高中数学 第二章 推理与证明学案2 新人教版选修1-2
新人教A版高中数学选修1-2第二章:推理与证明

第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理A级基础巩固一、选择题1.下列推理是归纳推理的是()A.F1,F2为定点,动点P满足|PF1|+|PF2|=2a>|F1F2|,得P 的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n 项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇解析:由归纳推理的定义知,B项为归纳推理.答案:B2.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111A.111 1110B.1 111 111C.1 111 112 D.1 111 113解析:由1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=111 111;…归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,所以123 456×9+7=1 111 111.答案:B3.观察图形规律,在其右下角的空格内画上合适的图形为()解析:观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两个阴影一个空白,应为黑色矩形.答案:A4.设n是自然数,则18(n2-1)[1-(-1)n]的值()A.一定是零B.不一定是偶数C.一定是偶数D.是整数但不一定是偶数解析:当n为偶数时,18(n2-1)[1-(-1)n]=0为偶数;当n为奇数时(n=2k+1,k∈N),18(n2-1)[1-(-1)n]=18(4k2+4k)·2=k(k+1)为偶数.所以18(n 2-1)[1-(-1)n ]的值一定为偶数. 答案:C5.在平面直角坐标系内,方程x a +y b=1表示在x 轴,y 轴上的截距分别为a 和b 的直线,拓展到空间,在x 轴,y 轴,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c=1 B.x ab +y bc +z ca =1 C.xy ab +yz bc +zx ca =1 D .ax +by +cz =1解析:从方程x a +y b=1的结构形式来看,空间直角坐标系中,平面方程的形式应该是x a +y b +z c=1. 答案:A二、填空题6.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n =________.解析:计算得a 2=4,a 3=9,所以猜想a n =n 2.答案:n 27.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18. 答案:1∶88.观察下列各式:①(x3)′=3x2;②(sin x)′=cos x;③(e x-e-x)′=e x+e-x;④(x cos x)′=cos x-x sin x.根据其中函数f(x)及其导数f′(x)的奇偶性,运用归纳推理可得到的一个命题是__________________________________________.解析:对于①,f(x)=x3为奇函数,f′(x)=3x2为偶函数;对于②,g(x)=sin x为奇函数,f′(x)=cos x为偶函数;对于③,p(x)=e x-e-x为奇函数,p′(x)=e x+e-x为偶函数;对于④,q(x)=x cos x 为奇函数,q′(x)=cos x-x sin x为偶函数.归纳推理得结论:奇函数的导函数是偶函数.答案:奇函数的导函数是偶函数三、解答题9.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(132+52)(102+72)≥(13×10+5×7)2.请你观察这三个不等式,猜想出一个一般性结论,并证明你的结论.解:一般性结论为(a2+b2)(c2+d2)≥(ac+bd)2.证明:因为(a2+b2)(c2+d2)-(ac+bd)2=a2c2+b2c2+a2d2+b2d2-(a2c2+2abcd+b2d2)=b2c2+a2d2-2abcd=(bc-ad)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2.10.如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.解:如右图所示,在四面体PABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.B级能力提升1.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴的根数为() A.6n-2 B.8n-2C.6n+2 D.8n+2解析:从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.答案:C2.等差数列{a n}中,a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,q>1,写出b5,b7,b4,b8的一个不等关系________.解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.答案:b4+b8>b5+b73.观察下列等式: ①sin 210°+cos 240°+sin 10°cos 40°=34; ②sin 26°+cos 236°+sin6°cos36°=34. 由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.解:由①②知,两角相差30°,运算结果为34, 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+ sin α⎝ ⎛⎭⎪⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边 故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 2.1.2 演绎推理A 级 基础巩固一、选择题1.若大前提是“任何实数的平方都大于0”,小前提是“a∈R”,结论是“a2>0”,那么这个演绎推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误解析:因为“任何实数的平方非负”,所以“任何实数的平方都大于0”是错误的,即大前提错误.答案:A2.在“△ABC中,E,F分别是边AB,AC的中点,则EF∥BC”的推理过程中,大前提是()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边长的一半C.E,F为AB,AC的中点D.EF∥BC解析:大前提是“三角形的中位线平行于第三边”.答案:A3.下列四个推导过程符合演绎推理“三段论”形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大小前提及结论颠倒,不符合演绎推理“三段论”形式.答案:B4.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)·f(y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数解析:只有指数函数f(x)=a x(a>0,a≠1)满足条件.答案:C5.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.答案:C二、填空题6.已知△ABC中,∠A=30°,∠B=60°,求证a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的________.解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.答案:小前提7.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是________.解析:要使函数有意义,则log 2x -2≥0,解得x ≥4,所以函数y =log 2x -2的定义域是[4,+∞).答案:函数y =log 2x -2的定义域是[4,+∞)8.下面几种推理过程是演绎推理的是________(填序号).①两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行线的同旁内角,那么∠A +∠B =180°②由平面三角形的性质,推测空间四面体的性质③某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人④在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式.解析:①为演绎推理,②为类比推理,③④为归纳推理.答案:①三、解答题9.设m 为实数,利用三段论求证方程x 2-2mx +m -1=0有两个相异实根.证明:如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两相异实根.(大前提)一元二次方程x 2-2mx +m -1=0的判别式Δ=(2m )2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,(小前提)所以方程x 2-2mx +m -1=0有两相异实根.(结论)10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数f (x )的单调增区间.解:(1)∵x =π8是函数y =f (x )的图象的对称轴, ∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z. ∵-π<φ<0,∴φ=-3π4. (2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎪⎫2x -3π4. 由题意,得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z , ∴k π+π8≤x ≤5π8+k π,k ∈Z. 故函数f (x )的增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z. B 级 能力提升1.某人进行了如下的“三段论”:如果f ′(x 0)=0,则x =x 0是函数f (x )的极值点,因为函数f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.你认为以上推理的( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确解析:若f ′(x 0),则x =x 0不一定是函数f (x )的极值点,如f (x )=x 3,f ′(0)=0,但x =0不是极值点,故大前提错误.答案:A2.设a >0,f (x )=e x a +a e x 是R 上的偶函数,则a 的值为________. 解析:因为f (x )是R 上的偶函数,所以f (-x )=f (x ),所以⎝ ⎛⎭⎪⎫a -1a ⎝ ⎛⎭⎪⎫e x -1e x =0对于一切x ∈R 恒成立,由此得a -1a =0,即a 2=1.又a >0,所以a =1.答案:13.在数列{a n }中,a 1=2,a n +1=4a n -3n +1(n ∈N *).(1)证明数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n 对任意n ∈N *皆成立.(1)证明:由已知a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n ),n ∈N *,又a 1-1=2-1=1≠0,所以数列{a n -n }是首项为1,公比为4的等比数列.(2)解:由(1)得a n -n =4n -1,所以a n =4n -1+n .所以S n =a 1+a 2+a 3+…+a n =1+4+42+…+4n -1+(1+2+3+…+n )=4n -13+n (n +1)2. (3)证明:对任意的n ∈N *,S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎢⎡⎦⎥⎤4n -13+n (n +1)2=-12(3n 2+n -4)=-12(3n +4)(n -1)≤0. 所以不等式S n +1≤4S n 对任意n ∈N *皆成立.2.2 直接证明与间接证明2.2.1 综合法和分析法第1课 时综合法A 级 基础巩固一、选择题1.在下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:由题设知,f (x )在(0,+∞)上是减函数,由f (x )=1x,得f ′(x )=-1x2<0,所以f (x )=1x 在(0,+∞)上是减函数. 答案:A2.已知函数f (x )=lg 1-x 1+x,若f (a )=b ,则f (-a )等于( ) A .bB .-b C.1b D .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg ⎝ ⎛⎭⎪⎫1-a 1+a -1=-lg 1-a 1+a =-f (a )=-b .答案:B3.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .与n 取值有关解析:当n ≥2时,a n =S n -S n -1=4n -5又a 1=S 1=2×12-3×1=-1适合上式.∴a n =4n -5(n ∈N *),则a n -a n -1=4(常数)故数列{a n }是等差数列.答案:B4.若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2 D.a b <a +1b +1解析:在B 中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立.答案:B5.在△ABC 中,已知sin A cos A =sin B cos B ,则该三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:由sin A cos A =sin B cos B 得sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2.所以该三角形是等腰或直角三角形.答案:D二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.解析:本命题的证明,利用题设条件和导数与函数单调性的关系,经推理论证得到了结论,所以应用的是综合法的证明方法.答案:综合法7.角A,B为△ABC内角,A>B是sin A>sin B的________条件(填“充分”“必要”“充要”或“即不充分又不必要”).解析:在△ABC中,A>B⇔a>b由正弦定理asin A=bsin B,从而sin A>sin B.因此A>B⇔a>b⇔sin A>sin B,为充要条件.答案:充要8.已知p=a+1a-2(a>2),q=2-a2+4a-2(a>2),则p,q的大小关系为________.解析:因为p=a+1a-2=(a-2)+1a-2+2≥2(a-2)·1a-2+2=4,又-a2+4a-2=2-(a-2)2<2(a>2),所以q=2-a2+4a-2<4≤p.答案:p>q三、解答题9.已知a>0,b>0,且a+b=1,求证:1a+1b≥4.证明:因为a >0,b >0且a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b≥2+2 b a ·a b =4. 当且仅当b a =a b,即a =b 时,取等号, 故1a +1b≥4. 10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f ⎝ ⎛⎭⎪⎫x +12为偶函数. 证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称.∴f (x +1)=f (-x )则y =f (x )的图象关于x =12对称 ∴-b 2a =12,∴a =-b . 则f (x )=ax 2-ax +c =a ⎝ ⎛⎭⎪⎫x -122+c -a 4 ∴f ⎝ ⎛⎭⎪⎫x +12=ax 2+c -a 4为偶函数. B 级 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.答案:A2.已知sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,则tan⎝⎛⎭⎪⎫x-π4=________.解析:∵sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,∴cos x=-45,∴tan x=-12,∴tan⎝⎛⎭⎪⎫x-π4=tan x-11+tan x=-3.答案:-33.(2016·江苏卷)如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,所以DE∥A1C1.因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC A1B1C1中,A1A⊥平面A1B1C1,因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.又因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.第2课时分析法A级基础巩固一、选择题1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的两头凑法D.分析法又叫逆推证法或执果索因法解析:由综合法和分析法的意义与特点,知C错误.答案:C2.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:b2-ac<3a,则证明的依据应是() A.a-b>0B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔(a-c)·(2a +c)>0⇔(a-c)(a-b)>0.答案:C3.在不等边△ABC中,a为最大边,要想得到A为钝角的结论,对三边a,b,c应满足的条件,判断正确的是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2解析:要想得到A为钝角,只需cos A<0,因为cos A=b2+c2-a22bc,所以只需b2+c2-a2<0,即b2+c2<a2.答案:C4.对于不重合的直线m,l和平面α,β,要证明α⊥β,需要具备的条件是()A.m⊥l,m∥α,l∥βB.m⊥l,α∩β=m,l⊂αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m⊂α解析:对于选项A,与两相互垂直的直线平行的平面的位置关系不能确定;对于选项B,平面内的一条直线与另一个平面的交线垂直,这两个平面的位置关系不能确定;对于选项C,这两个平面有可能平行或重合;根据面面垂直的判定定理知选项D正确.答案:D5.设P=2,Q=7-3,R=6-2,则P,Q,R的大小关系是()A.P>Q>R B.P>R>QC.Q>P>R D.Q>R>P解析:先比较Q与R的大小.Q-R=7-3-(6-2)=(7+2)-(6+3).因为(7+2)2-(6+3)2=7+2+214-(6+3+218)=2(14-18)<0,所以Q<R.又P=2>R=2(3-1),所以P>R>Q.答案:B二、填空题6.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b7.当x>0时,sin x与x的大小关系为________.解析:令f(x)=x-sin x(x>0),则f′(x)=1-cos x≥0,所以f(x)在(0,+∞)上是增函数,因此f(x)>f(0)=0,则x>sin x.答案:x>sin x8.如图,在直四棱柱A1B1C1D1ABCD(侧棱与底面垂直)中,当底面四边形ABCD满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).解析:要证明A 1C ⊥B 1D 1只需证明B 1D 1⊥平面A 1C 1C因为CC 1⊥B 1D 1只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)三、解答题9.已知a >1,求证:a +1+a -1<2a .证明:因为a >1,要证a +1+a -1<2a ,只需证(a +1+a -1)2<(2a )2,只需证a +1+a -1+2(a +1)(a -1)<4a , 只需证(a +1)(a -1)<a ,只需证a 2-1<a 2,即证-1<0.该不等式显然成立,故原不等式成立.10.求证:2cos(α-β)-sin (2α-β)sin α=sin βsin α. 证明:欲证原等式2cos(α-β)-sin (2α-β)sin α=sin βsin α成立. 只需证2cos(α-β)sin α-sin(2α-β)=sin β,①因为①左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以①成立,所以原等式成立.B 级 能力提升1.设a ,b ,c ,d 为正实数,若a +d =b +c 且|a -d |<|b -c |,则有( )A .ad =bcB .ad <bcC .ad >bcD .ad ≤bc解析:∵|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔a 2+d 2-2ad <b 2+c 2-2bc ①又a +d =b +c∴a 2+d 2+2ad =b 2+c 2+2bc ②由②-①,得4ad >4bc ,即ad >bc .答案:C2.设函数f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=3a -4a +1,则实数a 的取值范围是________. 解析:因为f (x )是周期为3的奇函数,且f (1)>1,所以f (2)=f (-1)=-f (1),因此3a -4a +1<-1,则4a -3a +1<0, 解之得-1<a <34. 答案:⎝ ⎛⎭⎪⎫-1,34 3.设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,证明:a x +c y=2.证明:要证明ax+cy=2,只要证ay+cx=2xy,也就是证明2ay+2cx=4xy.由题设条件b2=ac,2x=a+b,2y=b+c,所以2ay+2cx=a(b+c)+(a+b)c=ab+2ac+bc,4xy=(a+b)(b+c)=ab+b2+bc+ac=ab+2ac+bc,所以2ay+2cx=4xy成立,故ax+cy=2成立.2.2.2 反证法A级基础巩固一、选择题1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论.A.①②B.①②④C.①②③D.②③解析:由反证法的定义知,可把①②③作为条件使用,而④原命题的结论是不可以作为条件使用的.答案:C2.用反证法证明命题:“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根解析:“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根.”答案:A3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.答案:B4.否定结论“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c都是奇数或至少有两个偶数解析:自然数a,b,c中奇数、偶数的可能情况有:全为奇数,恰有一个偶数,恰有两个偶数,全为偶数.除去结论即为反设,应选D.答案:D5.设实数a 、b 、c 满足a +b +c =1,则a ,b ,c 中至少有一个数不小于( )A .0B.13C.12 D .1解析:假设a ,b ,c 都小于13,则a +b +c <1,与a +b +c =1矛盾,选项B 正确.答案:B二、填空题6.已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a ,求证:b 与c 是异面直线,若利用反证法证明,则应假设________.解析:∵空间中两直线的位置关系有3种:异面、平行、相交, ∴应假设b 与c 平行或相交.答案:b 与c 平行或相交7.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:由假设p 为奇数可知(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…a 7)-(1+2+…+7)=0为偶数.答案:(a 1-1)+(a 2-2)+…+(a 7-7)8.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:0三、解答题9.设x ,y 都是正数,且x +y >2,试用反证法证明:1+x y <2和1+y x<2中至少有一个成立.证明:假设1+x y <2和1+y x <2都不成立,即1+x y ≥2,1+y x≥2. 又因为x ,y 都是正数,所以1+x ≥2y ,1+y ≥2x .两式相加,得2+x +y ≥2x +2y ,则x +y ≤2,这与题设x +y >2矛盾,所以假设不成立.故1+x y <2和1+y x<2中至少有一个成立. 10.已知三个正数a ,b ,c ,若a 2,b 2,c 2成公比不为1的等比数列,求证:a ,b ,c 不成等差数列.证明:假设a ,b ,c 成等差数列,则有2b =a +c ,即4b 2=a 2+c 2+2ac ,又a2,b2,c2成公比不为1的等比数列,且a,b,c为正数,所以b4=a2c2且a,b,c互不相等,即b2=ac,因此4ac=a2+c2+2ac,所以(a-c)2=0,从而a=c=b,这与a,b,c互不相等矛盾.故a,b,c不成等差数列.B级能力提升1.设a,b,c大于0,则3个数:a+1b,b+1c,c+1a的值()A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于2解析:假设a+1b,b+1c,c+1a都小于2则a+1b<2,b+1c<2,c+1a<2∴a+1b+b+1c+c+1a<6,①又a,b,c大于0所以a+1a≥2,b+1b≥2,c+1c≥2.∴a+1b+b+1c+c+1a≥6.②故①与②式矛盾,假设不成立所以a+1b,b+1c,c+1a至少有一个不小于2.答案:D2.对于定义在实数集R上的函数f(x),如果存在实数x0,使f(x0)=x0,那么x0叫作函数f(x)的一个好点.已知函数f(x)=x2+2ax+1不存在好点,那么a的取值范围是()A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,12 C .(-1,1) D .(-∞,-1)∪(1,+∞)解析:假设函数f (x )存在好点,则x 2+2ax +1=x 有实数解,即x 2+(2a -1)x +1=0有实数解.所以Δ=(2a -1)2-4≥0,解得a ≤-12或a ≥32. 所以f (x )不存在好点时,a 的取值范围是⎝ ⎛⎭⎪⎫-12,32. 答案:A3.已知二次函数f (x )=ax 2+bx +c (a >0,c >0)的图象与x 轴有两个不同的交点,若f (c )=0且0<x <c 时,恒有f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小. (1)证明:因为f (x )的图象与x 轴有两个不同的交点,所以f (x )=0有两个不等实根x 1,x 2.因为f (c )=0,所以x 1=c 是f (x )=0的根,又x 1x 2=c a, 所以x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c , 所以1a是f (x )=0的一个根. (2)解:假设1a<c ,又1a>0,且0<x <c 时,f (x )>0, 所以知f ⎝ ⎛⎭⎪⎫1a >0,这与f ⎝ ⎛⎭⎪⎫1a =0矛盾, 因此1a≥c , 又因为1a≠c , 所以1a>c .。
高中数学 第二章 推理与证明教案1 新人教版选修1-2-新人教版高二选修1-2数学教案

1 / 2课题 第二章 推理与证明1授课时间 课型 复习二次修改意见课时 1授课人科目数学主备教学目标 知识与技能 通过典型案例的探究,了解回归分析的基本思想、方法及初步应用,明确对两个分类变量的独立性检验的基本思想具体步骤,会对具体问题作出独立性检验。
过程与方法对章节知识点进行归纳整理,通过典型例题对本节知识的应用,提高学生对本章知识的掌握程度;情感态度价值观 培养学生探究意识,合作意识,应用用所学知识解决生活中的实际问题。
教材分析 重难点 章节知识点进行归纳整理,典型例题的解决思路及变式训练。
教学设想教法 引导归纳 , 三主互位导学法学法 归纳训练 教具多媒体, 刻度尺课堂设计一、 章节知识网络二、 归纳专题 专题一 归纳推理归纳推理是由部分到整体,由个别到一般的推理,常见的归纳推理题目主要涉及两个类型:数的归纳和形的归纳,其求解思路如下:(1)通过观察个别对象发现某些相同性质; (2)由相同性质猜想得出一般性结论.需特别注意一点,由归纳猜想得出的结论未必正确,常需要严格的推理证明.例 1 在如下数表中,已知每行、每列中的数都成等差数列, 第1列 第2列 第3列 … 第1行 1 2 3 … 第2行 2 4 6 … 第3行 3 6 9 … ……………那么位于表中的第n 行第n +1列的数是________.【解析】 由题中数表知:第n 行中的项分别为n,2n,3n ,…,组成一等差数列,所以第n 行第n +1列的数是:n 2+n .【答案】 n 2+n专题二 类比推理类比推理是由两类对象具有类似特征和其中一类对象的某些已知特征推出另一类对象也具有这些特征的推理.显然其特征是由特殊到特殊的推理,常见的类比情形有:平面与空间类比,向量与数的类比,不等与相等类比,等差数列同等比数列的类比等等.需注意一点,由类比推理得出的结论也未必正确,也需要严格证明. 例2 已知:由图①有面积关系:S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB.2 / 2(1)试用类比的思想写出由图②所得的体积关系V P A ′B ′C ′V P ABC=______________________. (2)证明你的结论是正确的.【思路点拨】 由面积关系,类比推测V P -A ′B ′C ′V P -ABC =PA ′·PB ′·PC ′PA ·PB ·PC,然后由体积公式证明. 【规X 解答】 (1)V P A ′B ′C ′V P ABC =PA ′·PB ′·PC ′PA ·PB ·PC . (2)过A 作AO ⊥平面PBC 于O ,连接PO ,则A ′在平面PBC 内的射影O ′落在PO 上, 从而V P A ′B ′C ′V P ABC =V A ′PB ′C ′V A PBC=13S △PB ′C ′·A ′O ′13S △PBC ·AO=PB ′·PC ′·A ′O ′PB ·PC ·AO ,∵A ′O ′AO =PA ′PA, ∴V P A ′B ′C ′V P ABC =PA ′·PB ′·PC ′PA ·PB ·PC. 作业布置 课本46页 第3,5题板 书 设 计第二章 推理与证明 章节知识网络 专题一 归纳推理 例1 分析专题二 类比推理 例2 分析专题三 演绎推理例3 分析专题四 直接证明与间接证明教学反思。
2017-2018学年高中数学第二章推理与证明2.2.2反证法教学案新人教A版选修1_2

2.2.2 反证法预习课本P42~43,思考并完成下列问题(1)反证法的定义是什么?有什么特点?(2)利用反证法证题的关键是什么?步骤是什么?[新知初探]反证法的定义及证题的关键[点睛] 对反证法概念的理解(1)反证法的原理是“否定之否定等于肯定”.第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定”.(2)反证法属“间接解题方法”.2.“反证法”和“证逆否命题”的区别与联系(1)联系:通过证明逆否命题成立来证明原命题成立和通过反证法说明原命题成立属于间接证明,都是很好的证明方法.(2)区别:证明逆否命题实际上就是从结论的反面出发,推出条件的反面成立.而反证法一般是假设结论的反面成立,然后通过推理导出矛盾.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)反证法属于间接证明问题的方法.( )(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.( )(3)反证法的实质是否定结论导出矛盾.( )答案:(1)√(2)×(3)√2.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用( )①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论A.①②B.①②④C.①②③ D.②③答案:C3.如果两个实数之和为正数,则这两个数( )A.一个是正数,一个是负数B.两个都是正数C.至少有一个正数D.两个都是负数答案:C4.用反证法证明“如果a>b,那么3a>3b”,假设的内容应是________.答案:3a≤3b用反证法证明否定性命题[典例] 已知三个正数a,b,c成等比数列,但不成等差数列.求证:a,b,c不成等差数列.[证明] 假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b.∵a,b,c成等比数列,∴b2=ac,即b=ac,∴a+c+2ac=4ac,∴(a-c)2=0,即a=c.从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.1.用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.2.用反证法证明数学命题的步骤[活学活用] 已知f (x )=a x+x -2x +1(a >1),证明方程f (x )=0没有负数根. 证明:假设x 0是f (x )=0的负数根, 则x 0<0且x 0≠-1,且ax 0=-x 0-2x 0+1, 由0<ax 0<1⇒0<-x 0-2x 0+1<1, 解得12<x 0<2,这与x 0<0矛盾,所以假设不成立,故方程f (x )=0没有负数根.用反证法证明“至多”“至少”问题[0=0,x 2+2ax -2a =0中至少有一个方程有实数解.[证明] 假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:⎩⎪⎨⎪⎧(4a )2-4(-4a +3)<0,(a -1)2-4a 2<0,(2a )2+4×2a <0⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,⇒-32<a <-1,-2<a <0.这与已知a ≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解. [一题多变]1.[变条件,变设问]将本题改为:已知下列三个方程x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0至少有一个方程有实数根,如何求实数a 的取值范围?解:若方程没有一个有实根,则⎩⎪⎨⎪⎧16a 2-4(3-4a )<0,(a -1)2-4a 2<0,4a 2+8a <0,解得⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,即-32<a <-1,-2<a <0.故三个方程至少有一个方程有实根,实数a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥-1或a ≤-32. 2.[变条件,变设问]将本题条件改为三个方程中至多有2个方程有实数根,求实数a 的取值范围.解:假设三个方程都有实数根,则 ⎩⎪⎨⎪⎧(4a )2-4(-4a +3)≥0,(a -1)2-4a 2≥0,(2a )2+4×2a ≥0,即⎩⎪⎨⎪⎧4a 2+4a -3≥0,3a 2+2a -1≤0,a 2+2a ≥0,解得⎩⎪⎨⎪⎧a ≤-32或a ≥12,-1≤a ≤13,a ≤-2或a ≥0.即a ∈∅.所以实数a 的取值范围为实数R.3.[变条件,变设问]已知a ,b ,c ,d ∈R,且a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ≥0,b ≥0,c ≥0,d ≥0. ∵a +b =c +d =1, ∴(a +b )(c +d )=1, ∴ac +bd +bc +ad =1.而ac +bd +bc +ad >ac +bd >1,与上式矛盾, ∴假设不成立,∴a ,b ,c ,d 中至少有一个是负数.用反证法证明“至多”“至少”等问题的两个关注点(1)反设情况要全面,在使用反证法时,必须在假设中罗列出与原命题相异的结论,缺少任何一种可能,反证法都是不完全的.(2)常用题型:对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.用反证法证明唯一性命题[典例][证明] 假设结论不成立,则有两种可能:无交点或不止一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.巧用反证法证明唯一性命题(1)当证明结论有以“有且只有”“当且仅当”“唯一存在”“只有一个”等形式出现的命题时,由于反设结论易于推出矛盾,故常用反证法证明.(2)用反证法证题时,如果欲证明命题的反面情况只有一种,那么只要将这种情况驳倒了就可以;若结论的反面情况有多种,则必须将所有的反面情况一一驳倒,才能推断结论成立.(3)证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.[活学活用]求证:过直线外一点只有一条直线与它平行.证明:已知:直线b∥a,A∉a,A∈b,求证:直线b唯一.假设过点A还有一条直线b′∥a.根据平行公理,∵b∥a,∴b∥b′,与b∩b′=A矛盾,∴假设不成立,原命题成立.层级一学业水平达标1.用反证法证明命题:“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的序号顺序为( )A.①②③B.③①②C.①③② D.②③①解析:选B 根据反证法的三个基本步骤“反设—归谬—结论”可知顺序应为③①②.2.用反证法证明命题“如果a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为( )A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除解析:选B “至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”,故选B.3.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是( ) A.三个内角中至少有一个钝角B.三个内角中至少有两个钝角C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角解析:选 B “至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.4.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为( ) A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:选C 假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故应选C.5.已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B ∵c>d,∴-c<-d,a>b,∴a-c与b-d的大小无法比较.可采用反证法,当a-c>b-d成立时,假设a≤b,∵-c<-d,∴a-c<b-d,与题设矛盾,∴a >b.综上可知,“a>b”是“a-c>b-d”的必要不充分条件.6.否定“自然数a,b,c中恰有一个偶数”时,正确的反设是________.答案:自然数a,b,c中至少有两个偶数或都是奇数7.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为________.解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.答案:a≠1或b≠18.和两条异面直线AB,CD都相交的两条直线AC,BD的位置关系是____________.解析:假设AC与BD共面于平面α,则A,C,B,D都在平面α内,∴AB⊂α,CD⊂α,这与AB,CD异面相矛盾,故AC与BD异面.答案:异面9.求证:1,3,2不能为同一等差数列的三项.证明:假设1,3,2是某一等差数列的三项,设这一等差数列的公差为d,则1=3-md,2=3+nd,其中m,n为两个正整数,由上面两式消去d,得n+2m=3(n+m).因为n+2m为有理数,而3(n+m)为无理数,所以n+2m≠3(n+m),矛盾,因此假设不成立,即1,3,2不能为同一等差数列的三项.10.已知函数f(x)在R上是增函数,a,b∈R.(1)求证:如果a+b≥0,那么f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中的命题的逆命题是否成立?并证明你的结论.解:(1)证明:当a+b≥0时,a≥-b且b≥-a.∵f(x)在R上是增函数,∴f(a)≥f(-b),f(b)≥f(-a),∴f(a)+f(b)≥f(-a)+f(-b).(2)(1)中命题的逆命题为“如果f(a)+f(b)≥f(-a)+f(-b),那么a+b≥0”,此命题成立.用反证法证明如下:假设a+b<0,则a<-b,∴f(a)<f(-b).同理可得f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b),这与f(a)+f(b)≥f(-a)+f(-b)矛盾,故假设不成立,∴a+b≥0成立,即(1)中命题的逆命题成立.层级二应试能力达标1.用反证法证明命题“关于x的方程ax=b(a≠0)有且只有一个解”时,反设是关于x 的方程ax=b(a≠0)()A.无解B.有两解C.至少有两解D.无解或至少有两解解析:选D “唯一”的否定是“至少两解或无解”.2.下列四个命题中错误的是( )A .在△ABC 中,若∠A =90°,则∠B 一定是锐角 B.17,13,11不可能成等差数列C .在△ABC 中,若a >b >c ,则∠C >60°D .若n 为整数且n 2为偶数,则n 是偶数解析:选C 显然A 、B 、D 命题均真,C 项中若a >b >c ,则∠A >∠B >∠C ,若∠C >60°,则∠A >60°,∠B >60°,∴∠A +∠B +∠C >180°与∠A +∠B +∠C =180°矛盾,故选C.3.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2解析:选C 假设都大于-2,则a +1b +b +1c +c +1a>-6,但⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝⎛⎭⎪⎫a +1a +⎝⎛⎭⎪⎫b +1b +⎝⎛⎭⎪⎫c +1c ≤-2+(-2)+(-2)=-6,矛盾. 4.若△ABC 能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定解析:选B 分△ABC 的直线只能过一个顶点且与对边相交,如直线AD (点D 在BC 上),则∠ADB +∠ADC =π,若∠ADB 为钝角,则∠ADC 为锐角.而∠ADC >∠BAD ,∠ADC >∠ABD ,△ABD 与△ACD 不可能相似,与已知不符,只有当∠ADB =∠ADC =∠BAC =π2时,才符合题意.5.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:06.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=________=0. 但0≠奇数,这一矛盾说明p 为偶数. 解析:据题目要求及解题步骤, ∵a 1-1,a 2-2,...,a 7-7均为奇数, ∴(a 1-1)+(a 2-2)+...+(a 7-7)也为奇数. 即(a 1+a 2+...+a 7)-(1+2+...+7)为奇数. 又∵a 1,a 2,...,a 7是1,2,...,7的一个排列, ∴a 1+a 2+...+a 7=1+2+...+7,故上式为0, 所以奇数=(a 1-1)+(a 2-2)+...+(a 7-7) =(a 1+a 2+...+a 7)-(1+2+...+7)=0. 答案:(a 1-1)+(a 2-2)+...+(a 7-7) (a 1+a 2+...+a 7)-(1+2+ (7)7.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.因为0<a <1,0<b <1,0<c <1, 所以1-a >0.由基本不等式, 得(1-a )+b2≥(1-a )b >14=12. 同理,(1-b )+c 2>12,(1-c )+a 2>12.将这三个不等式两边分别相加,得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>12+12+12, 即32>32,这是不成立的, 故(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.8.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1).(1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.解:(1)由题意可知,1-a 2n +1=23(1-a 2n ).令c n =1-a 2n ,则c n +1=23c n .又c 1=1-a 21=34,则数列{c n }是首项为c 1=34,公比为23的等比数列,即c n =34·⎝ ⎛⎭⎪⎫23n -1,故1-a 2n =34·⎝ ⎛⎭⎪⎫23n -1⇒a 2n =1-34·⎝ ⎛⎭⎪⎫23n -1.又a 1=12>0,a n a n +1<0,故a n =(-1)n -11-34·⎝ ⎛⎭⎪⎫23n -1. b n =a 2n +1-a 2n =⎣⎢⎡⎦⎥⎤1-34·⎝ ⎛⎭⎪⎫23n -1-34·⎝ ⎛⎭⎪⎫23n -1=14·⎝ ⎛⎭⎪⎫23n -1. (2)用反证法证明.假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b r >b s >b t ,则只可能有2b s =b r +b t 成立.∴2·14·⎝ ⎛⎭⎪⎫23s -1=14·⎝ ⎛⎭⎪⎫23r -1+14·⎝ ⎛⎭⎪⎫23t -1,两边同乘以3t -121-r,化简得3t -r+2t -r=2·2s -r 3t -s.由于r <s <t ,∴上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.(时间: 120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.根据偶函数定义可推得“函数f (x )=x 2在R 上是偶函数”的推理过程是( ) A .归纳推理 B .类比推理 C .演绎推理D .非以上答案解析:选C 根据演绎推理的定义知,推理过程是演绎推理,故选C. 2.自然数是整数,4是自然数,所以4是整数.以上三段论推理( ) A .正确B .推理形式不正确C .两个“自然数”概念不一致D .“两个整数”概念不一致解析:选A 三段论中的大前提、小前提及推理形式都是正确的.3.设a,b,c都是非零实数,则关于a,bc,ac,-b四个数,有以下说法:①四个数可能都是正数;②四个数可能都是负数;③四个数中既有正数又有负数.则说法中正确的个数有( )A.0 B.1C.2 D.3解析:选B 可用反证法推出①,②不正确,因此③正确.4.下列推理正确的是( )A.把a(b+c)与log a(x+y)类比,则有log a(x+y)=log a x+log a yB.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sin x+sin yC.把a(b+c)与a x+y类比,则有a x+y=a x+a yD.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)解析:选D (xy)z=x(yz)是乘法的结合律,正确.5.已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为( )A.(3,9) B.(4,8)C.(3,10) D.(4,9)解析:选D 因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9),故选D.6.求证:2+3> 5.证明:因为2+3和5都是正数,所以为了证明2+3>5,只需证明(2+3)2>(5)2,展开得5+26>5,即26>0,此式显然成立,所以不等式2+3>5成立.上述证明过程应用了( )A.综合法B.分析法C.综合法、分析法配合使用D.间接证法解析:选B 证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.7.已知{b n}为等比数列,b5=2,则b1b2b3…b9=29.若{a n}为等差数列,a5=2,则{a n}的类似结论为( )A.a1a2a3…a9=29B.a1+a2+…+a9=29C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9解析:选D 由等差数列性质,有a1+a9=a2+a8=…=2a5.易知D成立.8.若数列{a n }是等比数列,则数列{a n +a n +1}( ) A .一定是等比数列 B .一定是等差数列C .可能是等比数列也可能是等差数列D .一定不是等比数列解析:选C 设等比数列{a n }的公比为q ,则a n +a n +1=a n (1+q ).∴当q ≠-1时,{a n+a n +1}一定是等比数列;当q =-1时,a n +a n +1=0,此时为等差数列. 9.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0D .不大于0解析:选 D 法一:∵a +b +c =0,∴a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +ac +b c =-a 2+b 2+c 22≤0.法二:令c =0,若b =0,则ab +bc +ac =0,否则a ,b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.10.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a ,b ,c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c解析:选A 令n =1,2,3,得⎩⎪⎨⎪⎧a -b +c =1,a -b +c =7,a -b +c =34.所以a =12,b =c =14.11.已知数列{a n }的前n 项和S n ,且a 1=1,S n =n 2a n (n ∈N *),可归纳猜想出S n 的表达式为( )A .S n =2n n +1B .S n =3n -1n +1C .S n =2n +1n +2D .S n =2n n +2解析:选A 由a 1=1,得a 1+a 2=22a 2,∴a 2=13,S 2=43;又1+13+a 3=32a 3,∴a 3=16,S 3=32=64;又1+13+16+a 4=16a 4,得a 4=110,S 4=85.由S 1=22,S 2=43,S 3=64,S 4=85可以猜想S n =2n n +1.12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2 016=( )A.1 C .4D .5解析:选D x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2 016=x 4=5,故应选D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.已知x ,y ∈R ,且x +y <2,则x ,y 中至多有一个大于1,在用反证法证明时,假设应为________.解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x ,y 都大于1”.答案:x ,y 都大于1 14.已知a >0,b >0,m =lga +b2,n =lga +b2,则m ,n 的大小关系是________.解析:ab >0⇒ab >0⇒a +b +2ab >a +b ⇒ (a +b )2>(a +b )2⇒a +b >a +b ⇒a +b2>a +b2⇒lga +b2>lga +b2.答案:m >n 15.已知 2+23=223, 3+38=338, 4+415= 4415,…, 6+a b =6ab,a ,b 均为正实数,由以上规律可推测出a ,b 的值,则a +b =________.解析:由题意归纳推理得6+a b =6a b,b =62-1 =35,a =6.∴a +b =6+35=41.答案:4116.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.解析:解法的类比(特殊化),易得两个正方体重叠部分的体积为a 38.答案:a 38三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2;(2)6+10>23+2. 证明:(1)当a ,b >0时,有a +b2≥ab ,∴lg a +b2≥lg ab ,∴lga +b 2≥12lg ab =lg a +lg b2. (2)要证 6+10>23+2, 只要证(6+10)2>(23+2)2, 即260>248,这是显然成立的, 所以,原不等式成立.18.(本小题满分12分)若a 1>0,a 1≠1,a n +1=2a n1+a n (n =1,2,…).(1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n (不要求证明).解:(1)证明:若a n +1=a n ,即2a n1+a n =a n ,解得a n =0或1.从而a n =a n -1=…=a 2=a 1=0或1, 这与题设a 1>0,a 1≠1相矛盾,所以a n +1=a n 不成立. 故a n +1≠a n 成立.(2)由题意得a 1=12,a 2=23,a 3=45,a 4=89,a 5=1617,由此猜想:a n =2n -12n -1+1.19.(本小题满分12分)下列推理是否正确?若不正确,指出错误之处. (1)求证:四边形的内角和等于360°.证明:设四边形ABCD 是矩形,则它的四个角都是直角,有∠A +∠B +∠C +∠D =90°+90°+90°+90°=360°,所以四边形的内角和为360°.(2)已知 2 和 3 都是无理数,试证:2+3也是无理数.证明:依题设2和3都是无理数,而无理数与无理数之和是无理数,所以2+3必是无理数.(3)已知实数m 满足不等式(2m +1)(m +2)<0,用反证法证明:关于x 的方程x 2+2x +5-m 2=0无实根.证明:假设方程x 2+2x +5-m 2=0有实根.由已知实数m 满足不等式(2m +1)(m +2)<0,解得-2<m <-12,而关于x 的方程x 2+2x +5-m 2=0的判别式Δ=4(m 2-4),∵-2<m <-12,∴14<m 2<4,∴Δ<0,即关于x 的方程x 2+2x +5-m 2=0无实根. 解:(1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形. (2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.20.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ; (2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S n n=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0,∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.21.(本小题满分12分)已知:sin 2 30°+sin 2 90°+sin 2 150°=32,sin 2 5°+sin 265°+sin 2125°=32,通过观察上述两等式的规律,请你写出对任意角度α都成立的一般性的命题,并给予证明.解:一般形式为:sin 2α+sin 2(α+60°)+sin 2(α+120°)=32.证明:左边=1-cos 2α2+1-α+2+1-α+2=32-12[cos 2α+cos(2α+120°)+cos(2α+240°)] =32-12(cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2αcos 240°-sin 2αsin 240°)=32-12cos 2α-12cos 2α-32sin 2α-12cos 2α+32sin 2α=32=右边. 将一般形式写成sin 2(α-60°)+sin 2α+sin 2(α+60°)=32也正确22.(本小题满分12分)根据要求证明下列各题:(1)用分析法证明:已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b ||a +b |≤2;(2)用反证法证明:1,2,3不可能是一个等差数列中的三项. 证明:(1)a ⊥b ⇔a ·b =0,要证|a |+|b ||a +b |≤ 2.只需证|a |+|b |≤ 2|a +b |,只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2),只需证|a|2+2|a||b|+|b|2≤2a2+2b2,只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,上式显然成立,故原不等式得证.(2)假设1,2,3是某一个等差数列中的三项,且分别是第m,n,k项(m,n,k∈N*),则数列的公差d=2-1n-m=3-1k-m,即2-1=n-mk-m,因为m,n,k∈N*,所以(n-m)∈Z,(k-m)∈Z,所以n-mk-m为有理数,所以2-1是有理数,这与2-1是无理数相矛盾.故假设不成立,所以1,2,3不可能是一个等差数列的三项.。
最新人教版高二数学选修1-2(B版)电子课本课件【全册】

2.1.2 演绎推理
2.2.2 反证法
阅读与欣赏
《原本》与公理化思想
第三章 数引入
3.2.2 复数的乘法和除法
阅读与欣赏
复平面与高斯
4.1 流程图
本章小结
附录 部分中英文词汇对照表
第一章 统计案例
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
1.1 独立性检验
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
阅读与欣赏
“回归”一
词的由来
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
最新人教版高二数学选修1-2(B 版)电子课本课件【全册】目录
0002页 0090页 0178页 0200页 0277页 0329页 0401页 0403页 0454页 0530页 0608页 0610页 0672页 0703页
第一章 统计案例
1.2 回归分析
阅读与欣赏
“回归”一词的由来
第二章 推理与证明
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
1.2 回归分析
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
本章小结
高中数学选修1-2第二章课后习题解答

高中数学高中数学新课程标准数学选修1—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理 练习(P30)1、由12341a a a a ====,猜想1na=.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积,的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=××. 4、略. 练习(P33)1、略.2、因为通项公式为n a 的数列{}n a ,若1n na p a +=,p 是非零常数,则{}n a 是等比数列;是等比数列; …………………………大前提…………………………大前提又因为0cq ¹,则q 是非零常数,则11n n nna cq q a cq ++==;……………………小前提……………………小前提 所以,通项公式为(0)n n a cq cq =¹的数列{}n a 是等比数列.……………………结论……………………结论 3、由A D B D >,得到ACD BCD Ð>Ð的推理是错误的. 因为这个推理的大前提是因为这个推理的大前提是“在同一“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中. 4、略.习题2.1A 组(P35) 1、2(1)n -(n 是质数,且5n ³)是24的倍数.2、21n a n =+()n N *Î. 3、2F V E +=+. 4、当6n £时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *Î.5、212111(2)n n A A A n p++³-(2n >,且n N *Î). 6、121217n n b b b b b b -=(17n <,且n N *Î).7、如图,作DE ∥AB 交BC 于E . 因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形所以四边形ABED 是平行四边形是平行四边形.. 因为平行四边形的对边相等因为平行四边形的对边相等因为平行四边形的对边相等. . DEBAC(第7题)又因为四边形ABED 是平行四边形是平行四边形. .所以所以AB DE =.因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等, 又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的. 又因为△DEC 是等腰三角形是等腰三角形, , 所以DEC C Ð=Ð 因为平行线的同位角相等因为平行线的同位角相等 又因为DEC Ð与B Ð是平行线AB 和DE 的同位角的同位角, , 所以DEC B Ð=Ð 因为等于同角的两个角是相等的,因为等于同角的两个角是相等的, 又因为DEC C Ð=Ð,DEC B Ð=Ð, 所以B C Ð=Ð习题2.1B 组(P35) 1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略. 2.2直接证明与间接证明 练习(P42)1、因为442222cos sin (cos sin )(cos sin )cos 2q q q q q q q -=+-=,所以,命题得证. 2、要证67225+>+,只需证22(67)(225)+>+, 即证1324213410+>+,即证42210>,只需要22(42)(210)>,即证4240>,这是显然成立的. 所以,原命题得证.3、因为、因为222222222()()()(2sin )(2tan )16sin tan a b a b a b a a a a -=-+==, 又因为又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab a a a a a a a a a a +-=+-=×22222222sin (1cos )sinsin161616sin tan cos cos aa aa a a aa-===,从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P43)1、假设B Ð不是锐角,则90B г°. 因此9090180C B Ð+г°+°=°. 这与三角形的内角和等于180°矛盾. 所以,假设不成立. 从而,B Ð一定是锐角.2、假设2,3,5成等差数列,则2325=+.所以22(23)(25)=+,化简得5210=,从而225(210)=,即2540=, 这是不可能的. 所以,假设不成立. 从而,2,3,5不可能成等差数列. 说明:进一步熟悉运用反证法证明数学命题的思考过程与特点.习题2.2A 组(P44) 1、因为、因为(1tan )(1tan )2A B ++=展开得展开得1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ① 假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B p <+<,从而2A B p+=,与已知矛盾.因此1tan tan 0A B -¹.①式变形得①式变形得 tan tan 11tan tan A BA B +=-,即tan()1A B +=. 又因为0A B p <+<,所以4A B p+=.说明:本题也可以把综合法和分析法综合使用完成证明. 2、因为PD ^平面ABC ,所以PD AB ^. 因为AC BC =,所以ABC D 是等腰三角形. 因此ABC D 底边上的中线CD 也是底边上的高,也是底边上的高, 因而CD AB ^ 所以AB ^平面PDC . 因此AB PC ^.3、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B p<不成立,即2B p³,则B 是ABC D 的最大内角,的最大内角,所以,b a b c >>(在三角形中,大角对大边),从而从而 11112a c b b b +>+=. 这与211b a c =+矛盾.所以,假设不成立,因此,2B p<.习题2.2B 组(P44) 1、因为、因为 1tan 12tan aa-=+,所以12tan 0a +=,从而2sin cos 0a a +=.另一方面,要证另一方面,要证3sin 24cos2a a =-, 只要证226sin cos 4(cos sin )a a a a =-- 即证即证 222sin 3sin cos 2cos 0a a a a --=,即证即证 (2s i n c o s )(s i n 2c o s a a a a+-= 由2sin cos 0a a +=可得,(2sin cos )(sin 2cos )0a a a a +-=,于是命题得证.说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.2、由已知条件得、由已知条件得2b ac = ① 2x a b =+,2y b c =+ ②要证2a cx y +=,只要证2ay cx xy +=,只要证224ay cx xy +=由①②,得由①②,得22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2x y a b b c a b b a c b c a b a c b c=++=+++=++, 所以,224ay cx xy +=,于是命题得证.第二章 复习参考题A 组(P46)1、图略,共有(1)1n n -+(n N *Î)个圆圈.2、333n 个(n N *Î).3、因为2(2)(1)4f f ==,所以(1)2f =,(3)(2)(1)8f f f ==,(4)(3)(1)16f f f ==………… 猜想()2n f n =.4、如图,设O 是四面体A BCD -内任意一点,连结AO ,BO ,CO ,DO 并延长交对面于A ¢,B ¢,C ¢,D ¢,则,则1O A O B O C O D A A B B C C D D ¢¢¢¢+++=¢¢¢¢ 用“体积法”证明:用“体积法”证明: O A O B O C O DA AB BC CD D¢¢¢¢+++¢¢¢¢ O B C D O C D AO D A B OA B C A B C D BC D A CD AB D A B CV VV V V VVV --------=+++1A B C D A B C DVV --==5、要证、要证(1tan )(1tan )2A B ++= 只需证只需证 1tan tan tan tan 2A B A B +++=即证即证t a n t a n 1t a n t a A B A B +=- 由54A B p +=,得tan()1A B +=. ①又因为2A B k p p +¹+,所以tan tan 11tan tan A BA B+=-,变形即得①式.所以,命题得证. 第二章 复习参考题B 组(P47)1、(1)25条线段,16部分;部分; (2)2n 条线段;条线段;(3)222n n ++部分. 2、因为90BSC Ð=°,所以BSC D 是直角三角形.A BCDA'B'D'C'(第4题)在Rt BSC D 中,有222BC SB SC =+.类似地,得类似地,得 222AC SA SC =+,222AB SB SA =+ 在ABC D 中,根据余弦定理得中,根据余弦定理得2222cos 02AB AC BC SA A AB AC AB AC+-==>××2222cos 02AB BC AC SB B AB BCAB BC+-==>×× 2222cos 02BC AC AB SC C BC ACBC AC +-==>×× 因此,,,A B C 均为锐角,从而ABC D 是锐角三角形. 3、要证、要证cos 44cos 43b a -= 因为因为 cos 44cos 4cos(22)4cos(22)b a b a -=´-´ 2212sin 24(12sin 2)b a =--´-222218s i n c o s 4(18s i n c o s )b b a a =--´-222218s i n (1s i n )4[18s i n (1s i n )]bb a a=---´-- 只需证只需证 222218sin (1sin )4[18sin (1sin )]3b b a a ---´--= 由已知条件,得由已知条件,得 sincos sin2q q a +=,2sin sin cos b q q =,代入上式的左端,得代入上式的左端,得 222218sin (1sin )4[18sin (1sin )]b b a a ---´-- 2238sin cos (1sin cos )32sin (1sin )q q q q a a =---+-2238sin cos 8sin cos 2(12sin cos )(32sin cos )q q q q q q q q =--+++-222238s i n c o s 8s i nc o s 68s i n c o s 8s i nc o sq q q q q q q q =--++-+ 3= 因此,cos 44cos 43b a -=。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_18

2.1.2演绎推理教学设计整体设计教材分析《演绎推理》是高中数学中的基本思维过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程,也是人们学习和生活中经常使用的思维方式,是正确进行逻辑推理必不可少的基础知识,是高考热点.演绎推理具有证明结论、整理和构建知识体系的作用,是公理体系中的基本推理方法.本节内容相对比较抽象,教学中应紧密结合已学过的生活实例和数学实例,让学生了解演绎推理的含义,并在上一节学习的基础上,了解合情推理与演绎推理之间的联系与差异,同时纠正推理过程中可能犯的典型错误,增强学生的好奇心,激发出潜在的创造力,使学生能正确应用合情推理和演绎推理去进行一些简单的推理,证明一些数学结论.课时划分1课时.教学目标1.知识与技能目标了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理.2.过程与方法目标了解和体会演绎推理在日常生活和学习中的应用,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳、挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力.3.情感、态度与价值观通过本节课的学习,体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质.重点难点重点:正确地运用演绎推理进行简单的推理证明.难点:了解合情推理与演绎推理之间的联系与差别.教学过程引入新课观察与思考:新学期开始了,班里换了新的老师,他们是林老师、王老师和吴老师,三位老师分别教语文、数学、英语.已知:每个老师只教一门课;林老师上课全用汉语;英语老师是一个学生的哥哥;吴老师是一位女教师,她比数学老师活泼.问:三位老师各上什么课?活动设计:让学生带着浓厚的兴趣,先独立思考,然后小组交流.引导分析:启发学生把自己的思考过程借助于下列表格展示出来,从而解决问题.注意与学生交流.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于准确.活动结果:林老师——数学,王老师——英语,吴老师——语文.设计意图本着“兴趣是最好的老师”的原则,结合生活中具体的实例,激发学生学习的兴趣,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,体会演绎推理的现实意义.探究新知判断下列推理是合情推理吗?分析推理过程,明确它们的推理形式.(1)所有的金属都能导电,铜是金属,所以,铜能够导电.(2)一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.(3)三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.活动设计:学生口答,教师板书.学情预测:学生积极思考片刻,有学生举手回答且回答准确.活动结果:以上推理不是合情推理,它们的推理形式如下:(1)所有的金属都能导电,第一段铜是金属,第二段所以,铜能够导电.第三段(2)一切奇数都不能被2整除,第一段(2100+1)是奇数,第二段所以,(2100+1)不能被2整除.第三段(3)三角函数都是周期函数,第一段tanα是三角函数,第二段所以,tanα是周期函数.第三段提出问题:对于上面的三个推理,它们的推理形式有什么特点?活动设计:学生独立思考,并自由发言.学情预测:通过观察和分析,学生有足够的能力来解决上面所提问题.活动结果:上面的例子都有三段,是以一般的判断为前提,得出一些个别的、具体的判断:(1)所有的金属都能导电,大前提铜是金属,小前提所以,铜能够导电.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提所以,(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提tanα是三角函数,小前提所以,tanα是周期函数.结论教师:演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式,包括(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.设计意图通过对演绎推理概念的学习,体会以“三段论”模式来说明演绎推理的特点,从中概括出演绎推理的推理过程,对演绎推理是一般到特殊的推理有一个直观的认识,训练和培养学生的演绎推理能力.理解新知提出问题:在应用“三段论”进行推理的过程中,得到的推理结论一定正确吗?为什么?例如:(1)所有阔叶植物都是落叶的,葡萄树是阔叶植物,所以,葡萄树都是落叶的.(2)因为所有边长都相等的凸多边形是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形.(3)英雄难过美人关,我难过美人关,所以,我是英雄.活动设计:学生独立思考,先有学生自由发言,然后教师小结并形成新知.学情预测:学生们在积极思考,对(2)(3)两个小题的结论产生分歧,意见不统一.活动结果:(1)推理形式正确,前提正确,结论正确.(2)推理形式正确,大前提错误,结论错误.(3)推理形式错误(大、小前提没有连接起来),结论错误.教师:通过上面的学习,学生们对演绎推理和“三段论”模式都有了更深的了解,其中特别注意:(1)三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)(2)三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.(3)在演绎推理中,只有前提和推理形式都正确,结论才是正确的.设计意图通过所举的例子,教师可以了解学生对演绎推理和三段论模式的理解程度,明确概念的内涵和外延,加深理解,及时更正学生在认识推理中产生的错误和偏差.提出问题:合情推理与演绎推理有什么区别与联系?活动设计:学生独立思考,先由学生自由发言,然后教师小结并形成新知.活动结果:设计意图通过比较合情推理与演绎推理的区别与联系,有助于学生更清晰地理解和掌握这两种推理方法,并能灵活应用.运用新知例1如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到D ,E 的距离相等.思路分析:根据三段论的推理过程进行证明.证明:(1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ABD 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提 因为DM 是直角三角形ABD 斜边上的中线,——小前提 所以DM =12AB.——结论同理EM =12AB.所以DM =EM.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,突出演绎推理中的“大前提”“小前提”和“结论”.巩固练习由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理得出一个结论,则这个结论是( )A .正方形的对角线相等B .平行四边形的对角线相等C .正方形是平行四边形D .其他 答案:A例2证明函数f(x)=-x 2+2x 在(-∞,1)内是增函数.思路分析:证明本例所依据的大前提是:在某个区间(a ,b)内,如果f ′(x)>0,那么函数y =f(x)在这个区间内单调递增.小前提是f(x)=-x 2+2x 在(-∞,1)内有f ′(x)>0,这是证明本例的关键. 证明:f ′(x)=-2x +2,因为当x ∈(-∞,1)时,有1-x>0, 所以f ′(x)=-2x +2=2(1-x)>0,于是,根据“三段论”,可知f(x)=-x 2+2x 在(-∞,1)内是增函数.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,并加深对演绎推理的认识.教师:许多学生能写出证明过程,但不一定非常清楚证明的逻辑规则,因此在表述证明过程时往往显得杂乱无章,通过这两个例子的教学,应当使这种状况得到改善.变练演编(1)已知a ,b ,m 均为正实数,且b<a ,求证:b a <b +ma +m.(2)已知△ABC 的三条边分别为a ,b ,c ,则1+ <1+.思路分析:(1)中根据演绎推理的证明过程进行证明;(2)中不必证明,答案不唯一. 证明:(1)不等式两边乘以同一个正数,不等式仍成立,——大前提 b<a ,m>0,——小前提 所以mb<ma.——结论不等式两边加上同一个数,不等式仍成立,——大前提 mb<ma ,ab =ab ,——小前提所以ab +mb<ab +ma ,即b(a +m)<a(b +m).——结论 不等式两边除以同一个正数,不等式仍成立,——大前提 b(a +m)<a(b +m),a(a +m)>0,——小前提所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .——结论(2)c 1+c <a +b 1+a +b (答案不唯一,例如a1+a <c +b 1+c +b). 点评:通过证明(1)中不等式成立,感知条件与结论的不唯一性,例如:已知a ,b ,m 均为正实数,若a<b ,求证:a b <a +mb +m.(2)中加强学生思维的灵活性、分析问题的深刻性.活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结论一一列举,并由学生予以评价.设计意图通过变练演编,使学生对演绎推理的认识不断加深,同时培养学生逻辑思维的严谨性. 达标检测1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线平面α,直线平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 答案:1.D 2.C 3.A课堂小结1.知识收获:(1)演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.2.方法收获:利用演绎推理判断进行证明的方法与步骤:①找出大前提;②找出小前提;③根据“三段论”推出结论.3.思维收获:培养和训练学生严谨缜密的逻辑思维.布置作业课本本节练习1、2、3.补充练习基础练习1.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论.2.下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理的一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个3.下列几种推理过程是演绎推理的是()A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图4.已知△ABC,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论5.用演绎推理法证明y=x是增函数时的大前提是______.答案:1.解:二次函数的图象是一条抛物线(大前提),函数y=x2+x+1是二次函数(小前提),所以,函数y=x2+x+1的图象是一条抛物线(结论).2.C 3.A 4.B 5.增函数的定义拓展练习6.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.证明:如图,作AE⊥SB于E.∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.∵SA∩AE=A,SA⊂平面SAB,AE⊂平面SAB,∴BC⊥平面SAB.∵AB⊂平面SAB,∴AB⊥BC.设计说明由于这节课概念性、理论性较强,一般的教学方式会使学生感到枯燥乏味,为此,激发学生的学习兴趣是上好本节课的关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去总结概念“下定义”,去体会概念的本质属性.学生对于演绎推理和三段论的理解,需要经过一定时间的体会,先给出学生常见问题的解决步骤,结合以前所学的知识来解决问题,在教学中经常借助这些概念表达、阐述和分析问题.引导学生从日常生活中的推理问题出发,激发学生的学习兴趣,结合学生熟知的旧知识归纳新知识,同时在应用新知的过程中,将所学的知识条理化,使学生的认知结构更趋于合理.备课资料例1小王、小刘、小张参加了今年的高考,考完后在一起议论.小王说:“我肯定考上重点大学.”小刘说:“重点大学我是考不上了.”小张说:“要是不论重点不重点,我考上肯定没问题.”发榜结果表明,三人中考取重点大学、一般大学和没考上大学的各有一个,并且他们三个人的预言只有一个人是对的,另外两个人的预言都同事实恰好相反.可见() A.小王没考上,小刘考上一般大学,小张考上重点大学B.小王考上一般大学,小刘没考上,小张考上重点大学C.小王没考上,小刘考上重点大学,小张考上一般大学D.小王考上一般大学,小刘考上重点大学,小张没考上解析:根据推理知识得出结论.答案:C例2已知直线l、m,平面α、β,且l⊥α,m∥β,给出下列四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:根据演绎推理的定义,逐一判断结论的正误.由直线和平面、平面和平面平行和垂直的判定定理、性质定理,可知应选B.答案:B点评:以准确、完整地理解条件为基础,才能判断命题的正误.例3函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______.解析:根据函数的性质进行判断.∵函数y=f(x)在(0,2)上是增函数,∴0<x+2<2,即-2<x<0.∴函数y=f(x+2)在(-2,0)上是增函数.又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2)在(0,2)上是减函数.由图象可得f(2.5)>f(1)>f(3.5).故应填f(2.5)>f(1)>f(3.5).答案:f(2.5)>f(1)>f(3.5)点评:根据函数的基本性质,结合三段论的推理模式可得.例4已知lg2=m,计算lg0.8.分析:利用所学的推理知识解决问题.解:lga n=nlga(a>0),——大前提lg8=lg23,——小前提lg8=3lg2.——结论lg ab=lga-lgb(a>0,b>0),——大前提lg0.8=lg 810,——小前提所以lg0.8=lg8-1=3lg2-1=3m-1.——结论点评:找出三段论的大前提与小前提即可得到答案.设计者:李效三2018年5月22日星期二。
高中数学人教版选修1-2 第二章 推理与证明 反证法

2.2.2反证法[教材研读],思考以下问题预习课本P42~431.著名的“道旁苦李”的故事:王戎小时候爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动.等到小朋友摘了李子一尝,原来是苦的.他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这棵树上却结满了李子,所以李子一定是苦的.”王戎的论述运用了什么推理思想?2.“反证法”的关键是得出矛盾,那么矛盾可以是哪些矛盾?[要点梳理]1.反证法假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2.反证法常见矛盾类型反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设定义矛盾,或与公理、定理、事实矛盾等.[自我诊断]判断(正确的打“√”,错误的打“×”)1.反证法属于间接证明问题的方法.()2.反证法的证明过程既可以是合情推理也可以是一种演绎推理.()3.反证法的实质是否定结论导出矛盾.()[答案] 1.√ 2.× 3.√题型一用反证法证明“否定性”命题思考:根据反证法的定义如何证明一个命题?提示:反证法证明可考虑以下步骤:①反设;②归谬;③存真.已知f (x )=a x +x -2x +1(a >1),证明方程f (x )=0没有负实根.[思路导引] 此题从正面证明无所适从,可考虑用反证法,即设方程f (x )=0存在负实根.[证明] 假设方程f (x )=0有负实根x 0,则x 0<0且x 0≠-1且a x 0=-x 0-2x 0+1, 由0<a x 0<1⇒0<-x 0-2x 0+1<1, 解得12<x 0<2,这与x 0<0矛盾.故方程f (x )=0没有负实根.用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.[跟踪训练]设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.[证明]假设f(x)=0有整数根n,则an2+bn+c=0(n∈Z),而f(0),f(1)均为奇数,即c为奇数,a+b为偶数,则an2+bn=-c为奇数,即n(an+b)为奇数.∴n,an+b均为奇数,又∵a+b为偶数,∴an-a为奇数,即a(n-1)为奇数,∴n-1为奇数,这与n为奇数矛盾.∴f(x)=0无整数根.题型二用反证法证明“至多”、“至少”型问题思考:什么样的命题证明可用反证法?提示:直接证明情况比较多,不易证明从词语上看含有“至多”“至少”等词语.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c )a 不能都大于14.[思路导引] 从量词角度分析,该命题的否定只含一种情况.[证明] 假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.因为a ,b ,c ∈(0,1),所以1-a >0,1-b >0,1-c >0.所以(1-a )+b 2>(1-a )b >14=12.同理(1-b )+c 2>12,(1-c )+a 2>12. 三式相加得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32, 即32>32,矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.证明时常见的“结论词”与“反设词”[跟踪训练]已知函数y=f(x)在区间(a,b)上是增函数.求证:函数y=f(x)在区间(a,b)上至多有一个零点.[证明]假设函数y=f(x)在区间(a,b)上至少有两个零点,设x1,x2(x1≠x2)为函数y=f(x)在区间(a,b)上的两个零点,且x1<x2,则(x1)=f(x2)=0.因为函数y=f(x)在区间(a,b)上为增函数,x1,x2∈(a,b)且x1<x2,∴f(x1)<f(x2),与f(x1)=f(x2)=0矛盾,假设不成立,故原命题正确.题型三用反证法证明“唯一性”命题已知:一点A和平面α.求证:经过点A只能有一条直线和平面α垂直.[思路导引]用反证法,假设存在另一条直线.[证明]根据点A和平面α的位置关系,分两种情况证明.①如图,点A在平面α内,假设经过点A至少有平面α的两条垂线AB,AC,那么AB,AC是两条相交直线,它们确定一个平面β,平面β和平面α相交于经过点A的一条直线a.因为AB⊥平面α,AC ⊥平面α,a⊂α,所以AB⊥a,AC⊥a,在平面β内经过点A有两条直线都和直线a垂直,这与平面几何中经过直线上一点只能有已知直线的一条垂线相矛盾.②如图,点A在平面α外,假设经过点A至少有平面α的两条垂线AB,AC(B,C为垂足),那么AB,AC是两条相交直线,它们确定一个平面β,平面β和平面α相交于直线BC,因为AB⊥平面α,AC⊥平面α,BC⊂α,所以AB⊥BC,AC⊥BC.在平面β内经过点A 有两条直线都和BC垂直,这与平面几何中经过直线外一点只能有已知直线的一条垂线相矛盾.综上,经过一点A只能有平面α的一条垂线.证明“唯一性”问题的方法“唯一性”包含“有一个”和“除了这个没有另外一个”两层意思.证明后一层意思时,采用直接证明往往会相当困难,因此一般情况下都采用间接证明,即用反证法(假设“有另外一个”,推出矛盾)或同一法(假设“有另外一个”,推出它就是“已知那一个”)证明,而用反证法有时比用同一法更方便.提醒:证明“有且只有”的问题,需要证明两个命题,即存在性和唯一性.[跟踪训练]用反证法证明:过已知直线a外一点A有且只有一条直线b与已知直线a平行.[证明]由两条直线平行的定义可知,过点A至少有一条直线与直线a平行.假设过点A还有一条直线b′与已知直线a平行,即b∩b′=A,b′∥a.因为b∥a,由平行公理知b′∥b.这与假设b∩b′=A矛盾,所以假设错误,原命题成立.1.反证法的证题步骤:(1)反设;(2)推理归谬;(3)存真,即假设不成立,原命题成立.2.用反证法证明问题时要注意以下三点:(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能性结论,缺少任何一种可能,反证都是不完全的.(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.1.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”,则假设的内容是()A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有1个不能被5整除[解析]用反证法只否定结论即可,而“至少有一个”的反面是“一个也没有”,故B正确.[答案] B2.“a<b”的反面应是()A.a≠b B.a>bC.a=b D.a=b或a>b[解析]“a<b”的反面即否定,为“a≥b”.[答案] D3.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交[解析]在同一平面a与b平行的否定为a与b相交.[答案] D4.否定“等差数列{b n}中任意不同的三项不可能为等比数列”时,正确的反设是:________________________________________.[答案]假设等差数列{b n}中存在不同的三项成等比数列5.已知a是整数,a2是偶数,求证a也是偶数.[证明](反证法)假设a不是偶数,即a是奇数.设a=2n+1(n∈Z),则a2=4n2+4n+1.∵4(n2+n)是偶数,∴4n2+4n+1是奇数,这与已知a2是偶数矛盾.由上述矛盾可知,a一定是偶数.。
高中数学 第二章 推理与证明学案 新人教A版选修1-2-新人教A版高二选修1-2数学学案

【三维设计】2015-2016学年高中数学第二章推理与证明学案新人教A版选修1-22.1合情推理与演绎推理2.1.1 合情推理归纳推理[提出问题]如图(甲)是第七届国际数学教育大会(简称ICME-7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图(乙)中的直角三角形依此规律继续作下去,记OA1,OA2,…,OA n的长度构成数列{a n},问题1:试计算a1,a2,a3,a4的值.提示:由图知:a1=OA1=1,a2=OA2=OA21+A1A22=12+12=2,a3=OA3=OA22+A2A23=22+12=3,a4=OA4=OA23+A3A24=32+12=4=2.问题2:由问题1中的结果,你能猜想出数列{a n}的通项公式a n吗?提示:能猜想出a n=n(n∈N*).问题3:直角三角形、等腰三角形、等边三角形的内角和都是180°,你能猜想出什么结论?提示:所有三角形的内角和都是180°.问题4:以上两个推理有什么共同特点?提示:都是由个别事实推出一般结论.[导入新知]1.归纳推理的定义由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.2.归纳推理的特征归纳推理是由部分到整体、由个别到一般的推理.[化解疑难]归纳推理的特点(1)由归纳推理得到的结论具有猜测的性质,结论是否正确,还需经过逻辑证明和实践检验,因此,归纳推理不能作为数学证明的工具;(2)一般地,如果归纳的个别对象越多,越具有代表性,那么推广的一般性结论也就越可靠.类比推理[提出问题]问题1:在三角形中,任意两边之和大于第三边,那么,在四面体中,各个面的面积之间有什么关系?提示:四面体中任意三个面的面积之和大于第四个面的面积.问题2:三角形的面积等于底边与高乘积的12,那么在四面体中,如何表示四面体的体积?提示:四面体的体积等于底面积与高乘积的13.问题3:以上两个推理有什么共同特点? 提示:根据三角形的特征,推出四面体的特征. 问题4:以上两个推理是归纳推理吗?提示:不是.归纳推理是从特殊到一般的推理,而以上两个推理是从特殊到特殊的推理. [导入新知] 1.类比推理的定义由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理.2.类比推理的特征类比推理是由特殊到特殊的推理. [化解疑难]对类比推理的定义的理解(1)类比推理是两类对象特征之间的推理.(2)对象的各个性质之间并不是孤立存在的,而是相互联系和相互制约的,如果两个对象有些性质相似或相同,那么它们另一些性质也可能相似或相同.(3)在数学中,我们可以由已经解决的问题和已经获得的知识出发,通过类比提出新问题和获得新发现.数、式中的归纳推理[例1] 已知数列{a n }的前n 项和为S n ,a 1=-23,且S n +1S n+2=a n (n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.[解] 当n =1时,S 1=a 1=-23;当n =2时,1S 2=-2-S 1=-43,所以S 2=-34;当n =3时,1S 3=-2-S 2=-54,所以S 3=-45;当n =4时,1S 4=-2-S 3=-65,所以S 4=-56.猜想:S n =-n +1n +2,n ∈N *. [类题通法]归纳推理的一般步骤归纳推理的思维过程大致是:实验、观察→概括、推广→猜测一般性结论.该过程包括两个步骤:(1)通过观察个别对象发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想). [活学活用]将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10…按照以上排列的规律,求第n 行(n ≥3)从左向右数第3个数. 解:前(n -1)行共有正整数[1+2+…+(n -1)]个,即n 2-n2个,因此第n 行第3个数是全体正整数中第⎝ ⎛⎭⎪⎫n 2-n 2+3个,即为n 2-n +62.图形中的归纳推理[例2] (1)图案中有菱形纹的正六边形的个数是( )A.26 B.31C.32 D.36(2)把1,3,6,10,15,21,…这些数叫做三角形数,这是因为个数等于这些数目的点可以分别排成一个正三角形(如图),试求第七个三角形数是________.[解析] (1)选B 法一:有菱形纹的正六边形个数如下表:图案123…个数61116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第六个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.故选B.(2)第七个三角形数为1+2+3+4+5+6+7=28.[答案] (1)B (2)28[类题通法]解决图形中归纳推理的方法解决与图形有关的归纳推理问题常从以下两个方面着手:(1)从图形的数量规律入手,找到数值变化与数量的关系.(2)从图形的结构变化规律入手,找到图形的结构每发生一次变化后,与上一次比较,数值发生了怎样的变化.[活学活用]如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,…),则第n个图形中的顶点个数为( )A .(n +1)(n +2)B .(n +2)(n +3)C .n 2D .n解析:选B 第一个图形共有12=3×4个顶点,第二个图形共有20=4×5个顶点,第三个图形共有30=5×6个顶点,第四个图形共有42=6×7个顶点,故第n 个图形共有(n +2)(n +3)个顶点.类比推理[例3] 设等差数列a n n S n S 4S 8S 4S 12S 8,S 16-S 12成等差数列,类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.[解析] 由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比等比数列为依次每4项的积的商成等比数列.下面证明该结论的正确性:设等比数列{b n }的公比为q ,首项为b 1, 则T 4=b 41q 6,T 8=b 81q1+2+…+7=b 81q 28,T 12=b 121q 1+2+…+11=b 121q 66, T 16=b 161q1+2+…+15=b 161q 120, ∴T 8T 4=b 41q 22,T 12T 8=b 41q 38,T 16T 12=b 41q 54, 即⎝ ⎛⎭⎪⎫T 8T 42=T 12T 8·T 4,⎝ ⎛⎭⎪⎫T 12T 82=T 8T 4·T 16T12, 故T 4,T 8T 4,T 12T 8,T 16T 12成等比数列. [答案]T 8T 4 T 12T 8[类题通法]类比推理的一般步骤类比推理的思维过程大致是:观察、比较→联想、类推→猜测新的结论. 该过程包括两个步骤:(1)找出两类对象之间的相似性或一致性;(2)用一类对象的性质去猜测另一类对象的性质,得出一个明确的命题(猜想). [活学活用]已知椭圆具有以下性质:已知M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,若直线PM ,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1(a >0,b >0)写出类似的性质,并加以证明.解:类似的性质为:已知M ,N 是双曲线x 2a 2-y 2b2=1(a >0,b >0)上关于原点对称的两个点,点P 是双曲线上任意一点,若直线PM ,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标为(m ,n ),(x ,y ),则N 点的坐标为(-m ,-n ).∵点M (m ,n )在已知双曲线x 2a 2-y 2b 2=1上,∴m 2a 2-n 2b 2=1,得n 2=b 2a2m 2-b 2, 同理y 2=b 2a 2x 2-b 2.∴y 2-n 2=b 2a2(x 2-m 2).则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值). ∴k PM 与k PN 之积是与点P 的位置无关的定值.1.从平面到空间的类比[典例] 三角形与四面体有下列相似性质:(1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形.(2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形三个顶点的连线所围成的图形.通过类比推理,根据三角形的性质推测空间四面体的性质,并填写下表:三角形四面体 三角形的两边之和大于第三边三角形的中位线的长等于第三边长的一半,且平行于第三边 三角形的三条内角平分线交于一点,且这个点是三角形内切圆的圆心[解] 三角形和四面体分别是平面图形和空间图形,三角形的边对应四面体的面,即平面的线类比到空间为面.三角形的中位线对应四面体的中截面(以任意三条棱的中点为顶点的三角形),三角形的内角对应四面体的二面角,三角形的内切圆对应四面体的内切球.具体见下表:[多维探究]1.解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中,相关类比点如下:(1)三角形类比到三棱锥:例:在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得出的正确结论是:“设三棱锥ABCD的三个侧面ABC,ACD,ADB两两相互垂直,则________________________________________________________________________”.解析:“直角三角形的直角边长、斜边长”类比为“直角三棱锥的侧面积、底面积”.答案:S2△ABC+S2△ACD+S2△ADB=S2△BCD(2)平行四边形类比到平行六面体:例:平面几何中,有结论:“平行四边形两条对角线的平方和等于四条边的平方和”.类比这一结论,将其拓展到空间,可得到结论:“______________________________________”.解析:“平行四边形的边、对角线”类比为“平行六面体的棱、对角线”.答案:平行六面体四条对角线的平方和等于十二条棱的平方和(3)圆类比到球:例:半径为r的圆的面积S(r)=πr2,周长C(r)=2πr,若将r看作(0,+∞)上的变量,则(πr 2)′=2πr ①,①式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于①的式子②:__________________________,②式可以用语言叙述为:_________________________________________________. 解析:通过给出的两个量之间的关系,类比球的体积公式和球的表面积公式,我们不难发现⎝ ⎛⎭⎪⎫43πR 3′=4πR 2,从而使问题解决.答案:⎝ ⎛⎭⎪⎫43πR 3′=4πR 2球的体积函数的导数等于球的表面积函数(4)平面解析几何类比到空间解析几何:例:类比平面内一点P (x 0,y 0)到直线Ax +By +C =0(A 2+B 2≠0)的距离公式,猜想空间中一点P (x 0,y 0,z 0)到平面Ax +By +Cz +D =0(A 2+B 2+C 2≠0)的距离公式为d =________________________________________________________________________.解析:类比平面内点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2,易知答案应填|Ax 0+By 0+Cz 0+D |A 2+B 2+C2. 答案:|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2[随堂即时演练]1.根据给出的等式猜测123 456×9+7等于( ) 1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111 A .1 111 110 B .1 111 111 C .1 111 112D .1 111 113解析:选B 由题中给出的等式猜测,应是各位数都是1的七位数,即1 111 111. 2.平面内平行于同一直线的两直线平行,由此类比我们可以得到( ) A .空间中平行于同一直线的两直线平行 B .空间中平行于同一平面的两直线平行C .空间中平行于同一直线的两平面平行D .空间中平行于同一平面的两平面平行解析:选D 利用类比推理,平面中的直线和空间中的平面类比.3.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18.答案:1∶84.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.解析:观察等式,发现等式左边各指数幂的指数均为3,底数之和等于右边指数幂的底数,右边指数幂的指数为2,故猜想第五个等式应为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.答案:13+23+33+43+53+63=2125.如图,已知O 是△ABC 内任意一点,连结AO ,BO ,CO 并延长交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1. 这是平面几何中的一道题,其证明常采用“面积法”:OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABCS △ABC=1. 运用类比猜想,对于空间中的四面体V BCD ,存在什么类似的结论?并用“体积法”证明.解:如图,设O 为四面体V BCD 内任意一点,连接VO ,BO ,CO ,DO 并延长交对面于V ′,B ′,C ′,D ′,类似结论为OV ′VV ′+OB ′BB ′+OC ′CC ′+OD ′DD ′=1.类比平面几何中的“面积法”,可用“体积法”来证明. 因为V O BCD V V BCD =13·S △BCD ·h ′13·S △BCD ·h =OV ′VV ′(其中h ′,h 分别为两个四面体的高),同理V O VCD V B VCD =OB ′BB ′,V O VBD V C VBD =OC ′CC ′,V O VBC V D VBC =OD ′DD ′所以OV ′VV ′+OB ′BB ′+OC ′CC ′+OD ′DD ′=V O BCD V V BCD +V O VCD V B VCD +V O VBD V C VBD +V O VBCV D VBC=1. [课时达标检测]一、选择题1.观察下列各式:72=49,73=343,74=2 041,…,则72 013的末两位数字为( )A .01B .43C .07D .49解析:选C 因为71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…, 所以这些数的末两位数字呈周期性出现,且周期T =4. 又2 013=4×503+1, 所以72 013的末两位数字与71的末两位数字相同,为07.2.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 等比数列中的积运算类比等差数列中的和运算,从而有a 1+a 2+...+a 9=2+2+ (29)=2×9. 3.定义A *B ,B *C ,C *D ,D *B 依次对应下列4个图形:那么下列4个图形中,可以表示A *D ,A *C 的分别是( ) A .(1),(2) B .(1),(3) C .(2),(4)D .(1),(4)解析:选C 解析:由①②③④可归纳得出:符号“*”表示图形的叠加,字母A 代表竖线,字母B 代表大矩形,字母C 代表横线,字母D 代表小矩形,∴A *D 是(2),A *C 是(4).4.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1 024C .1 225D .1 378解析:选C 记三角形数构成的数列为{a n },则a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,可得通项公式为a n =1+2+3+…+n =n n +12.同理可得正方形数构成的数列的通项公式为b n =n 2.将四个选项的数字分别代入上述两个通项公式,使得n 都为正整数的只有1 225. 5.将正整数排成下表: 12 3 45 6 7 8 910 11 12 13 14 15 16 ……则在表中数字2 013出现在( ) A .第44行第78列 B .第45行第78列 C .第44行第77列D .第45行第77列解析:选D 第n 行有2n -1个数字,前n 行的数字个数为1+3+5+…+(2n -1)=n 2.∵442=1 936,452=2 025,且1 936<2 013<2 025,∴2 013在第45行.又2 025-2 013=12,且第45行有2×45-1=89个数字,∴2 013在第89-12=77列.二、填空题 6.设函数f (x )=xx +2(x >0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f3(x)=f(f2(x))=x7x+8,f4(x)=f(f3(x))=x15x+16,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n-1(x))=________. 解析:由已知可归纳如下:f1(x)=x21-1x+21,f2(x)=x22-1x+22,f3(x)=x23-1x+23,f4(x)=x24-1x+24,…,f n(x)=x2n-1x+2n.答案:x2n-1x+2n7.在平面直角坐标系xOy中,二元一次方程Ax+By=0(A,B不同时为0)表示过原点的直线.类似地:在空间直角坐标系O xyz中,三元一次方程Ax+By+Cz=0(A,B,C 不同时为0)表示____________________.解析:由方程的特点可知:平面几何中的直线类比到立体几何中应为平面,“过原点”类比仍为“过原点”,因此应得到:在空间直角坐标系O xyz中,三元一次方程Ax+By +Cz=0(A,B,C不同时为0)表示过原点的平面.答案:过原点的平面8.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰由6颗珠宝(图中圆圈表示珠宝)构成如图①所示的六边形,第三件首饰由15颗珠宝构成如图②所示的六边形,第四件首饰由28颗珠宝构成如图③所示的六边形,第五件首饰由45颗珠宝构成如图④所示的六边形,以后每件首饰都在前一件上按照这种规律增加一定数量的珠宝,使其构成更大的六边形,依此推断第六件首饰上应有________颗珠宝,第n件首饰上应有________颗珠宝(结果用n表示).解析:设第n件首饰上所用珠宝数为a n颗,据题意可知,a1=1,a2=6,a3=15,a4=28,a5=45,即a2-a1=5,a3-a2=9,a4-a3=13,a5-a4=17,所以a6-a5=21,即a6=66,同理a n-a n-1=4n-3(n≥2,n∈N*),所以a n=1+5+9+…+4n-3=2n2-n.答案:66 2n2-n三、解答题9.如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,写出对空间四面体性质的猜想.解:如图所示,在四面体PABC中,S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.猜想S=S1·cos α+S2·cos β+S3·cos γ.10.如图所示为m行m+1列的士兵方阵(m∈N*,m≥2).(1)写出一个数列,用它表示当m分别是2,3,4,5,…时,方阵中士兵的人数;(2)若把(1)中的数列记为{a n},归纳该数列的通项公式;(3)求a10,并说明a10表示的实际意义;(4)已知a n=9 900,问a n是数列第几项?解:(1)当m=2时,表示一个2行3列的士兵方阵,共有6人,依次可以得到当m=3,4,5,…时的士兵人数分别为12,20,30,….故所求数列为6,12,20,30,….(2)因为a1=2×3,a2=3×4,a3=4×5,…,所以猜想a n=(n+1)(n+2),n∈N*.(3)a10=11×12=132.a10表示11行12列的士兵方阵的人数为132.(4)令(n+1)(n+2)=9 900,所以n=98,即a n是数列的第98项,此时方阵为99行100列.2.1.2 演绎推理演绎推理[提出问题]看下面两个问题:(1)一切奇数都不能被2整除,(22 012+1)是奇数,所以(22 012+1)不能被2整除;(2)两个平面平行,则其中一个平面内的任意直线必平行于另一个平面,如果直线a是其中一个平面内的一条直线,那么a平行于另一个平面.问题1:这两个问题中的第一句都说的什么?提示:都说的一般原理.问题2:第二句又说的什么?提示:都说的特殊示例.问题3:第三句呢?提示:由一般原理对特殊示例作出判断.[导入新知]1.演绎推理的概念从一般性的原理出发,推出某个特殊情况下的结论的推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.2.三段论“三段论”是演绎推理的一般模式,包括:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断.“三段论”可以表示为:大前提:M是P.小前提:S是M.结论:S是P.[化解疑难]辨析演绎推理与合情推理(1)演绎推理是确定的、可靠的,而合情推理则带有一定的风险性.严格的数学推理以演绎推理为基础,而数学结论、证明思路等的发现主要靠合情推理.(2)合情推理和演绎推理分别在获取经验和辨别真伪两个环节中扮演重要角色.因此,我们不仅要学会证明,而且要学会猜想.把演绎推理写成三段论的形式[例1](1)一切奇数都不能被2整除,75不能被2整除,所以75是奇数.(2)三角形的内角和为180°,Rt△ABC的内角和为180°.(3)菱形对角线互相平分.(4)通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列.[解] (1)一切奇数都不能被2整除.(大前提)75不能被2整除.(小前提)75是奇数.(结论)(2)三角形的内角和为180°.(大前提)Rt△ABC是三角形.(小前提)Rt△ABC的内角和为180°.(结论)(3)平行四边形对角线互相平分.(大前提)菱形是平行四边形.(小前提)菱形对角线互相平分.(结论)(4)数列{a n}中,如果当n≥2时,a n-a n-1为常数,则{a n}为等差数列.(大前提)通项公式a n=3n+2,n≥2时,a n-a n-1=3n+2-[3(n-1)+2]=3(常数).(小前提)通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列.(结论)[类题通法]三段论的推理形式三段论推理是演绎推理的主要模式,推理形式为“如果b⇒c,a⇒b,则a⇒c.”其中,b⇒c为大前提,提供了已知的一般性原理;a⇒b为小前提,提供了一个特殊情况;a⇒c为大前提和小前提联合产生的逻辑结果.[活学活用]把下列推断写成三段论的形式:(1)y=sin x(x∈R)是周期函数.(2)若两个角是对顶角,则这两个角相等,所以若∠1和∠2是对顶角,则∠1和∠2相等.解:(1)三角函数是周期函数,………………大前提y=sin x(x∈R)是三角函数,………………小前提y=sin x(x∈R)是周期函数.………………结论(2)两个角是对顶角,则这两个角相等,………………大前提∠1和∠2是对顶角,………………小前提∠1和∠2相等.………………结论三段论在证明几何问题中的应用[例2] 已知A ,B ,C ,D 四点不共面,M ,N 分别是△ABD 和△BCD 的重心,求证:MN ∥平面ACD .[证明] 如图所示,连接BM ,BN 并延长,分别交AD ,DC 于P ,Q 两点,连接PQ . 因为M ,N 分别是△ABD 和△BCD 的重心,所以P ,Q 分别是AD ,DC 的中点.又因为BM MP =BN NQ,所以MN ∥PQ ,又MN ⊄平面ADC ,PQ ⊂平面ADC ,所以MN ∥平面ACD .[类题通法]三段论在几何问题中的应用(1)三段论是最重要且最常用的推理表现形式,我们以前学过的平面几何与立体几何的证明,都不自觉地运用了这种推理,只不过在利用该推理时,往往省略了大前提.(2)几何证明问题中,每一步都包含着一般性原理,都可以分析出大前提和小前提,将一般性原理应用于特殊情况,就能得出相应结论.[活学活用]已知在梯形ABCD 中,如图,AB =CD =AD ,AC 和BD 是梯形的对角线,求证:AC 平分∠BCD ,DB 平分∠CBA .证明:∵等腰三角形两底角相等,(大前提)△DAC 是等腰三角形,∠1和∠2是两个底角,(小前提) ∴∠1=∠2.(结论)∵两条平行线被第三条直线截得的内错角相等,(大前提) ∠1和∠3是平行线AD 、BC 被AC 截得的内错角,(小前提) ∴∠1=∠3.(结论)∵等于同一个角的两个角相等,(大前提) ∠2=∠1,∠3=∠1,(小前提) ∴∠2=∠3,即AC 平分∠BCD .(结论) 同理可证DB 平分∠CBA .演绎推理在代数中的应用[例3] 已知函数f (x )=a x+x +1(a >1),求证:函数f (x )在(-1,+∞)上为增函数.[证明] 设x 1,x 2是(-1,+∞)上的任意两实数,且x 1<x 2, 则f (x 1)-f (x 2)=ax 1+x 1-2x 1+1-ax 2-x 2-2x 2+1=ax 1-ax 2+x 1-2x 1+1-x 2-2x 2+1=ax 1-ax 2+3x 1-x 2x 1+1x 2+1,∵a >1,且x 1<x 2,∴ax 1<ax 2,x 1-x 2<0. 又∵x 1>-1,x 2>-1,∴(x 1+1)(x 2+1)>0. ∴f (x 1)-f (x 2)<0.∴f (x 1)<f (x 2). ∴函数f (x )在(-1,+∞)上为增函数. [类题通法]使用三段论应注意的问题(1)应用三段论证明问题时,要充分挖掘题目外在和内在条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的,严密的,才能得出正确的结论.(2)证明中常见的错误: ①条件分析错误(小前提错). ②定理引入和应用错误(大前提错). ③推理过程错误等. [活学活用]已知a ,b ,m 均为正实数,b <a ,用三段论形式证明b a <b +ma +m.证明:因为不等式(两边)同乘以一个正数,不等号不改变方向,(大前提)b <a ,m >0,(小前提)所以,mb <ma .(结论)因为不等式两边同加上一个数,不等号不改变方向,(大前提)mb <ma ,(小前提)所以,mb +ab <ma +ab ,即b (a +m )<a (b +m ).(结论) 因为不等式两边同除以一个正数,不等号不改变方向,(大前提)b (a +m )<a (b +m ),a (a +m )>0,(小前提)所以,b a +m a a +m <a b +m a a +m ,即b a <b +ma +m.(结论)2.混淆三段论的大小前提而致误[典例] 定义在实数集R上的函数f(x),对任意x,y∈R,有f(x-y)+f(x+y)=2f(x)f(y),且f(0)≠0,求证:f(x)是偶函数.证明:令x=y=0,则有f(0)+f(0)=2f(0)×f(0),因为f(0)≠0,所以f(0)=1,令x=0,则有f(-y)+f(y)=2f(0)f(y)=2f(y),所以f(-y)=f(y),因此,f(x)是偶函数.以上证明结论“f(x)是偶函数”运用了演绎推理的“三段论”,其中大前提是:________________________________________________________________________.[解析] 通过两次赋值先求得“f(0)=1”,再证得“f(-y)=f(y)”,从而得到结论“f(x)是偶函数”.所以这个三段论推理的小前提是“f(-y)=f(y)”,结论是“f(x)是偶函数”,显然大前提是“若对于定义域内任意一个x,都有f(-x)=f(x),则f(x)是偶函数”.[答案] 若对于定义域内任意一个x,都有f(-x)=f(x),则f(x)是偶函数[易错防范]解本题的关键是透彻理解三段论推理的形式:大前提——小前提——结论,其中大前提是一个一般性的命题,即证明这个具体问题的理论依据.因此结合f(x)是偶函数的定义和证明过程容易确定本题答案.本题易误认为题目的已知条件为大前提而导致答案错误.[成功破障]所有眼睛近视的人都是聪明人,我近视得很厉害,所以我是聪明人.下列各项中揭示了上述推理是明显错误的是________.①我是个笨人,因为所有的聪明人都是近视眼,而我的视力那么好.②所有的猪都有四条腿,但这种动物有八条腿,所以它不是猪.③小陈十分高兴,所以小陈一定长得很胖,因为高兴的人都长得很胖.④所有尖嘴的鸟都是鸡,这种总在树上待着的鸟是尖嘴的,因此这种鸟是鸡.解析:根据④中的推理可得:这种总在树上待着的鸟是鸡,这显然是错误的.①②③不符合三段论的形式.答案:④[随堂即时演练]1.“四边形ABCD 是矩形,所以四边形ABCD 的对角线相等”,补充该推理的大前提是( )A .正方形的对角线相等B .矩形的对角线相等C .等腰梯形的对角线相等D .矩形的对边平行且相等解析:选B 得出“四边形ABCD 的对角线相等”的大前提是“矩形的对角线相等”. 2.“因为对数函数y =log a x 是增函数(大前提),而y =log 13x 是对数函数(小前提),所以y =log 13x 是增函数(结论).”上面推理错误的原因是( )A .大前提错导致结论错B .小前提错导致结论错C .推理形式错导致结论错D .大前提和小前提都错导致结论错解析:选A 大前提是错误的,因为对数函数y =log a x (0<a <1)是减函数. 3.求函数y =log 2x -2的定义域时,第一步推理中大前提是a 有意义,即a ≥0,小前提是log 2x -2有意义,结论是________.解析:由三段论的形式可知,结论是log 2x -2≥0. 答案:log 2x -2≥04.用三段论证明函数f (x )=x +1x在(1,+∞)上为增函数的过程如下,试将证明过程补充完整:①________________________________………………大前提 ②________________________________………………小前提 ③________________________________……………………结论答案:①如果函数f (x )满足:在给定区间内任取自变量的两个值x 1,x 2,若x 1<x 2,则f (x 1)<f (x 2),那么函数f (x )在给定区间内是增函数.②任取x 1,x 2∈(1,+∞),x 1<x 2,则f (x 1)-f (x 2)=x 1-x 2x 1x 2-1x 1x 2,由于1<x 1<x 2,故x 1-x 2<0,x 1x 2>1,即x 1x 2-1>0,所以f (x 1)<f (x 2).③函数f (x )=x +1x在(1,+∞)上为增函数.5.将下列推理写成“三段论”的形式.(1)向量是既有大小又有方向的量,故零向量也有大小和方向; (2)矩形的对角线相等,正方形是矩形,所以正方形的对角线相等;(3)0.332·是有理数.解:(1)向量是既有大小又有方向的量.……………………大前提 零向量是向量.……………………小前提 零向量也有大小和方向.……………………结论 (2)每一个矩形的对角线相等.……………………大前提 正方形是矩形.……………………小前提 正方形的对角线相等.……………………结论(3)所有的循环小数都是有理数.……………………大前提0.332·是循环小数.……………………小前提0.332·是有理数.……………………结论[课时达标检测]一、选择题1.给出下面一段演绎推理:有理数是真分数,……………………大前提 整数是有理数,……………………小前提 整数是真分数.……………………结论 结论显然是错误的,是因为( ) A .大前提错误 B .小前提错误 C .推理形式错误D .非以上错误解析:选A 推理形式没有错误,小前提也没有错误,大前提错误.举反例,如2是有理数,但不是真分数.2.“所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于( ) A .演绎推理 B .类比推理 C .合情推理D .归纳推理解析:选A 是由一般到特殊的推理,故是演绎推理. 3.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】 如果两个二面角的两个半平面分别对应垂直,那么这两个二面角相等或互补 假命题
12.(2014·鞍山高二检测)命题“函数f(x)=x-xlnx在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-xlnx求导得f′(x)=-lnx,当x∈(0,1)时,f′(x)=-lnx>0,故函数f(x)在区间(0,1)上是增函数”应用了________的证明方法.
【解析】 由所给不等式可知,分子为3,5,7,…;分母为2,3 ,4,…
寻找规律可知f(n)= .
【答案】
14.补充下列证明过程:要证a2+b2+c2≥ab+bc+ac(a,b,c∈R),即证________________,即证________________,因为a,b,c为实数,上式显然成立.故命题结论成立.
18.(本小题满分14分)已知△ABC的三边a,b,c的倒数成等差数列,试分别用分析法和综合法证明∠B为锐角.
【证明】 法一(分析法)要证明∠B为锐角,只需证cosB>0,又因为cosB= ,所以只需证明a2+c2-b2>0,即a2+c2>b2.
因为a2+c2≥2ac,所以只需证明2ac>b2.
由已 知 = + ,
(1)证明:a2= ;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有 + +…+ < .
【解】(1)证明:由4Sn=a -4n-1,得4S1=a -4-1,
即4a1=a -4(2)因为4Sn=a -4n-1,①
所以当n ≥2时,4Sn-1=a -4(n-1)-1,②
【解析】 显然本题的证明过程是从已知条件出发一步一步推导结论,是由因导果的顺推法,故为综合法.
【答案】 综合法
13.观察以下不等式
1+ < ,
1+ + < ,
1+ + + < ,
……
可归纳出对大于1的正整数n成立的一个不等式:1+ + +…+ <f(n),则不等式右端f(n)的表达式应为________(n>1,n∈N).
【解析】a,b,c在不等式中的位置是一样的,两端同乘以2后移项,可转化为完全平方式.
【答案】2(a2+b2+c2)≥2ab+2bc+2ac(a-b)2+(b-c)2+ (a-c)2≥0
三、解答题(本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)
15.(本小题满分12分)已知a,b是正有理数, , 是无理数,证 明: + 必为无理数.
课题
第二章推理与证明单元测试2
授课时间
课型
习题课
二次修改意见
课时
1
授课人
科目
数学
主备
学习目标
知识与技能
通过典型案例的探究,了解回归分析的基本思想、方法及初步应用,明确对两个分类变量的独立性检验的 基本思想具体步骤,会对具体问题作出独立性检验。
过程与方法
对章节知识点进行归纳整理,通过章节知识测试,提高学生对本章知识的掌握程度;
综上知an+1-an=2(n∈N*),
所以数列{an}是首项为1,公差为2的等差数列.
所以an=1+2(n-1)=2n-1.
所以数列{an}的通项公式为an=2n-1(n∈N* ).
( 3)证明:由(2)知 =
= ( - ),
所以 + +…+
= (1- + - +…+ - )
= (1- )= - < .
【证明】 假设 + 为有理数,记p= + ,因为a,b是正有理数,所以p>0.将 =p- 两边平方,得a=p2+b-2p ,所以 = .因为a,b,p均为有理数,所以 必为有理数,这与已知条件矛盾,故假设错误.
所以 + 必为无理数.
16.(本小题满分12分)(2014·银川高二检测)用分析法证明:若a>0,则 - ≥a+ -2.
即2ac=b(a+c),
所以只需证明b(a+c)>b2,
即只需证明a+c>b.而a+c>b显然成立,所以∠B为锐角.
法二(综合法)由题意: = + = ,
则b= ,∴b(a+c)=2ac.
∵a+c>b,
∴b(a+c)=2ac>b2.
∴cosB= ≥ >0.
又∵0<∠B<π,
∴0<∠B< ,即∠B为锐角.
情感态度价值观
培养学生探究意识,合作意识,应用用所学知识解决生活中的实际问题。
教材分析
重难点
章节知识点进行归纳整理,典型例题的解决思路及变式训练。
学习设想
教法
引导归纳,三主互位导学法
学法
归纳训练
教具
多媒体,刻度尺
课堂设计
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
11.对于平面几何中的命题“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以得到命题“______________________________”,这个类比命题的真假性是___________.
【证明】 要证 - ≥a+ -2,
只需证 +2≥a+ + .
因为a>0,
所以两边均大于零,因此只需证
2≥ 2,
只需证a2+ +4+4 ≥a2+2+ +2+2 ,
只需证 ≥ ,
只需证a2+ ≥ ,
即证a2+ ≥2,它显然成立,
所 以原不等式成立.
17.(本小题满分12分)(2013·广东高考)设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=a -4n-1,n∈N*,且a2,a5,a14构成等比数列.
由①-②得4an=a -a -4,
即a =a +4an+4=(an+2)2(n≥2).
因为an>0,所以an+1=an+2,即an+1-an=2(n≥2).
因为a2,a5,a14成等比数列,所以a =a2a14,
即(a2 +3×2)2=a2(a2+12×2),解得a2=3.
又由(1)知a2= ,所以a1=1,所以a2-a1=2.