项正确;C、原式,所以C选项错误;D、原式2,所以D选项错误.故选:B.4、【答案】Da≥0)是二次根式,可得答案.【解答】A.是二次根式,故A不符合题意;B.是二次根式,故B不符合题意;C.是二次根式,故C不符合题意;D.被开方数小于零,故D符合题意.答案第1页,共7页故选D.5、【答案】D【分析】根据二次根式的分母有理化对进行判断;根据二次根式的乘法对进行判断;根据二次根式的加减法对、进行判断.【解答】、1333=,故此计算正确;、361832⨯==,故此计算正确;、271233233-=-=,故此计算正确;23.故选:D.6、【答案】A12化简即可.1223=A7、【答案】D【分析】先将各选项化简,再找到被开方数为a的选项即可.【解答】A. 2a a233a=a42a a=aD.2a a故选:D.8、【答案】B【分析】利用平方差公式找出括号中式子的有理化因式即可.【解答】(3535954-=-=则a的值可能是35,故选:B.9、【答案】D【分析】A、先化简二次根式,再合并同类项即可求解;B、根据有理数减法法则计算、再求绝对值即可求解;C、根据二次根式的性质化简即可求解;D、根据负整数指数幂的计算法则计算即可求解.【解答】A=B、|12-2|=|-32|=32,故选项错误;C,故选项错误;D、112-⎛⎫⎪⎝⎭=2,故选项正确.故选:D.10、【答案】B【分析】先根据非负数的性质列出关于m、n的一元一次方程组,求出m、n的值,把m、n的值代入代数式进行计算即可.【解答】∵|m+1|∴m+1=0;n-2=0解得m=-1,n=2.∴2m+n=0.所以本题答案是B. 11、【答案】B330.10.10.1a b a b=⨯=故答案选:B.12、【答案】A【分析】先把各二次根式化为最简二次根式,再进行计算,再利用估算无理数的方法得出答案.=∵5<6,的运算结果应在5和6两个连续自然数之间.故选:A.答案第3页,共7页13、【答案】1x ≥且2x ≠【分析】根据二次根式及分式有意义的条件解答即可.【解答】由题意可得,x -1≥0且2x -4≠0,解得,1x ≥且2x ≠.故答案为:1x ≥且2x ≠.14、【答案】x -2【分析】根据二次根式的性质解答.【解答】∵x >2=|x -2|=x -2.故答案为:x -2. 15、【答案】3ab 【分析】直接利用二次根式的性质化简得出答案.(0,0)b a b a >故答案为: 16、【答案】4【分析】,故只需根式中的代数式相等即可确定a 的值.是同类二次根式,可得3a -1=11解得a=4 故答案为:4.17、【答案】【分析】直接化简二次根式,进而合并得出答案.【解答】原式=-答案第5页,共7页 18、【答案】(1=144+=144;(2=211n n n n ++=,证明见解答.【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”=414+=414; (2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【解答】(1=1+1=2=212+=212;③=313+=313;里面的数字分别为1、2、3,= 144+= 144. (2=1+1=2=212+=212=313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n ++==右边.=n 211n n n ++=成立. 19、【答案】(1)2、2、|a|;(2)3、-3、a ;(3)-3a .【分析】(1)根据算术平方根的计算方法可以解答本题;(2)根据立方根的计算方法可以解答本题;(3)根据数轴可以判断a 、b 的大小与正负,从而可以化简题目中的式子.【解答】解:(1=2=2.;故答案为:2、2、|a|;(2=3-3a ;故答案为:3、-3、a ;(3)由图可得,a <0<b ,|a|<|b|,=-a+b -a -(a+b )=-a+b -a -a -b=-3a .20、【答案】步骤①、②有误 【分析】异分母分式的的加减应通分,而不是去分母,据此可找出小明错误的步骤;然后按照异分母分式的运算法则计算即可. 【解答】步骤①、②有误.原式:1211(1)(1)(1)(1)(1)(1)1x x x x x x x x x -+=+==+-+-+--.当1x =时,原式3==.21、【答案】(1)-1;(2)2;4【分析】根据二次根式的混合运算法则先去括号,再进行乘除后加减依次进行计算即可.【解答】解:(1)1=-1.(2)2×(1=2- =2.-1)2=32-2-)2-=9-5--1=(9-5-3-+))]2-2=3-(7-4.答案第7页,共7页。

八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。

初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析

初一数学二次根式试题答案及解析1.一个数的算术平方根是,则这个数是_____ _____.【答案】2.【解析】∵一个数的算术平方根是,∴这个数为()2=2.故答案是2.【考点】算术平方根.2. 9的平方根是()A.3B.±3C.D.81【答案】B【解析】根据平方根的定义可判断.【考点】平方根3. 49的算术平方根是.【答案】7【解析】根据算术平方根的意义可求.【考点】算术平方根4.的平方根为()A.B.C.3D.【答案】B.【解析】由于=3,故其平方根是.故选B.【考点】平方根.5.在3.14,中,无理数有()个A.1个B.2个C.3个D.4个【答案】B.【解析】有限小数、整数、分数都属于有理数,故3.14,,==2都是有理数,开不尽方的平方根,圆周率都是无限不循环小数,所以是无理数.故选B.【考点】实数的分类.6.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和0【答案】B.【解析】A.立方根是它本身的数除去1和0外,还有-1,故该选项错误;B.算术平方根是它本身的数只有1和0,故该选项正确;C.平方根是它本身的数只有1和0,故该选项错误;D.绝对值是它本身的数只有正数和0,故该选项错误.故选B.【考点】1.立方根;2.平方根;3.算术平方根;4.绝对值.7.下列各式正确的是()A.B.C.D.【答案】A.【解析】A选项正确,B、C、D选项错误.故选A.【考点】二次根式的化简.8.大于小于的所有整数的和是 .【答案】-4.【解析】求出和的范围,求出范围内的整数解,最后相加即可.∵-5<<-4,3<<4,∴大于小于的所有整数为-4,±3,±2,±1,0,∴-4-3-2-1+0+1+2+3=-4,【考点】估算无理数的大小.9.下列计算正确的是()A.B.C.D.【答案】D【解析】A.,故本选项错误;B.,故本选项错误;C.,表示25的算术平方根是5,故本选项错误;D.,故本选项正确,故选D.10.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B.11.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.【答案】9【解析】解:因为2a-1的平方根是±3,所以2a-1=9,解得因为3a+b-1的算术平方根是4,所以3a+b-1=16.又所以故a+2b=9.12.在-4,,0,π,1,,这些数中,是无理数的是.【答案】π.【解析】无理数有:π.故答案为:π.【考点】无理数.13.如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()A.1B.2C.3D.4【答案】B【解析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.解:设两个正方形的边长是x、y(x<y),则x2=4,y2=9,x=2,y=3,则阴影部分的面积是(y﹣x)x=(3﹣2)×2=2,故选B.点评:本题考查了算术平方根性质的应用,主要考查学生的计算能力.14.若(x-1)=64,则x=______。

数学二次根式知识点及练习题含答案(1)

数学二次根式知识点及练习题含答案(1)

数学二次根式知识点及练习题含答案(1)一、选择题1.下列计算正确的是( )A =B .3=C 2=D 2.下列计算正确的为( ).A 5=-B =C .2+=+D 2=3.下列运算正确的是( )A =B . 3C =﹣2D =4.(2的结果正确的是( )A B .3 C .6D .35.下列运算中,正确的是( )A =3B .=-1C D .36.下列式子一定是二次根式的是 ( )A B C D7.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数 B .1≤x ≤4C .x ≥1D . x ≤48.设1199++S 的最大整数[S]等于( ) A .98B .99C .100D .1019.下列计算正确的是( )A =B =C 6=-D 1=10.若|x 2﹣4x+4|x+y 的值为( ) A .3B .4C .6D .911.已知实数x 、y 满足2y =,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定12.估计(12+6)3÷的值应在( ) A .1和2之间B .3和4之间C .4和5之间D .5和6之间二、填空题13.若0a >,把4ab-化成最简二次根式为________. 14.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 满足32016p q +=,则整数对()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 15.设a ﹣b=2+3,b ﹣c=2﹣3,则a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____. 16.计算()623÷+=________________ .17.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.18.已知整数x ,y 满足20172019y x x =+--,则y =__________.19.4x -x 的取值范围是_____. 20.12a 1-能合并成一项,则a =______.三、解答题21.先观察下列等式,再回答问题: 2211+2+()1=1+1=2;12=2 12;=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n++=,证明见解析. 【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n++=”,再利用222112n n n n++=+()()开方即可证出结论成立.【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n++=.证明:等式左边==n 211n n n++==右边.=n 211n n n++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣23.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==24.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数,∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.25.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3 ∴a 2﹣4a=﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1 请你根据小明的分析过程,解决如下问题: (1(2)若,求4a 2﹣8a+1的值. 【答案】(1)9;(2)5. 【解析】 试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a 1 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a ===,解法一:∵22(1)11)2a -=-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+= 解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.26.计算:(1(041--;(2⎛- ⎝【答案】(1;(2)【解析】试题分析:根据二次根式的性质及分母有理化,化简二次根式,然后合并同类二次根式即可解答.试题解析:(1(041--(2⎛- ⎝-0-=27.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并. 【详解】. 【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.28.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.29.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答. 【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =, 由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】根据二次根式的运算法则逐项计算即可判断. 【详解】解:AB 、C 2÷=,故错误;D ,故正确.故选D. 【点睛】本题考查了二次根式的四则运算.2.D解析:D 【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可. 【详解】A 5=,故A 选项错误;B B 选项错误;C .++=222,故C 选项错误;D 2=,正确, 故选D . 【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.3.D解析:D 【分析】直接利用二次根式的混合运算法则分别判断得出答案. 【详解】解:AB 、=,故此选项错误;C 2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.4.A解析:A【分析】分别根据二次根式的除法和乘法法则以及二次根式的平方计算每一项,再合并即可.【详解】=+=解:原式333故选:A.【点睛】本题主要考查了二次根式的混合运算,属于基础题型,熟练掌握二次根式的乘除法则是解题的关键.5.D解析:D【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】=+=,此项错误A314==-,此项错误B、23===⨯=,此项错误C2428=,此项正确D、3故选:D.【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.6.A解析:A【分析】根据二次根式的定义,直接判断得结论.【详解】A A正确;a<B错误;B、0C 是三次根式,故C 错误;D 、0a <D 错误;故选:A .【点睛】0a ≥)是二次根式,注意二次根式的被开方数是非负数.7.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x 的取值范围分别讨论,求出符合题意的x 的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x ≥0,x-4≥0时,可得x 无解,不符合题意;当1-x ≥0,x-4≤0时,可得x ≤1时,原式=1-x-4+x=-3;当1-x ≤0,x-4≥0时,可得x ≥4时,原式=x-1-x+4=3;当1-x ≤0,x-4≤0时,可得1≤x ≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x ≤4时,多项式等于2x-5,故选B .【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.8.B解析:B【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99.【详解】∵==()211n n n n ++=+ =111+1n n -+,∴=1111111+11122399100-++-+++- =199+1100-=100-1100,∴不大于S 的最大整数为99.故选B.【点睛】1111n n =+-+是解答本题的基础. 9.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A 选项错误;===B 选项正确;321=-=,所以C 选项错误;与D 选项错误;故选答案为B .【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.10.A解析:A根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.11.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.12.B解析:B【分析】原式利用多项式除以单项式法则计算,估算确定出范围即可.【详解】=∵1<2<4,∴1<2,即3<<4,则原式的值应在3和4之间.故选:B.【点睛】本题考查了二次根式的混合运算,以及无理数的估算,解题的关键是熟练掌握运算法则进行解题.二、填空题13.【分析】先判断b的符号,再根据二次根式的性质进行化简即可.解:∵∴∴所以答案是:【点睛】本题考查了二次根式的性质.解析:【分析】先判断b的符号,再根据二次根式的性质进行化简即可.【详解】解:∵40,0 aab-≥>∴0b<2a bb b b=--所以答案是:【点睛】a=.14.(1)2a-2b+1;(2)3;(3)130°或50°. 【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a-2b+1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵32016p q +=, ∴20163p q =-,p=2016-62016+9q, ∴p=14x 3(其中x 为正整数), 同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。

八年级数学二次根式练习题1

八年级数学二次根式练习题1

=63y x =67212_______75,3______2--56____23-- ,23 , 15 ,32 ,3 ,6 ,3 0⋅⋅⋅,,=-818二次根式单元测试题一.填空:(3′×10 = 30′)1. 二次根式有意义时,的取值范围是 . 2.化简:= ,=, 3. , , .4. 把的根号外的因式移到根号内得 .5.若成立.则x 的取值范围为 . 6.比较大小: , ,.7. 计算: .8. 在实数范围内因式分解:x 4 – 9 = .9. 化简的结果为 .10.观察分析下列数据,寻找规律:那么第10个数据是 .二.选择:(3′×10 = 30′)11.下列式子是二次根式的是( )212--x x x 4163532⨯34-x x x x -•-=--32)3)(2(200320022323)()(+•-2)2(- D 8 35 C 3 5 15 B 632A 2==+=÷=⨯2xD 5x C y x B x 4 A 222-n 203121 +256 D 630 C 306 B 65A -5x D -5 x C 5 x B 5A x ≥≠-<->5x +1a D 1a C 1a B 1a A ≤<≥>()a a -=-112()()()()()()()()个个个个4 D 3 C 2 B 1A 5633554332311232-≤---x x x a .A a B -a - C a-- D12.式子 是二次根式的条件是 ( )13.下列运算错误的是( )14. 若的值为( )A. B. C.或 D.15.下列二次根式中,最简二次根式是 ( )16.已知 是整数,则满足条件的最小正整数n 的值为( )A. 2B. 3C. 4D. 5 17. 化简 得最简二次根式为 ( )18.若 ,则a 的取值范围是( )19. 已知a 为实数,把 ﹣a 化简后为( ) 23x <<125x -125x -1-a 1-()0201123-3-11-)(++()()342523-32+()1x 1-x 2+=806145110324-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-20.已知△ABC 的三边a 、b 、c 满足 ,则△ABC 的形状为( )A. 等腰三角形B. 正三角形C. 直角三角形D. 等腰直角三角形三.21. 计算:(1)(2)(3)22. 解方程:321x +=()()3x 32x 3472++++23、(本题8分)已知是实数,且,求的值.24.当 时,求的值。

初三数学二次根式试题

初三数学二次根式试题

初三数学二次根式试题1.函数中自变量x的取值范围是()A.B.C.D.【答案】B.【解析】根据二次根式的意义,被开方数是非负数.所以3﹣x≥0,解得x≤3.故选B.【考点】函数自变量的取值范围.2.若式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≤2C.x>2D.x≥2【答案】D【解析】根据题意得:x﹣2≥0,解得:x≥2.故选D.【考点】二次根式有意义的条件3. 8的平方根是()A.4B.C.D.【答案】D.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵()2=8,∴8的平方根是.故选D.【考点】平方根.4.下列等式成立的是 ( )A.B.C.D.【答案】C.【解析】A、a2•a5=a7,故选项错误;B、当a=b=1时,,故选项错误;C、正确;D、当a<0时,,故选项错误.故选C.【考点】1.二次根式的性质与化简2.同底数幂的乘法3.幂的乘方与积的乘方.5.如果+=0,则+=.【答案】.【解析】根据几个非负数的和等于0的性质得到a-1=0,2-b=0,求出a、b的值,然后代入化简即可得到答案.试题解析:∵≥0,≥0,且+=0∴a-1=0,2-b=0解得:a=1,b=2∴+考点: 1.非负数的性质:算术平方根;2.二次根式的化简.6.下列二次根式中,最简二次根式是()A.B.C.D.【答案】C.【解析】根据最简二次根式的定义判断各个选项即可得出正确答案.A.,不是最简二次根式;B.,不是最简二次根式;C.,是最简二次根式;D.,不是最简二次根式;故选C.考点: 最简二次根式.7.下列运算正确的是()A.B.C.D.【答案】B.【解析】A.与不是同类二次根式,不能合并,故本选项错误;B.,故本选项正确;C.3与不是同类二次根式,不能合并,故本选项错误;D. ,,故本选项错误.故选B.考点: 二次根式的运算与化简.8.计算:【答案】.【解析】先算乘除、去绝对值符号,再算加减.试题解析:原式==【考点】二次根式运算.9.当__________时,二次根式在实数范围内有意义.【答案】x≥1.【解析】根据二次根式的被开方数为非负数可列出不等式,解出即可得出x的范围.试题解析:∵在实数范围内有意义,∴x-1≥0,解得:x≥1.即当x≥1时,二次根式在实数范围内有意义.故答案为:x≥1.考点: 二次根式有意义的条件.10.先阅读,后解答:像上述解题过程中,与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是;的有理化因式是.(2)将下列式子进行分母有理化:(1)=;(2)=.(3)已知a=,b=,比较a与b的大小关系.【答案】(1);(2) ; 3﹣;(3)a=b.【解析】(1)的有理化因式是它本身,的有理化因式符合平方差公式的特点的式子.据此作答;(2)①分子、分母同乘以最简公分母即可;②分子、分母同乘以最简公分母3﹣,再化简即可;(3)把a的值通过分母有理化化简,再比较.试题解析:(1)的有理化因式是;的有理化因式是﹣2.(2)(1)==;(2)==3﹣;(3)∵a=,b=2﹣,∴a=b.【考点】分母有理化.11.计算【答案】.【解析】根据运算顺序化各根式为最简二次根式后合并即可.试题解析:原式.【考点】二次根式运算.12.下列计算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,故本选项错误;B.负数没有算术平方根,故本选项错误;C.5和不是同类二次根式,不能合并,故本选项错误;D.,故本选项正确.故选D.【考点】二次根式的加减法.13.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,此选项错误;B.3和不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项正确.故选D.【考点】二次根式的混合运算.14.若,则_____【答案】12.【解析】根据题意得,,,解得,,∴.故答案为:12.【考点】1.非负数的性质:2.算术平方根.15.下列计算错误的是()A.B.C.D.【答案】A【解析】A选项和不是同类二次根式,无法继续合并,其它选项是正确的.二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式,,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式.【考点】二次根式的加减乘除运算.16.可以与合并的二次根式是()A.B.C.D.【答案】D【解析】根据可以合并的的二次根式是同类二次根式依次分析各选项即可作出判断.解:∵,,,,∴可以与合并的二次根式是故选D.【考点】同类二次根式点评:解题的关键是熟练掌握同类二次根式的定义:化为最简二次根式后被开方数相同的二次根式叫做同类二次根式.17.计算:=.【答案】【解析】=【考点】二次根式点评:本题考查二次根式,掌握二次根式的化简和运算法则是本题的关键,属基础题18.(1)|-3|-(π-3)0+2sin30°;(2)已知:求代数式的值.【答案】(1)3 (2)-8【解析】(1)原式=3-1+=3-1+1=3(2)=∵∴=-8【考点】数的运算、完全平方公式点评:本题考查数的运算、完全平方公式,会求一些数的绝对值,特殊三角函数,掌握完全平方公式是解决本题的关键,属基础题19.用计算器计算(结果精确到0.01).【答案】8.56【解析】根据立方根的定义、计算器的使用方法结合四舍五入法计算即可.8.56.【考点】用计算器计算,立方根点评:用计算器计算是数学学习中的基本能力,是中考常见题,要熟练掌握.20.计算:【答案】【解析】根据0指数次幂、负整数指数次幂、绝对值的规律化简,再合并同类二次根式即可.原式【考点】实数的运算点评:实数的运算是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.21.化简:;【答案】4【解析】二次根式的乘法公式:方法1:=方法2:【考点】二次根式的运算法则点评:此题值考察二次根式的乘法公式,此外,还有除法公式;二次根式的加减实际是合并同类二次根式,难度都不大。

2015年沪科版起点教育八年级下册数学二次根式测试题(一至四)(含答案)标准版

2015年起点教育八年级下册数学二次根式测试题(一)一、选择题1.已知233x x +=-x 3+x ,则………………………………………………( ) A .x ≤0 B .x ≤-3 C .x ≥-3 D .-3≤x ≤02.化简aa3-(a <0)A .a -B .-aC 3.当a <0,b <0时,-a +2ab -b A .2)(b a + B .-2)(b a - C .4.在根式①22b a + ②5x③xy x -2A .①② B .③④ C 5.下列二次根式中,A .23a a a 和B .232a a 和C .6.如果1122=+-+a a a ,那么a A .0=a B .1=a C .a 7.能使22-=-x x x x 成立的x A .2≠x B .0≥x C .x 8.若化简|1-x A .x 为任意实数 B .1≤x ≤4 C .x 9.已知三角形三边为a 、b 、c ,其中a 、b 么这个三角形的最大边c A .8>c B .148<<c C .610.小明的作业本上有以下四题①4416a = ③a aa a a=⋅=112; ④a a -23A .① B .② C .③ D .④二.填空题:11.021⎪⎭⎫⎝⎛-的平方根是 ,36的算术平方根是 。

12.(7-52)2008·(-7-52)2009=______________。

13.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________. 14.若132-=x ,则322+-x x 的值为______。

15.已知xy <0,= 。

2)2-24.若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-xy y x +-2的值。

25.已知直角三角形的两条直角边长分别为28+=a ,28-=b ,求斜边c 及斜边上的高h 。

数学二次根式练习题

数学二次根式练习题数学二次根式练习题在数学中,二次根式是一个常见的概念。

它是指一个数的平方根,通常用√来表示。

二次根式在解决各种数学问题中起着重要的作用,尤其是在代数和几何中。

下面我们来看一些关于二次根式的练习题。

练习题一:简化二次根式将以下二次根式简化为最简形式:1. √122. √273. √504. √72解答:1. √12 = √(4 × 3) = 2√32. √27 = √(9 × 3) = 3√33. √50 = √(25 × 2) = 5√24. √72 = √(36 × 2) = 6√2练习题二:合并二次根式将以下二次根式合并为一个根式:1. √5 + √202. √8 - √23. √12 + √274. 2√6 - 3√81. √5 + √20 = √(5 × 4) + √(5 × 4 × 5) = 2√5 + 2√5 = 4√52. √8 - √2 = √(4 × 2) - √2 = 2√2 - √2 = √23. √12 + √27 = √(4 × 3) + √(9 × 3) = 2√3 + 3√3 = 5√34. 2√6 - 3√8 = 2√(2 × 3) - 3√(4 × 2) = 2√6 - 6√2练习题三:分解二次根式将以下二次根式分解为两个根式的和或差:1. 4√32. 5√23. 2√64. 3√5解答:1. 4√3 = 2√(2 × 3)2. 5√2 = √(25 × 2)3. 2√6 = 2√(2 × 3)4. 3√5 = √(9 × 5)练习题四:计算二次根式的值计算以下二次根式的值(结果保留两位小数):1. √82. √183. √324. √501. √8 ≈2.832. √18 ≈ 4.243. √32 ≈ 5.664. √50 ≈ 7.07通过以上练习题,我们可以巩固对二次根式的理解和运算。

数学二次根式知识点及练习题及解析(1)

一、选择题1.如果0,0a b <<,且6a b -=,则22a b -的值是( ) A .6 B .6- C .6或6- D .无法确定2.若 3x - 有意义,则 x 的取值范围是 ( ) A .3x > B .3x ≥ C .3x ≤D .x 是非负数 3.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( )A .12B .10C .8D .64.下列二次根式中,是最简二次根式的是( )A .15B .8C .13D .265.下列计算正确的是( )A .93=±B .8220-=C .532-=D .2(5)5-=-6.已知:x =3+1,y =3﹣1,求x 2﹣y 2的值( )A .1B .2C .3D .43 7.若ab <0,则代数式可化简为( )A .aB .aC .﹣aD .﹣a8.下列各式成立的是( ) A ()222- B ()255-=- C 2x x D ()266-=- 9.下列二次根式中,最简二次根式是( ) A 23a B 13C 2.5D 22a b -10.下列各组二次根式中,能合并的一组是( )A 1a +1a -B 3和13C 2a b 2abD 318二、填空题11.甲容器中装有浓度为a 40kg ,乙容器中装有浓度为b 90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.12.)230m m --≤,若整数a 满足52m a +=a =__________.13.120654010144152118+++235a b c +的形式(,,a b c 为正整数),则abc =______.14.方程14(1)(1)(2)(8)(9)x x x x x x ++⋅⋅⋅+=+++++的解是______. 15.把1a a-的根号外的因式移到根号内等于? 16.若a 、b 为实数,且b =2211a a -+-+4,则a+b =_____. 17.已知x =51-,y =51+,则x 2+xy +y 2的值为______. 18.化简(322)(322)+-的结果为_________.19.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.20.2a ·8a (a ≥0)的结果是_________.三、解答题21.1123124231372831-+- 533121【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】1123124231372831-+-=48132331)32(337228+⨯⨯⨯=46233132337533121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.计算:(18322(2))((25225382+-+. 【答案】(1)52【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)根据平方差公式化简,再化简、合并同类二次根式即可.【详解】(1==(2))((222+-+=2223--+ =5-4-3+2=023.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b c p ++= (1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积. (2)请证明:12S S【答案】(12) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S ==(2)222222211[()]24a b a S c b +-=- =222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =--- ∵2a b c p ++=, ∴22()(2)(222)S a a b c a b c a b c a b c b c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅ =1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >,∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.24.计算:10099+【答案】910【解析】 【分析】 先对代数式的每一部分分母有理化,然后再进行运算【详解】10099++10099+++=9912233499100-+-+-++-=1100-=1110-=910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。

数学二次根式试题含答案

一、选择题1.下列计算结果正确的是( )A .2+5=7B .3223-=C .2510⨯=D .25105= 2.下列等式正确的是( )A .497-=-B .2(3)3-=C .2(5)5--=D .822-= 3.若2019202120192020a =⨯-⨯,2202242021b =-⨯,2202020c =+,则a ,b ,c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .b c a << 4.下列各式中,正确的是( ) A .32 >23 B .a 3 • a 2=a 6 C .(b+2a) (2a -b) =b 2 -4a 2 D .5m + 2m = 7m 25.下列运算正确的是( )A .32-=﹣6B .31182-=-C .4=±2D .25×32=5106.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a --C .2a -D .-2a - 7.已知实数x ,y 满足(x -22008x -)(y -2-2008y )=2008,则3x 2-2y 2+3x -3y -2007的值为( )A .-2008B .2008C .-1D .1 8.下列二次根式是最简二次根式的是( )A .0.1B .19C .8D .1449.在二次根式1x -中,x 的取值范围是( )A .x ≥1B .x >1C .x ≤1D .x <110.下列二次根式中,与3是同类二次根式的是( )A .18B .13 C 24D 0.3二、填空题11.若0a >4a b-化成最简二次根式为________.12.将(0)a a -<化简的结果是___________________.13.已知,-1,则x 2+xy +y 2=_____.14.+的形式(,,a b c 为正整数),则abc =______.15.把_____________. 16.14+⋅⋅⋅=的解是______.17..18.3y =,则2xy 的值为__________.19.函数y =2x -中,自变量x 的取值范围是____________.20. (a ≥0)的结果是_________.三、解答题21.像2)=1=a (a ≥0)、﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1); (2)+;(3)的大小,并说明理由.【答案】(1(2)(3)< 【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式;(2)原式=2+=2+(3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.22.计算下列各式:(1;(2【答案】(12;(2)【分析】先根据二次根式的性质化简,再合并同类二次根式即可.【详解】(1)原式2=-2=;(2)原式==.【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a aaa a≥⎧==⎨-<⎩,)0,0a b=≥≥=(a≥0,b>0).23.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2).考点:二次根式的应用24.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;(2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4,(a-b )2=4,a-b=±2.(2)a ===b === 2222()22312a b a b ab +=+-=-=-=⎝⎭ 【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.25.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.26.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+ 1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.27.计算:(1)()202131)()2---+ (2【答案】(1)12;(2)【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可;(2)根据二次根式的加减乘除运算法则计算即可.【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.28.02020((1)π-.【答案】【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可.【详解】原式11=-=【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可.【详解】A 不能合并,故A 选项错误;B .-=B 选项错误;C =D5==,故D 选项错误,故选C.【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.2.B解析:B【分析】根据二次根式的性质求出每个式子的值,再得出选项即可.【详解】解:AB3=,故本选项符合题意;C、5=-,故本选项不符合题意;D、=-,故本选项不符合题意;故选:B.【点睛】本题考查了二次根式的性质和化简,能熟记二次根式的性质是解此题的关键.3.A解析:A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【详解】解:a=2019×2021-2019×2020=(2020-1)(2020+1)-(2020-1)×2020=20202-1-20202+2020=2019;∵20222-4×2021=(2021+1)2-4×2021=20212+2×2021+1-4×2021=20212-2×2021+1=(2021-1)2=20202,∴b=2020;>∴c>b>a.故选:A.【点睛】本题考查了完全平方公式、平方差公式、二次根式的化简、二次根式大小的比较等知识点.变形2019×2021-2019×2020解决本题的关键.4.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.5.B解析:B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12=-,此选项计算正确;C 2=,此选项计算错误;D 、,此选项计算错误;故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.6.B解析:B【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】 2202a aa a a +-∴+<∴<-a a ∴==•=-故选B 【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.7.D解析:D【解析】由(x y )=2008,可知将方程中的x,y 对换位置,关系式不变,那么说明x=y 是方程的一个解由此可以解得,或者则3x 2-2y 2+3x -3y -2007=1,故选D. 8.B解析:B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A 、被开方数含分母,故A 错误;B 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B 正确;C 、被开方数含能开得尽方的因数,故C 错误;D 、被开方数含分母,故D 错误;故选B .【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9.A解析:A【分析】根据二次根式有意义的条件:被开方数x-1≥0,解不等式即可.【详解】解:根据题意,得x-1≥0,解得x≥1.故选A.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.10.B解析:B【详解】A不是同类二次根式,故此选项错误;B3C=不是同类二次根式,故此选项错误;D不是同类二次根式,故此选项错误;故选B.二、填空题11.【分析】先判断b的符号,再根据二次根式的性质进行化简即可. 【详解】解:∵∴∴所以答案是:【点睛】本题考查了二次根式的性质.解析:【分析】先判断b的符号,再根据二次根式的性质进行化简即可.【详解】解:∵40,0 aab-≥>∴0b<2a bb b b=--所以答案是:【点睛】a=.12..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.13.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)=12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.14.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a ,b ,c 的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++. 2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.15.-【分析】根据二次根式的性质,可得答案【详解】由题意可得:,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.16.9【解析】【分析】设y=,由可将原方程进行化简,解化简后的方程即可求得答案.【详解】设y=,则原方程变形为,∴,即,∴4y+36-4y=y(y+9),即y2+9y-36=0,∴解析:9【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设则原方程变形为()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3, ∵, ∴,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用. 17.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.解析:2【解析】【详解】.此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.18.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15.解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy=-2×52×3=-15.19.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学二次根式测试题
第Ⅰ卷
一、单项选择题(每小题3分,共30分)
1.下列式子一定是二次根式的是 ( ) A.2--x B.x C.
2
2+x
D.
22-x
3若b b -=-3)3(2
,则
( )
A.b>3
B.b<3
C.b ≥3
D.b ≤3 3.若
13-m 有意义,则m 能
取的最小整数值是 ( )
A.m=0
B.m=1
C.m=2
D.m=3 4.化简)22(28+-得
( )
A.—2
B.
2
2-
C.2
D.224
-
5.下列根式中,最简二次根式是( ) A.
a 25 B.
2
2
b
a + C.
2
a
D.5.0
6.


)
6(6-=-⋅x x x x 那么 ( )
A.x ≥0
B.x ≥6
C.0≤x ≤6
D.x 为一切实数 7.若x <2,化简
x x -+-3)2(2
的正确
结果是( ) A.-1 B.1 C.2x-5 D.5-2x 8.设a
b a
1
,322=
-=,则
a 、
b 大小关系是( ) A.a=b B.a >b C.a <b D.a >-b
9.若最简二次根式a
a 241-+与是同类二
次根式,则
a
的值为
( ) A.
4
3
-
=a B.
34
=a C.1=a
D.1-=a 10



10182
22=++x x x x
,则
x


( )
A.4
B.±2
C.2
D.±4 二、填空题(每小题3分,共30分)
1.52-
的绝对值是
__________,它的倒数__________.
2.当x___________时,
52+x 有意义,若
x
x -2有意义,则
x________. 3.化简
=
⨯04.0225_________,
=
-22108117_____________. 4.
=⋅y xy 82 ,
=⋅2712
.
5.比较大小:
32
13.(填“>”
、“=”、“<”) 6.在实数范围内分解因式
=
-94x ___________ . 7.已知矩形长为32
cm ,
宽6为cm ,那么这个矩形对角
线长为_____ cm.
8.23231+-与的关系是 .
9.当x= 时,二次根式
1+x 取最小值,其最小值
为 .
10.若3的整数部分是a ,
小数部分是b ,则=-b a 3 .
三、计算题(每小题4分,共16分) 1.
2
14
181
22-+- ;
2.
3
)154276485(÷+-
; 3.
21)2()12(18---+++;
4.
x x x x 3)1
246(÷- .;
四、化简并求值(每小题5分,共10分) 1.已知:
1
32-=
x ,求12+-x x 的值.
2.



.
22,211881的值求代数式-+-+++-+-=x y
y x x y
y x x x y
五、应用题(6分)
站在水平高度为h 米的地方
看到可见的水平距离为d 米,它们近似地符号公式为
5
8
h
d =。

某一登山者从海
拔n 米处登上海拔2n 米高的山
顶,那么他看到的水平线的距离是原来的多少倍?
六、综合题(8分)
1.阅读下面问题:
12)
12)(12()12(11
21-=-+-⨯=
+;
;
23)
23)(23(2
32
31-=-+-=
+
34)34)(34(34341-=-+-=+.
……
试求: (1)
6
71+的值;
(2)
17231
+的值; (3)n
n ++11
(n 为正整数)
的值.
2.计算:
2006
2007)56()56(-⨯+.
3.已知a ,b ,c 为三角形的三边,化

2
22)()()(a c b a c b c b a -++--+-+.
4.已知x 为奇数,且
1721,969622
+-+⋅++--=--x x x x x x
x x x 求的值.
七、甲、乙两人对题目“化简
并求值:
2112
2-++a a
a ,其中5
1=
a
”有不同的解答,甲的解答是:
11)1(12112
22-+=-+=-++a a a a a a a
a ,乙的解答是:
1)1(121122
2
-+=-+=-++a a a a a a a a ,谁的解答是错误的?为什么?。

相关文档
最新文档