高中数学解题技巧:立体几何高考核心题型,求空间几何体的体积
空间几何体的体积问题的五种求法

ʏ徐春生空间几何体的体积问题是高中数学的重要内容之一,在高考中占有一定的比重㊂空间几何体的体积是考查空间想象力的有效载体,化归与转化思想是破解体积问题的有效方法㊂下面介绍空间几何体的体积问题的五种求法㊂一㊁公式法例1 如图1,正三棱柱A B C -A 1B 1C 1的底面边长为2,侧棱长为3,D为B C 的中点,则三棱锥A -B 1D C 1的体积为㊂图1解:由A B =A C =B C ,D 为B C 的中点,可得A D ʅB C ㊂由B B 1ʅ平面A B C ,A D ⊂平面A B C ,可得A D ʅB B 1㊂由B C ɘB B 1=B ,BC ⊂平面B B 1C 1C ,B B 1⊂平面B B 1C 1C ,可得AD ʅ平面B B 1C 1C ㊂在R tәA D B 中,因为A D =A B 2-B D 2=22-12=3,所以V 三棱锥A -B 1D C 1=13S әB 1D C1㊃A D =13ˑ12ˑ2ˑ3ˑ3=1㊂若所给的空间几何体是规则的柱体㊁锥体或台体,则可直接利用公式进行求解㊂二㊁等积法例2 如图2所示,三棱柱A B C -A 1B 1C 1的底面是边长为1的正三角形,高为3,则三棱锥B -A B 1C 的体积为( )㊂图2A .14B .12C .36D .34解:利用等积转换求解㊂由题意结合图2可得V 三棱锥B -A B 1C =V 三棱锥B 1-A B C =13S әA B C ㊃h =13ˑ34ˑ12ˑ3=34㊂应选D ㊂利用等底面㊁等高的两个锥体的体积相等,或者变换一个棱锥的顶点和底面,体积不变,都可以实现等积转换,以便快速准确求得体积,这是求空间几何体体积的常用技巧㊂三㊁补形法例3 已知四面体A B C D 中,A B =C D =13,B C =A D =25,B D =A C =5,则四面体A B C D 的体积为㊂解:以四面体的各棱为对角线还原为长方体,如图3所示㊂图37知识结构与拓展高一数学 2023年4月Copyright ©博看网. All Rights Reserved.设长方体的长㊁宽㊁高分别为x ㊁y ㊁z ,则x 2+y 2=13,y 2+z 2=20,x 2+z 2=25,解得x =3,y =2,z =4㊂所以V 三棱锥D -A B E =13S әA B E ㊃D E =13ˑ12S 长方形A E B F ㊃D E =16V 长方体㊂同理可得,V 三棱锥C -A B F=V 三棱锥D -A C G =V 三棱锥D -B C Η=16V 长方体㊂所以四面体A B C D 的体积V 四面体A B C D =V 长方体-4ˑ16V 长方体=13V 长方体=13ˑ2ˑ3ˑ4=8㊂若所给空间几何体不规则,或公式无法直接应用,则可通过补形使之成为一个规则的空间几何体,使所求问题简单化㊂常见的补形方法有:正四面体补成正方体,三条侧棱互相垂直的三棱锥补成长方体,三棱柱补成平行六面体,台体补成锥体等㊂四㊁分割法例4 如图4,在多面体A B C D E F 中,已知四边形A B C D 是边长为4的正方形,E F ʊA B ,E F =2,E F 上任一点到平面A B C D 的距离均为3,则该多面体的体积为㊂图4解:易得四棱锥E -A B C D 的体积V 四棱锥E -A B C D =13ˑ42ˑ3=16㊂由A B =2E F ,E F ʊA B ,可得S әE A B =2S әB E F ,所以三棱锥F -E B C 的体积V 三棱锥F -E B C =V 三棱锥C -E F B =12V 三棱锥C -A B E =12V 三棱锥E -A B C =12ˑ12V 四棱锥E -A B C D=4㊂故该多面体的体积V =V 四棱锥E -A B C D +V 三棱锥F -E B C =16+4=20㊂ 当所给空间几何体比较复杂时,将其分割成几个规则的空间几何体,求出这些规则的空间几何体的体积,它们的和即为所求空间几何体的体积㊂五㊁估算法例5 如图5,在多面体A B C D E F 中,已知四边形A B C D 是边长为3的正方形,E F ʊA B ,E F =32,E F 到平面A B C D 的距离为2,则该多面体的体积为( )㊂图5A.92B .5C .6D .152解:由E F ʊA B ,E F ⊄平面A B C D ,A B ⊂平面A B C D ,可得E F ʊ平面A B C D ,所以点F 到平面A B C D 的距离为2,所以V 四棱锥F -A B C D =13ˑ32ˑ2=6㊂据此可知,该多面体的体积必大于6㊂应选D㊂有些问题,由于受条件限制,无法进行精确的运算和判断,因此只能依赖于估算得到所求结果㊂现由橡皮泥制作的底面半径为5㊁高为4的圆锥和底面半径为2㊁高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的圆锥和圆柱的底面半径为㊂提示:设新的圆锥和圆柱的底面半径为r ,由题意得13πr 2㊃4+πr 2㊃8=13πˑ52ˑ4+πˑ22ˑ8,解得r =7㊂作者单位:广东省汕头市澄海凤翔中学(责任编辑 郭正华)8知识结构与拓展 高一数学 2023年4月Copyright ©博看网. All Rights Reserved.。
高中数学立体几何体积和表面积计算技巧

高中数学立体几何体积和表面积计算技巧在高中数学中,立体几何是一个重要的内容,其中计算几何体的体积和表面积是必不可少的技巧。
本文将介绍一些常见的计算技巧,并通过具体的题目来说明这些技巧的应用。
一、立体几何体的体积计算技巧1. 直接计算法对于常见的几何体,如长方体、正方体、圆柱体、圆锥体和球体,可以直接使用相应的公式进行计算。
举例来说,如果要计算一个长方体的体积,可以使用公式 V = lwh,其中 l、w 和 h 分别表示长方体的长、宽和高。
如果已知长方体的长为 6 cm,宽为 4 cm,高为 3 cm,则可以直接代入公式计算得到体积 V = 6 × 4 × 3 = 72 cm³。
2. 分割法对于复杂的几何体,可以通过将其分割成若干简单的几何体来计算体积。
这种方法常用于计算不规则体的体积。
举例来说,如果要计算一个由三棱锥和一个正方体组成的复合体的体积,可以先计算三棱锥的体积,再计算正方体的体积,最后将两者相加。
3. 单位体积法对于一些特殊的几何体,可以利用单位体积的性质来计算体积。
这种方法常用于计算球台、球冠等几何体的体积。
举例来说,如果要计算一个球台的体积,可以先计算整个球的体积,再减去球冠的体积。
具体计算步骤如下:步骤一:计算整个球的体积,使用公式V = (4/3)πr³,其中 r 表示球的半径。
步骤二:计算球冠的体积,使用公式V = (1/3)πh²(3r - h),其中 h 表示球台的高度。
步骤三:将步骤一的结果减去步骤二的结果,即可得到球台的体积。
二、立体几何体的表面积计算技巧1. 直接计算法对于常见的几何体,可以直接使用相应的公式进行表面积的计算。
举例来说,如果要计算一个长方体的表面积,可以使用公式 S = 2lw + 2lh +2wh,其中 l、w 和 h 分别表示长方体的长、宽和高。
如果已知长方体的长为 6 cm,宽为 4 cm,高为 3 cm,则可以直接代入公式计算得到表面积 S = 2(6×4) + 2(6×3) +2(4×3) = 108 cm²。
高中数学立体几何体积计算技巧

高中数学立体几何体积计算技巧立体几何是高中数学中的一大难点,其中计算体积更是让很多学生头疼的问题。
本文将介绍一些高中数学立体几何体积计算的技巧,帮助学生们更好地理解和掌握这一知识点。
一、长方体和正方体的体积计算长方体和正方体是最基础的几何体,其体积计算非常简单。
长方体的体积公式为V = lwh,其中l、w、h分别代表长、宽和高。
正方体的体积公式为V = a³,其中a表示边长。
例如,一个长方体的长为5cm,宽为3cm,高为2cm,求其体积。
根据公式V = lwh,代入数值计算得V = 5cm × 3cm × 2cm = 30cm³。
同样地,如果是一个边长为4cm的正方体,其体积为V = 4cm × 4cm × 4cm = 64cm³。
这两个例子展示了长方体和正方体体积计算的基本方法,通过乘法运算得出结果。
在解题时,要注意单位的统一,确保所有的长度单位一致。
二、棱柱和棱锥的体积计算棱柱和棱锥是高中数学中常见的几何体,其体积计算需要掌握一些特殊的技巧。
1. 棱柱的体积计算棱柱的体积计算公式为V = Bh,其中B表示底面积,h表示高。
底面积的计算方法根据底面的形状而定,例如底面是正方形,则底面积为边长的平方;底面是长方形,则底面积为长乘以宽。
例如,一个棱柱的底面是一个边长为4cm的正方形,高为6cm,求其体积。
首先计算底面积,底面积为4cm × 4cm = 16cm²。
然后根据公式V = Bh,代入数值计算得V = 16cm² × 6cm = 96cm³。
2. 棱锥的体积计算棱锥的体积计算公式为V = 1/3Bh,其中B表示底面积,h表示高。
底面积的计算方法与棱柱相同。
例如,一个棱锥的底面是一个半径为3cm的圆,高为8cm,求其体积。
首先计算底面积,底面积为π × 3cm × 3cm = 9πcm²(取π约等于3.14)。
高中数学立体几何中的体积解题技巧

高中数学立体几何中的体积解题技巧在高中数学中,立体几何是一个重要的部分,而体积是立体几何中最基本也是最常见的题型之一。
掌握体积解题技巧对于学生来说至关重要。
本文将介绍几个常见的体积解题技巧,并通过具体的题目来说明其考点和解题思路。
一、长方体的体积计算长方体是最常见的立体几何形体之一,其体积计算公式为V = lwh,其中l、w和h分别表示长方体的长度、宽度和高度。
例如,有一个长方体,其长为5cm,宽为3cm,高为2cm,我们可以通过代入公式计算得到体积为V = 5cm × 3cm × 2cm= 30cm³。
二、正方体的体积计算正方体是一种特殊的长方体,其长度、宽度和高度相等。
因此,正方体的体积计算公式为V = a³,其中a表示正方体的边长。
例如,有一个正方体,其边长为4cm,我们可以直接计算得到体积为V = 4cm × 4cm × 4cm = 64cm³。
三、棱柱的体积计算棱柱是由两个平行且相等的多边形底面通过直线连接而成的立体图形。
对于棱柱,我们可以通过计算底面积与高的乘积来求得其体积。
例如,有一个底面为正方形的棱柱,其边长为3cm,高为5cm,我们可以计算得到体积为V = 3cm × 3cm ×5cm = 45cm³。
四、棱锥的体积计算棱锥是由一个多边形底面和一个顶点通过直线连接而成的立体图形。
对于棱锥,我们可以通过计算底面积与高的乘积再除以3来求得其体积。
例如,有一个底面为正三角形的棱锥,其边长为4cm,高为6cm,我们可以计算得到体积为V = (4cm ×4cm × √3) × 6cm / 3 ≈ 37.15cm³。
五、球体的体积计算球体是一个非常特殊的立体图形,其体积计算公式为V = 4/3πr³,其中r表示球体的半径。
例如,有一个球体,其半径为2cm,我们可以计算得到体积为V =4/3 × 3.14 × (2cm)³ ≈ 33.49cm³。
高中数学高考专题(5)立体几何的高考解答题型及求解策略

高中数学高考专题(5)立体几何的高考解答题型及求解策略立体几何的解答题型主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再计算几何体的体积.试题背景有折叠问题、探索性问题等,考查空间想象能力、逻辑思维能力及转化与化归思想的应用能力.题型一线面位置关系的证明题型概览:空间中线面的平行与垂直的证明有两种思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量法来论证,应用向量证明线、面的位置关系的关键是把空间线面位置关系的判定定理和性质定理与空间向量建立对应关系,把空间位置关系的证明转化为空间向量的运算,通过运算解决证明问题.这里以传统方法为例建立审题程序与答题模板,向量方法参照本专题题型二.如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN⊥平面ABCD,E、F分别为MA、DC的中点,求证:(1)EF∥平面MNCB;(2)平面MAC⊥平面BND.[审题程序]第一步:利用中位线、平行四边形的性质在四边形MNCB内确定与EF平行的直线;第二步:在平面MAC和平面BND中寻找与另一平面垂直的直线;第三步:应用面面垂直、菱形的性质,由线线垂直解决.[规范解答](1)如图,取NC的中点G,连接FG,MG.因为ME∥ND且ME=12ND,F、G分别为DC、NC的中点,FG∥ND且FG=12ND,所以FG与ME平行且相等,所以四边形MEFG是平行四边形,所以EF∥MG,又MG⊂平面MNCB,EF⊄平面MNCB,所以EF∥平面MNCB.(2)如图,连接BD、MC.因为四边形MADN是矩形,所以ND⊥AD.因为平面MADN⊥平面ABCD,平面ABCD∩平面MADN=AD,DN⊂平面MADN,所以ND⊥平面ABCD,所以ND⊥AC.因为四边形ABCD是菱形,所以AC⊥BD.因为BD∩ND=D,所以AC⊥平面BDN.又AC⊂平面MAC,所以平面MAC⊥平面BDN.[答题模板]解决这类问题的答题模板如下:1.(2016·北京西城区高三期末)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G,H分别是CE,CF的中点.(1)求证:AC⊥平面BDEF;(2)求证:平面BDGH∥平面AEF;(3)求多面体ABCDEF的体积.[解](1)证明:因为四边形ABCD是正方形,所以AC⊥BD.又平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,所以AC⊥平面BDEF.(2)证明:在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF.又GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH.在△ACF中,因为OA=OC,CH=HF,所以OH∥AF.因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.(3)由(1)得AC⊥平面BDEF.因为AO=2,四边形BDEF的面积S▱BDEF=3×22=62,=4.所以四棱锥A-BDEF的体积V1=13×AO×S▱BDEF同理,四棱锥C-BDEF的体积V2=4.所以多面体ABCDEF的体积V=V1+V2=8.题型二求空间几何体的体积题型概览:计算几何体的体积,关键是根据条件找出相应的底面和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题.(1)直接法:对于规则几何体,直接利用公式计算即可.(2)割补法:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.(3)等体积法:一般利用三棱锥的“等积性”求三棱锥体积,可以把任何一个面作为三棱锥的底面.注意两点:一是求体积时,可选择“容易计算”的方式来计算;二是利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.(2016·全国卷Ⅲ)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求四面体N-BCM的体积.[审题程序]第一步:由线线平行或面面平行证明(1);第二步:由N 为PC 中点,推证四面体N -BCM 的高与P A 的关系; 第三步:利用直接法求四面体的体积.[规范解答] (1)由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形, 于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. [答题模板] 解决这类问题的答题模板如下:2.(2016·深圳一模)如图所示,在四棱锥S-ABCD中,底面ABCD是平行四边形,侧面SBC是正三角形,E是SB的中点,且AE⊥平面SBC.(1)证明:SD∥平面ACE;(2)若AB⊥AS,BC=2,求点S到平面ABC的距离.[解](1)证明:连接BD,交AC于点F,连接EF.∵四边形ABCD是平行四边形,∴F是BD的中点,又∵E是SB的中点,∴EF∥SD.∵SD⊄平面ACE,EF⊂平面ACE,∴SD∥平面ACE.(2)∵AB⊥AS,BC=BS=2,且E是SB的中点,∴AE=1.∵AE⊥平面SBC,BS、CE⊂平面SBC,∴AE⊥BS,AE⊥CE.∴AB=AE2+BE2= 2.又侧面SBC 是正三角形,∴CE =3, ∴AC =AE 2+CE 2=2,∴△ABC 是底边长为2,腰长为2的等腰三角形, ∴S △ABC =12×2×4-12=72.设点S 到平面ABC 的距离为h .由V 三棱锥S -ABC =V 三棱锥A -SBC ,得13h ·S △ABC =13AE ·S △SBC ,∴h =AE ·S △SBC S △ABC =237=2217.题型三 立体几何中的探索性问题题型概览:如果知道的是试题的结论,而要求的却是试题的某一个存在性条件(如存在某个定点、定直线、定值等),这种试题称为存在探索型试题.解题策略一般是先假设结论成立,然后以该结论作为一个已知条件,再结合题目中的其他已知条件,逆推(即从后往前推),一步一步推出所要求的特殊条件,即要求的存在性条件.若能求出,则存在;若不能求出,则不存在.(2016·石家庄调研)如图,在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,AC ⊥BC ,E 在线段B 1C 1上,B 1E =3EC 1,AC =BC =CC 1=4.(1)求证:BC ⊥AC 1;(2)试探究:在AC 上是否存在点F ,满足EF ∥平面A 1ABB 1?若存在,请指出点F 的位置,并给出证明;若不存在,请说明理由.[审题程序]第一步:由B 1E =3EC 1及EF ∥平面A 1ABB 1猜想点F 的位置;第二步:在平面A 1ABB 1内探求与EF 平行的直线或寻找经过EF 与平面A 1ABB 1平行的平面; 第三步:由线线平行或面面平行推理论证.[规范解答] (1)证明:∵AA 1⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥AA 1. 又∵BC ⊥AC ,AA 1∩AC =A ,∴BC ⊥平面AA 1C 1C . 又AC 1⊂平面AA 1C 1C ,∴BC ⊥AC 1.(2)解法一:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图1,在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.∵B1E=3EC1,∴EG=34A1C1.又AF∥A1C1且AF=3,4A1C1∴AF∥EG且AF=EG,∴四边形AFEG为平行四边形,∴EF∥AG.又EF⊄平面A1ABB1,AG⊂平面A1ABB1,∴EF∥平面A1ABB1.解法二:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图2,在平面BCC1B1内过点E作EG∥BB1交BC于点G,连接FG. ∵EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,∴EG∥平面A1ABB1.∵B1E=3EC1,∴BG=3GC,∴FG∥AB.又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1.[答题模板]解决这类问题的答题模板如下:3.如图,三棱柱ABC-A1B1C1的底面是边长为4的正三角形,侧棱AA1⊥底面ABC,M为A1B1的中点.(1)证明:MC⊥AB;(2)若AA1=26,侧棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,求PC的长;若不存在,请说明理由.[解](1)证明:取AB的中点N,连接MN,CN,则MN⊥底面ABC,MN⊥AB.因为△ABC是正三角形,所以NC⊥AB.因为MN∩NC=N,MN⊂平面MNC,NC⊂平面MNC,所以AB⊥平面MNC,所以AB⊥MC.(2)由(1)知MC⊥AB,若存在点P使得MC⊥平面ABP,则必有MC⊥BP.过M作MQ⊥B1C1,垂足为Q,连接QC,则QC是MC在平面BCC1B1内的射影,只需QC⊥BP即可,此时Rt△QC1C与Rt△PCB相似,QC1C1C =PCCB,所以PC=QC1·CBC1C=3×426=6,点P恰好是CC1的中点.。
高中数学空间几何体积计算方法及解题思路

高中数学空间几何体积计算方法及解题思路一、立体体积的概念和计算方法立体是指具有长度、宽度和高度的物体,如长方体、正方体、圆柱体、圆锥体、球体等。
而立体的体积则是指该物体所占据的空间大小。
1. 长方体的体积计算方法长方体是一种六个面都是矩形的立体,它的体积可以通过公式 V = lwh 来计算,其中 l、w、h 分别表示长方体的长、宽、高。
例如,一个长方体的长为 5cm,宽为 3cm,高为 2cm,那么它的体积可以通过 V = 5 × 3 × 2 = 30cm³计算得出。
2. 圆柱体的体积计算方法圆柱体是一种底面为圆形的立体,它的体积可以通过公式V = πr²h 来计算,其中 r 表示圆柱体的底面半径,h 表示圆柱体的高。
例如,一个圆柱体的底面半径为 4cm,高为 6cm,那么它的体积可以通过 V= 3.14 × 4² × 6 = 301.44cm³计算得出。
3. 圆锥体的体积计算方法圆锥体是一种底面为圆形且侧面全部是直线的立体,它的体积可以通过公式V = (1/3)πr²h 来计算,其中 r 表示圆锥体的底面半径,h 表示圆锥体的高。
例如,一个圆锥体的底面半径为 3cm,高为 8cm,那么它的体积可以通过 V= (1/3) × 3.14 × 3² × 8 = 75.36cm³计算得出。
4. 球体的体积计算方法球体是一种所有点到球心的距离都相等的立体,它的体积可以通过公式 V = (4/3)πr³ 来计算,其中 r 表示球体的半径。
例如,一个球体的半径为 5cm,那么它的体积可以通过 V = (4/3) × 3.14 × 5³ = 523.33cm³计算得出。
二、解题思路和考点分析在解决空间几何体积计算问题时,我们需要注意以下几个解题思路和考点:1. 立体体积的计算公式首先,我们要熟悉各种立体的体积计算公式,并能够灵活运用。
高中数学立体几何——常用求体积的三种解题方法(2021年整理)

高中数学立体几何——常用求体积的三种解题方法(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学立体几何——常用求体积的三种解题方法(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学立体几何——常用求体积的三种解题方法(word版可编辑修改)的全部内容。
高中数学立体几何——常用求体积的三种解题方法1. 1(1)分割法一般的考试题目不会给你一个简单的长方体,正方体,圆等等一些能套公式就能求出体积,而是弄一些多面体,让你求它的体积。
分割法,就是把多面体分割成几个我们常见的立体,然后求各个分割体的体积,最后相加就能得出所要求的体积了。
2. 2(2)补形法多面体加以拼补,把它拼成我们常见的立体,求出该立体的体积后,把补上去的各个立体的体积算出来,相减就能得出所要求的体积了。
3。
3(3)等体积法这个方法举例比较好说明,比如,求四面体P-ABC的体积,但是顶点P到面ABC的距离不好求(即高h),然而我们把顶点和底面换一下,换成四面体A-PBC,此时,顶点A到面PBC的距离可以很容易就得到(AP⊥面PBC,即AP就是高),这样四面体A—PBC的体积就很容易就求出来了。
显然,四面体P-ABC和四面体A-PBC是同一个立体,因此,求出四面体A—PBC的体积也就是求出四面体P—ABC的体积.。
求解空间几何体体积问题的两种途径

空间几何体的体积问题侧重于考查棱锥、棱柱、棱台、圆柱、圆台、圆锥、球的体积公式的应用,这类问题对同学们的空间想象和逻辑推理能力有较高的要求.有些空间几何体体积问题较为复杂,很多同学不知如何求解.本文介绍两种求解此类问题的途径.一、割补图形有些几何体为不规则图形,或无法直接求得几何体的底面和高,此时直接运用棱锥、棱柱、棱台、圆柱、圆台、圆锥、球的体积公式,很难求得几何体的体积,需将几何体进行适当的分割、填补,将其构造成规则的棱锥、棱柱、棱台、圆柱、圆台、圆锥、球,以便利用棱锥、棱柱、棱台、圆柱、圆台、圆锥、球的体积公式求解.1.分割图形有些图形是由多个棱锥、棱柱、棱台、圆柱、圆台、圆锥、球等拼接而成的,无法直接求得几何体的底面和高,此时可采用割补法,将几何图形分割为几个简单空间几何体,如棱锥、棱柱、棱台、圆柱、圆台、圆锥、球,然后根据棱锥、棱柱、棱台、圆柱、圆台、圆锥、球的体积公式分别求出分割后几何体的体积,最后把所得的结果相加,即可得到不规则几何体的体积.例1.如图1,在三棱锥P-ABC中,PA⊥BC,PA=BC=3,PA,BC的公垂线ED=2,求三棱锥P-ABC体积.图1图2解:如图2,连接PD、AD,∵PA⊥BC,ED⊥BC,ED⊂平面PAD,∴BC⊥平面PAD,∴V P-ABC=V B-PAD+V C-PAD=13∙S△PAD∙()CD+BD=13׿èöø12×3×2×3=1,∴三棱锥P-ABC体积为1.我们无法直接运用公式求出三棱锥P-ABC的体积,于是采用割补法,通过添加辅助线,将三棱锥P-ABC分割为两个直三棱锥B-APD和C-APD,再根据直三棱锥的体积公式进行求解即可.例2.已知正方体ABCD-A1B1C1D1的棱长为1,点E、F分别为棱AA1和CC1的中点,求几何体A1-EBFD1的体积.解:连接A1F、A1B、EF、ED1、BF,由图3可知几何体A1-EBFD1被分割为三棱锥B-A1EF和三棱锥D1-A1EF两部分,图3∵△BEF≌△D1EF,∴V A1-EBFD1=V A1-BEF+V A1-D1EF=2V A1-D1EF=2V F-A1ED1=2×13×CD×S△A1ED1=16,∴几何体A1-EBFD1的体积为16.几何体A1-EBFD1为不规则几何体,需运用割补法,把该几何体分割为三棱锥B-A1EF和三棱锥D1-A1EF,然后根据锥体的体积公式求出两个三棱锥的体积,最后将所得结果相加,即可求得几何体的体积.2.填补图形有些几何体是从一个大的规则几何体中挖去一考点透视36图4图5解:如图5所示,延长ON与平面ABCD交于点P,∴VO-MNB=V O-MBP-V N-MBP,∵点N是边长CC1的中点,∴VO-MBP=2V N-MBP,∴V O-MNB=V N-MBP,由题意可得MB=5,CP=2,BP=10,72,图6图7图8是BC的中点,=90°,PM=1,CN=12BCPCMN是正方形,平面ABC,=V A-PCM=V A-MNC=V M-ACN=13×12AC∙CN sin120°∙MN考点透视考点透视图9由题意可得,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解题技巧:立体几何高考核心题型,求空间几何体的
体积
1.处理体积问题的思路
(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高.
(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算.
(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法.
2.求空间几何体的体积的常用方法
(1)公式法.对于规则几何体的体积问题,可以直接利用公式进行求解.
(2)割补法.把不规则的图形分割成规则的图形,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积.
(3)等体积法.一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.
3.由三视图求相关几何体的体积
已知几何体三视图求体积的思路与已知几何体三视图求表面积的思路相同,求解时注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用求体积的方法求解.。