人教版数学九年级上册 第24章 24.4弧长和扇形面积同步测试试题(一)(含答案)
人教版九年级数学上册24.4 弧长和扇形面积同步练习带答案【优】

第24章 24.4《弧长和扇形面积》同步练习及答案(2)第1题. 一条弧所对的圆心角是90o,半径是R ,则这条弧的长是 .答案:12R π 第2题. 若»AB 的长为所对的圆的直径长,则»AB 所对的圆周角的度数为 .答案:180πo第3题. 如图,AB 是半圆O 的直径,以O 为圆心,OE 为半径的半圆交AB 于E ,F 两点,弦AC 是小半圆的切线,D 为切点,若4OA =,2OE =,则图中阴影部分的面积为 .答案:43π+第4题. 如果一条弧长等于l ,它的半径等于R ,这条弧所对的圆心角增加1o,则它的弧长增加( ) A.lnB.180R π C.180lRπ D.360l答案:B第5题. 在半径为3的O e 中,弦3AB =,则»AB 的长为( )A.π2B.πC.32π D.2π答案:B第6题. 扇形的周长为16,圆心角为360πo,则扇形的面积是()A.16 B.32 C.64 D.16π答案:A第7题. 如图,扇形OAB 的圆心角为90o,且半径为R ,分别以OA ,OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么P 和Q 的大小关系是( ) A.P Q =B.P Q >C.P Q <D.无法确定答案:A第8题. 如图,矩形ABCD 中,1AB =,BC =,以BC 的中点E 为圆心的¼MPN与AD 相切,则图中的阴影部分的面积为( )A.23π B.34πD.π3答案:D第9题. 如图所示,正方形ABCD 是以金属丝围成的,其边长1AB =,把此正方形的金属丝重新围成扇形的ADC ,使AD AD =,DC DC =不变,问正方形面积与扇形面积谁大?大多少?由计算得出结果. 答案:1S =正方形,121122ADC S lR 1==⨯⨯=扇形,∴面积没有变化.第10题. 如图,O e 的半径为1,C 为O e 上一点,以C 为圆心,以1为半径作弧与O e 相交于A ,B 两点,则图中阴影部分的面积为.答案:2π3第11题. 如图,△ABC 中,105A ∠=o ,45B ∠=o,AB =AD BC ⊥,D 为垂足,以A为圆心,以AD 为半径画弧»EF,则图中阴影部分的面积为( )MC A DA.76πB.76-π+2C.56πD.56-π+2答案:B第12题. 如图,半径为r 的1O e 与半径为3r 的2O e 外切于P 点,AB 是两圆的外公切线,切点分别为A ,B ,求AB 和»PA,»PB 所围成的阴影部分的面积.答案:连结2O B ,1O A ,过1O 作12O H O B ⊥,垂足为H ,则得矩形1ABHO , 1BH O A r ∴==,1AB O H =.在Rt △21O HO 中,2232O H O B BH r r r =-=-=,122134O O O P O P r r r =+=+=,1O H ==,2211221cos 42O H r HO O O O r ∠===,2160HO O ∴∠=o ,1120AO P ∠=o .21212111()(3)22ABO O S O A O B O H r r =+=+=g 梯形,26033606BO P O B r r S 222π()π(3)π===2g 2扇形,122120AO P O A S r π()π==3603扇形、,212122223ABO O BO P AO P S S S S r r ππ=--=--=23阴影梯形扇形扇形.第13题. 圆周角是90o,占整个周角的90360,因此它所对的弧长是圆周长的 . 答案:14第14题. 圆心角是45o,占整个周角的 ,因此它所对的弧长是圆周长的 . 答案:45360,18第15题. 圆心角是1o,占整个周角的 ,因此它所对的弧长是圆周长的 .C D B EAF答案:1360,1360第16题. 扇形的圆心角为210o,弧长是28π,求扇形的面积.答案:336π第17题. 一个扇形的半径等于一个圆的半径的2倍,且面积相等.求这个扇形的圆心角.答案:90o第18题. 一服装厂里有大量形状为等腰直角三角形的边角布料(如图),现找出其中的一种,测得90C ∠=o ,4AC BC ==.今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在ABC △的边上,且扇形的弧与ABC △的其他边相切,请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径).答案:第19题.90o,半径为R A.2R πB.3R πC.4R πD.6R答案:A第20题. 已知一条弧长为l ,它所对圆心角的度数为n o,则这条弦所在圆的半径为( ).A.180n lπ B.180ln πC.360ln πD.180lnπ答案:B第21题. 半径为6cm 的圆中,60o的圆周角所对的弧的弧长为 .答案:4cm π第22题. 半径为9cm 的圆中,长为12cm π的一条弧所对的圆心角的度数为 .答案:240o第23题. 已知圆的面积为281cm π,若其圆周上一段弧长为3cm π,则这段弧所对的圆心角的度42r =24r =1r =数为 .答案:60o第24题. 若扇形的圆心角为120o,弧长为6cm π,则这个扇形的面积为 .答案:227cm π第25题. 弯制管道时,先按中心线计算其“展直长度”,再下料.根据如图所示的图形可算得管道的展直长度为 .(单位:mm ,精确到1mm )答案:389mm第26题. 如图,在Rt △ABC 中,90C ∠=o,60A ∠=o,3cm AC =,将△ABC 绕点B 旋转至△A BC ''的位置,且使点A ,B ,C '三点在同一直线上,则点A 经过的最短路线长是cm . 答案:53π第27题. 一块等边三角形的木板,边长为1,若将木板沿水平线翻滚(如图),则点B 从开始至结束走过的路径长度为( ). A.3π2B.4π3C.4D.322+π答案:B第28题. 如图,扇形AOB 的圆心角为60o,半径为6cm ,C ,D 是»AB 的三等分点,则图中阴影部分的面积和是 .A ' C ' B C A BC答案:22cm π第29题. 如图,已知在扇形AOB 中,若45AOB ∠=o,4cm AD =,3cm CD =π,则图中阴影部分的面积是 .答案:214cm π第30题. 如图4,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为 .答案:14.2π.图4。
人教版 数学九年级(上)学期 :24.4弧长和扇形面积同步练习卷含详解

24.4 弧长和扇形面积同步练习卷一.选择题(共10小题).1.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3πB.4πC.5πD.6π2.已知圆锥的底面半径为6cm,母线长为10cm,则这个圆锥的全面积是()A.60πcm2B.96πcm2C.132πcm2D.168πcm23.如图,用一个半径为6cm的定滑轮拉动重物上升,滑轮旋转了120°,假设绳索粗细不计,且与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.4πcm4.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2cm,绕AC所在直线旋转一周,所形成的圆锥侧面积是()A.16πcm2B.8πcm2C.4πcm2D.2πcm25.如图,点A、B、C、D都在边长为1的网格格点上,以A为圆心,AE为半径画弧,弧EF经过格点D,则扇形AEF的面积是()A.B.C.πD.6.如图,从一块半径为20cm的圆形铁皮上剪出一个圆心角是60°的扇形ABC,则此扇形围成的圆锥的侧面积为()A.200πcm2B.100πcm2C.100πcm2D.50πcm27.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm28.如图,长方形ABCD中,AB=3BC,且AB=9cm,以点A为圆心,AD为半径作圆交BA 的延长线于点M,则阴影部分的面积等于()A.(π+9)cm2B.(π+18)cm2C.(π+9)cm2D.(π+18)cm2二.填空题9.弧长等于半径的圆弧所对的圆心角是度.10.一个周长确定的扇形,要使它的面积最大,扇形的圆心角应为度.11.已知扇形的弧长为6π,它的圆心角为120°,则该扇形的半径为.12.已知圆弧所在圆的半径为6,所对圆心角为60°,则这条弧的长为.13.扇形的半径为6cm,弧长为10cm,则扇形面积是.14.已知一个圆锥形零件的母线长为13cm,底面半径为5cm,则这个圆锥形的零件的侧面积为cm2.(结果用π表示).15.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD 的长为9cm,则纸面部分BDEC的面积为cm2.16.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为.三.解答题17.计算下图中扇形AOB的面积(保留π)18.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,求该圆锥的高h的长.19.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,求扇形OAB的弧长,周长和面积.(结果保留根号及π).20.如图,在半径为6cm的⊙O中,圆心O到弦AB的距离OE为3cm.(1)求弦AB的长;(2)求劣弧的长.21.在扇形OAB中,C是弧AB上一点,延长AC到D,且∠BCD=75°.(1)求∠AOB的度数;(2)扇形OAB是某圆锥的侧面展开图,若OA=12,求该圆锥的底面半径.22.如图所示,现有一圆心角为90°、半径为80cm的扇形铁片,用它恰好围成一个圆锥形的量筒;如果用其它铁片再做一个圆形盖子把量筒底面密封.(接缝都忽略不计).求:(1)该圆锥盖子的半径为多少cm?(2)制作这个密封量筒,共用铁片多少cm2.(注意:结果保留π)参考答案一.选择题1.解:∵扇形的半径为6,圆心角为120°,∴此扇形的弧长==4π.故选:B.2.解:根据题意,这个圆锥的全面积=×2π×6×10+π×62=60π+36π=96π(cm2).故选:B.3.解:根据题意,重物的高度为=4π(cm).故选:D.4.解:∵∠ACB=90°,∠BAC=30°,BC=2cm∴AB=4,则圆锥的底面周长=4π,旋转体的侧面积=×4π×4=8π,故选:B.5.解:由题意,扇形的半径AD==,∠EAF=45°,∴扇形AEF的面积==.故选:A.6.解:作OD⊥AB于D,如图,则AD=BD,∵∠OAD=∠BAC=30°,∴OD=OA=10,AD=OD=10,∴AB=2AD=20,∴扇形围成的圆锥的侧面积==200π(cm2).故选:A.7.解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为=3π,故选:B.8.解:阴影部分的面积=扇形MAD的面积+矩形ABCD的面积﹣△CMB的面积=+3×9﹣×3×12=(π+9)cm2,故选:C.二.填空题9.解:设圆的半径为r,弧长等于半径的圆弧水对的圆心角是n°,根据题意得r=,即得n=,即弧长等于半径的圆弧所对的圆心角是度.10.解:设扇形的半径为r,周长为C,圆心角为n°,面积为S,S=(C﹣2r)r=﹣r2+r=﹣(r﹣)2+,∴当r=C时,S取得最大值,∴C=4r,∴=4r﹣2r,解得,n=,故答案为:.11.解:设扇形的半径为r,6π=,解得,r =9,故答案为:9.12.解:l ==2π, 故答案为2π.13.解:根据题意得,S 扇形=lR ==30(cm 2). 故答案为30cm 2.14.解:圆锥的底面周长=2π×5=10π,圆锥形的零件的侧面积=×10π×13=65π,故答案为:65π.15.解:S =S 扇形BAC ﹣S 扇形DAE =﹣=π(cm 2). 故答案是:π16.解:连接OE ,如图,∵CE ∥OA ,∴∠BCE =90°,∵OE =4,OC =2,∴CE =OC =2,∴∠CEO =30°,∠BOE =60°,∴S阴影部分=S 扇形BOE ﹣S △OCE ﹣S 扇形BCD =﹣×2×2﹣=π﹣2.故答案为π﹣2三.解答题17.解:如图,因为∠ACO=60°,OC=OA=4cm,所以△ACO是等边三角形,所以∠AOC=60°,所以∠AOB=120°,=π(cm2)答:扇形AOB的面积是πcm2.18.解:如图,由题意得:2πr=,而r=2,∴AB=6,∴由勾股定理得:AO2=AB2﹣OB2,而AB=6,OB=2,∴AO=4.即该圆锥的高为4.19.解:由图形可知,∠AOB=90°,∴OA=OB==2,∴扇形OAB的面积==2π,弧AB的长是:=π∴周长=弧AB的长+2OA=π+4.综上所述,扇形OAB的弧长是π,周长是π+4,面积是2π.20.解:(1)∵OE⊥AB,∴E为AB的中点,即AE=BE,在Rt△AOE,OA=6cm,OE=3cm,根据勾股定理得:AE==3cm,则AB=2AE=6cm.(2)在直角△OAE中,OA=6cm,OE=3cm,则OA=2OE,所以∠OAE=30°,∴∠AOE=∠BOE=60°,∴∠AOB=120°,∴劣弧的长是:=4π(cm).21.解:(1)作出所对的圆周角∠APB,∵∠APB+∠ACB=180°,∠BCD+∠ACB=180°,∴∠APB=∠BCD=75°,∴∠AOB=2∠APB=150°;(2)设该圆锥的底面半径为r,根据题意得2πr=,解得r=5,∴该圆锥的底面半径为5.22.解:(1)圆锥的底面周长是:=40πcm .设圆锥底面圆的半径是r ,则 2πr =40π.解得:r =20cm ;(2)S =S 侧+S 底=×π×802+400π=2000π(cm 2). 答:共用铁片2000πcm 2.。
人教版九年级数学上册《24.4弧长和扇形面积》同步测试题及答案

人教版九年级数学上册《24.4弧长和扇形面积》同步测试题及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.在半径为1的⊙O 中,120°的圆心角所对的弧长是 () A .3π B .23π C .πD .32π 2.用一个圆心角为150°,半径为12的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( ) A .2.5B .5C .6D .103.将一半径为6的圆形纸片,沿着两条半径剪开形成两个扇形.若其中一个扇形的弧长为5π,则另一个扇形的圆心角度数是多少?( ) A .30B .60C .105D .2104.若圆锥的底面直径为6cm ,侧面展开图的面积为215πcm ,则圆锥的母线长为( ) A .5cm 2B .2cm 5C .3cmD .5cm5.如图,在⊙ABC 中,AB=AC=,BC=2,以A 为圆心作圆弧切BC 于点D ,且分别交边AB 、AC 于E 、F ,则扇形AEF 的面积是( )A .B .C .D .6.用一个圆心角为120°,半径为4的扇形,做一个圆锥的侧面,则这个圆锥的全面积(侧面与底面面积的和)为( ) A .563πB .643πC .569πD .649π二、填空题7.已知扇形的弧长为6π,它的圆心角为120,则该扇形的半径为 . 8.圆锥底面圆的半径2cm r =,母线长为6cm ,则圆锥全面积为 .9.如图,扇形OAB 的圆心角为30︒,半径为1,将它在水平直线上向右无滑动滚动到'''O A B 的位置时,则点O 到点'O 所经过的路径长为 .10.如图,O 的直径6AB =,圆内接ACD 中,AC=CD ,30CAD ∠=︒则阴影部分的面积为 .三、解答题11.(本小题满分10分)如图,已知扇形的半径为15cm ,⊙AOB=120°.(1)求扇形的面积;(2)用这扇形围成圆锥的侧面,求该圆锥的高和底面半径.12.如图,AB 是⊙O 的直径,BC 切⊙O 于点B ,OC 交⊙O 于点D 的半径为3 20C ∠=︒.(1)求A ∠的度数;(2)求AD 的长.(结果保留π)参考答案题号 1 2 3 4 5 6 答案BBDDB D1.【答案】B【分析】根据弧长公式可知弧长. 【详解】解: l =120121803ππ⨯=. 故选B . 2.【答案】B【分析】根据弧长公式先计算出扇形的弧长,再根据圆锥的底面周长等于这个扇形的弧长即可求解. 【详解】解:由题意知:扇形的弧长=1501210180ππ⨯= 设圆锥的底面半径为R ,圆锥的底面周长等于扇形的弧长 ⊙2πR =10π ∴R =5 故选:B .【点睛】本题考查了扇形的弧长公式及圆锥的展开图,属于基础题,熟练掌握扇形弧长的计算公式是解题的关键. 3.【答案】D【分析】根据题意可知两个扇形的弧长之和就是圆的周长,则可以求得另一个扇形的弧长,再根据弧长公式求解即可.【详解】解:由题意可求得圆的周长2612C ⨯==ππ 其中一个扇形的弧长15L =π,则另一个扇形的弧长21257L -==πππ 设另一个扇形的圆心角度数为n ︒ 根据弧长公式:180n rL =π,有: 67180n ⨯=ππ,解得210n = 故选:D .【点睛】本题考查弧长的计算,解题关键是理解题意,正确应用弧长公式进行计算.【分析】已知圆锥底面圆的半径可求出侧面展开图的弧长,根据侧面展开图的面积即可求解. 【详解】如图所示⊙圆锥的底面直径为6cm ⊙圆锥的底面半径为3cm⊙圆锥的底面圆周长是2π6πC r == ⊙侧面展开图的面积为215πcm⊙侧面展开图的面积116π15π22S l C l ==⨯=⊙圆锥的母线长为5l = 故选:D .【点睛】本题主要考查圆锥侧面展开图的面积,理解掌握面积公式的计算方法是解题的关键. 5.【答案】B【详解】试题分析:先判断出⊙ABC 是等腰直角三角形,从而连接AD ,可得出AD=1,直接代入扇形的面积公式进行运算即可. ⊙AB=AC=,BC=2⊙AB 2+AC 2=BC 2⊙⊙ABC 是等腰直角三角形 连接AD ,则AD=BC=1则S 扇形AEF =故选B .考点:1.扇形面积的计算;2.等腰直角三角形.【分析】先求出圆锥的侧面积和底面半径,再求圆锥的表面积,由此即可求出这个圆锥的表面积. 【详解】解:圆锥的侧面积=π×42×120?360?=163π圆锥的底面半径=2π×4×120?360?÷2π=43圆锥的底面积=π×(43)2=169π圆锥的表面积=侧面积+底面积=1616=39649πππ+. 故选:D .【点睛】本题考查圆锥的表面积,解题时要认真审题,掌握扇形面积、圆锥底面半径的计算方法是解题的关键. 7.【答案】9【分析】知道弧长,圆心角,直接代入弧长公式L=180n rπ即可求得扇形的半径. 【详解】解:⊙扇形的圆心角为120°,它所对应的弧长6π ⊙6π=120180rπ 解得:r=9. 故答案为9.【点睛】此题主要考查了扇形弧长的应用,要掌握弧长公式:L=180n rπ才能准确的解题. 8.【答案】216πcm【分析】圆锥的全面积是底面圆的面积与侧面扇形的面积,由此即可求解. 【详解】解:如图所示,圆锥底面圆的半径2cm r =,母线长为6cm⊙底面圆的周长为2π2π24πcm r =⨯=,底面圆的面积为222ππ24πcm r ==,侧面扇形的面积为214π612πcm 2⨯= ⊙圆锥的全面积为24π12π16πcm +=故答案为:216πcm .【点睛】本题主要考查立体几何图形的面积,掌握圆锥面积是底面圆面积与侧面扇形的面积之和是解题的关键. 9.【答案】76π【分析】点O 到点O ′所经过的路径长分三段,先以A 为圆心,1为半径,圆心角为90度的弧长,再平移了AB 弧的长,最后以B 为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可. 【详解】解:⊙扇形OAB 的圆心角为30°,半径为1 ⊙AB 弧长=301180π⨯⨯=6π⊙点O 到点O ′所经过的路径长=90172=18066πππ⨯⨯⨯+ 故答案为:76π. 【点睛】本题考查了弧长公式,旋转的性质和圆的性质,理解点O 到点O ′所经过的路径长分三段是解题的关键.10.【答案】9332π 【分析】连接OC 、OD ,交AD 与点K ,根据AC CD =,30CAD ∠=︒得到1230∠=∠=︒ AOC ∆ COD ∆为等边三角形,证明出四边形ACDO 为菱形,,进而求出阴影部分的面积. 【详解】解:连接OC 、OD ,交AD 与点K ,如图所示:⊙AC CD = 30CAD ∠=︒ ⊙1230∠=∠=︒⊙32260∠=∠=︒ 42160∠=∠=︒ ⊙AO OC OD ==⊙AOC ∆,COD ∆为等边三角形 ⊙OA OD OC AC CD ==== ⊙四边形ACDO 为菱形⊙CO AD ⊥ ⊙360∠=︒ ⊙530∠=︒⊙AB 为圆O 直径为6 ⊙3AO = ⊙1322OK AO == ∴22333()322AK =-= 23CO KO ==∴233AD AK ==⊙19322ACDO S AD CO =⋅=菱形312033360AOD S ππ=⨯⨯=扇形 ⊙9332S π=阴 【点睛】本题考查了求扇形阴影部分的面积,正确作出辅助线是解题的关键. 11.【答案】(1)150π平方厘米(2)r=10cm ;5cm 【分析】(1)根据扇形的面积公式S=2360n r π,代值计算即可(2)利用弧长公式可求得扇形的弧长,除以2π即为圆锥的底面半径,再利用勾股定理求得高即可.【详解】解:(1)⊙S=2360n r π ⊙S=224015360π⨯=150πcm 2(2)⊙弧长=24015180π⨯=20π ⊙2πr=20π,r=10cm⊙圆锥的高221510-55cm )【点睛】本题考查了扇形的面积公式以及圆锥有关计算,解本题的关键是掌握圆锥的侧面展开图的弧长等于圆锥的底面周长.12.【答案】(1) 35A ∠=︒;(2) 弧AD 的长为116π. 【分析】(1)由切线性质结合已知得70BOD ∠=︒,根据⊙OAD 是等腰三角形即可计算出⊙A =35°.(2)由(1)可知⊙AOC =110°,根据弧长公式即可计算. 【详解】解:(1)BC 是⊙O 的切线90B ∴∠=︒.又⊙⊙C =20°.902070BOC ∴∠=︒-︒=︒⊙OA =OD ⊙⊙A =⊙ADO1 352A BOC ∴∠=∠=︒(2)180AOC BOC ∠=︒-∠18070110AOC ∴∠=︒-︒=︒∴弧AD 的长为110111806ππ=. 【点睛】本题考查了切线的性质,等腰三角形的性质,弧长的计算等知识点,能求出⊙BOC 的度数是解此题的关键,注意:圆的切线垂直于过切点的半径.。
2020年人教版九年级数学上册24.4《弧长和扇形面积》随堂练习(含答案)

2020年人教版九年级数学上册 24.4《弧长和扇形面积》随堂练习第1课时 弧长和扇形面积基础题知识点1 弧长公式及应用1.(岳阳中考)已知扇形的圆心角为60°,半径为1,则扇形的弧长为( ) A.π2 B .π C.π6 D.π3 2.(衡阳中考)圆心角为120°,弧长为12π的扇形的半径为( )A .6B .9C .18D .36 3.一个扇形的半径为8 cm ,弧长为163π cm ,则扇形的圆心角为( )A .60°B .120°C .150°D .180° 4.如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A .π cmB .2π cmC .3π cmD .5π cm5.如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧BC ︵的长等于( )A.2π3B.π3C.23π3D.3π3知识点2 扇形的面积公式及应用6.半径为6,圆心角为120°的扇形的面积是( ) A .3π B .6π C .9π D .12π7.一个扇形的圆心角是120°,面积是3π cm 2,那么这个扇形的半径是( ) A .1 cm B .3 cm C .6 cm D .9 cm8.已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于 cm .9.一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为 度.10.如图,△ABC 是⊙O 内接正三角形,⊙O 的半径为3,则图中阴影部分面积是 .11.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC=6 cm ,AC=8 cm ,∠ABD=45°. (1)求BD 的长;(2)求图中阴影部分的面积.易错点 忽视题中条件12.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm.若纸扇两面贴纸,则贴纸的面积为 cm 2.中档题13.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE ︵的长为( )A.π3B.π2 C .Π D .2π14.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是(C)A .(10π-923)米2B .(π-923)米2C .(6π-923)米2D .(6π-93)米15.如图,在△ABC 中,∠B=30°,∠C=45°,AD 是BC 边上的高,AB=4 cm ,分别以B ,C为圆心,以BD ,CD 为半径画弧,交边AB ,AC 于点E ,F ,则图中阴影部分面积是 cm 2.16.图1是以AB 为直径的半圆形纸片,AB=6 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′,如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则BF ︵的长为 cm.17.如图1,正方形ABCD 是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动. (1)请在图1中画出光点P 经过的路径; (2)求光点P 经过的路径总长(结果保留π).18.如图,已知PA为⊙O的切线,A为切点,B为⊙O上一点,∠AOB=120°,过点B作BC ⊥PA于点C,BC交⊙O于点D,连接AB,AD.(1)求证:OD平分∠AOB;(2)若OA=2 cm,求阴影部分的面积.综合题19.“莱洛三角形”是一种等宽曲线,在游标卡尺上,它在任何方向上的宽度都相等,其构造方法是分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是莱洛三角形,如图1.莱洛三角形在日常生活中有广泛的应用,如汽车发动机就有莱洛三角形,如图2,若图1中等边三角形的边长是2,则该莱洛三角形的周长是2π.第2课时 圆锥的侧面积和全面积基础题知识点1 圆柱的侧面积与全面积1.圆柱形水桶底面周长为3.2π m ,高为0.6 m ,它的侧面积是( )A .1.536π m 2B .1.92π m 2C .0.96π m 2D .2.56π m 22.一个圆柱的底面直径为6 cm ,高为10 cm ,则这个圆柱全面积是 cm 2(结果保留π). 知识点2 圆锥的侧面积与全面积3.已知圆锥的底面半径为4 cm ,母线长为6 cm ,则它的侧面展开图的面积等于( )A .24 cm 2B .48 cm 2C .24π cm 2D .12π cm 24.已知一个圆锥的侧面积是底面积的2倍,圆锥母线长为2,则圆锥底面半径是( ) A.12 B .1 C. 2 D.325.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为( ) A .1.5 B .2 C .2.5 D .36.如图,圆锥的底面半径r=3,高h=4,则圆锥的侧面积是( )A .12πB .15πC .24πD .30π7.一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是( ) A .120° B .180° C .240° D .300° 8.若一个圆锥的底面圆半径为3 cm ,其侧面展开图圆心角为120°,则圆锥母线长是 cm. 9.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA=13 cm ,则扇形AOC 中AC ︵的长是 cm.(结果保留π)10.如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,则圆锥侧面积为 .11.已知圆锥的侧面展开图是一个半径为12 cm,弧长为12π cm的扇形,求这个圆锥的侧面积及高.易错点考虑不全面导致漏解12.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为.中档题13.如图,Rt△ABC中,∠B=90°,AB=2,BC=1,把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则( )A.l1∶l2=1∶2,S1∶S2=1∶2B.l1∶l2=1∶4,S1∶S2=1∶2C.l1∶l2=1∶2,S1∶S2=1∶4D.l1∶l2=1∶4,S1∶S2=1∶414.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm,圆柱体部分的高BC=6 cm,圆锥体部分的高CD=3 cm,则这个陀螺的表面积是( )A.68π cm2 B.74π cm2 C.84π cm2 D.100π cm215.如图,从一张腰长为60 cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )A.10 cm B.15 cmC.10 3 cm D.20 2 cm16.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为 cm2.17.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC围成一个圆锥的侧面,则这个圆锥底面圆的半径是.18.如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为 (结果保留π).19.如图,有一直径是1米的圆形铁皮,圆心为O,要从中剪出一个圆心角是120°的扇形ABC,求:(1)被剪掉阴影部分的面积;(2)若用所留的扇形ABC铁皮围成一个圆锥,该圆锥底面圆的半径是多少?综合题20.如图1,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的邻边(即腰AB 或AC)与对边(即底边BC)的比值也就确定了,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BCAC,当∠A=60°时,如T(60°)=1. (1)理解巩固:T(90°)= ,T(120°)= ,T(A)的取值范围是 ;(2)学以致用:如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T(140°)≈0.53,T(70°)≈0.87,T(35°)≈1.66)参考答案基础题知识点1 弧长公式及应用1.(岳阳中考)已知扇形的圆心角为60°,半径为1,则扇形的弧长为(D) A.π2 B .π C.π6 D.π3 2.(衡阳中考)圆心角为120°,弧长为12π的扇形的半径为(C)A .6B .9C .18D .36 3.(自贡中考)一个扇形的半径为8 cm ,弧长为163π cm ,则扇形的圆心角为(B)A .60°B .120°C .150°D .180° 4.(兰州中考)如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了(C) A .π cm B .2π cm C .3π cm D .5π cm5.(南宁中考)如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧BC ︵的长等于(A) A.2π3 B.π3 C.23π3 D.3π3知识点2 扇形的面积公式及应用6.(宜宾中考)半径为6,圆心角为120°的扇形的面积是(D) A .3π B .6π C .9π D .12π7.(维吾尔中考)一个扇形的圆心角是120°,面积是3π cm 2,那么这个扇形的半径是(B) A .1 cm B .3 cm C .6 cm D .9 cm8.(怀化中考)已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于10π3__cm . 9.(广西中考)一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为40度.10.(常德中考)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为3,则图中阴影部分的面积是3π. 11.(无锡中考)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC=6 cm ,AC=8 cm ,∠ABD=45°. (1)求BD 的长;(2)求图中阴影部分的面积.解:(1)∵AB 是⊙O 的直径, ∴∠C=90°,∠BDA=90°. ∵BC=6 cm ,AC=8 cm , ∴AB=62+82=10(cm). ∵∠ABD=45°.∴△ABD 是等腰直角三角形. ∴BD=AD=22AB=5 2 cm. (2)连接DO ,∵△ABD 是等腰直角三角形,OB=OA , ∴∠BOD=90°. ∵AB=10 cm , ∴OB=OD=5 cm.∴S 阴影=S 扇形OBD -S △BOD =90π×52360-12×52=(25π4-252)cm 2.易错点 忽视题中条件12.(教材P116习题T8变式)如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm.若纸扇两面贴纸,则贴纸的面积为350πcm 2. 02 中档题13.(山西中考)如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE ︵的长为(C)A.π3B.π2C .ΠD .2π14.(山西中考)如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是(C)A .(10π-923)米2B .(π-923)米2 C .(6π-923)米2 D .(6π-93)米15.(盘锦中考)如图,在△ABC 中,∠B=30°,∠C=45°,AD 是BC 边上的高,AB=4 cm ,分别以B ,C 为圆心,以BD ,CD 为半径画弧,交边AB ,AC 于点E ,F ,则图中阴影部分的面积是(23+2-32π) cm 2.16.(山西中考)图1是以AB 为直径的半圆形纸片,AB=6 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′,如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则BF ︵的长为π cm.17.如图1,正方形ABCD 是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动.(1)请在图1中画出光点P 经过的路径;(2)求光点P 经过的路径总长(结果保留π).解:(1)如图.(2)光点P 经过的路径总长为4×90π×3180=6π.18.(山西中考适应性考试)如图,已知PA 为⊙O 的切线,A 为切点,B 为⊙O 上一点,∠AOB=120°,过点B 作BC ⊥PA 于点C ,BC 交⊙O 于点D ,连接AB ,AD.(1)求证:OD 平分∠AOB ;(2)若OA=2 cm ,求阴影部分的面积.解:(1)证明:∵PA 为⊙O 的切线,∴OA ⊥PA.∵BC ⊥PA ,∴∠OAP=∠BCA=90°.∴OA ∥BC.∴∠AOB +OBC=180°.∵∠AOB=120°,∴∠OBC=60°.∵OB=OD ,∴△OBD 是等边三角形.∴∠BOD=60°.∴∠AOD=∠BOD=60°.∴OD 平分∠AOB.(2)∵OA ∥BC ,∴点O 和点A 到BD 的距离相等.∴S △ABD =S △OBD .∴S 阴影=S 扇形OBD .∴S 阴影=60π×4360=23π(cm 2).03 综合题19.(山西中考命题专家原创)“莱洛三角形”是一种等宽曲线,在游标卡尺上,它在任何方向上的宽度都相等,其构造方法是分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是莱洛三角形,如图1.莱洛三角形在日常生活中有广泛的应用,如汽车发动机就有莱洛三角形,如图2,若图1中等边三角形的边长是2,则该莱洛三角形的周长是2π.第2课时 圆锥的侧面积和全面积01 基础题知识点1 圆柱的侧面积与全面积1.圆柱形水桶底面周长为3.2π m ,高为0.6 m ,它的侧面积是(B)A .1.536π m 2B .1.92π m 2C .0.96π m 2D .2.56π m 22.(来宾中考)一个圆柱的底面直径为6 cm ,高为10 cm ,则这个圆柱的全面积是78πcm 2(结果保留π).知识点2 圆锥的侧面积与全面积3.(无锡中考)已知圆锥的底面半径为4 cm ,母线长为6 cm ,则它的侧面展开图的面积等于(C)A .24 cm 2B .48 cm 2C .24π cm 2D .12π cm 24.(德阳中考)已知一个圆锥的侧面积是底面积的2倍,圆锥母线长为2,则圆锥的底面半径是(B)A.12B .1 C. 2 D.325.(嘉兴中考)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为(D)A .1.5B .2C .2.5D .36.(宁夏中考)如图,圆锥的底面半径r=3,高h=4,则圆锥的侧面积是(B)A .12πB .15πC .24πD .30π7.(齐齐哈尔中考)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是(A) A .120° B .180°C .240°D .300°8.(孝感中考)若一个圆锥的底面圆半径为3 cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是9cm.9.(广东中考)如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA=13 cm ,则扇形AOC 中AC ︵的长是10πcm.(结果保留π)10.(聊城中考)如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,则圆锥的侧面积为2π.11.已知圆锥的侧面展开图是一个半径为12 cm ,弧长为12π cm 的扇形,求这个圆锥的侧面积及高.解:侧面积为:12×12×12π=72π(cm 2). 设底面半径为r ,则有2πr=12π,∴r=6 cm.由于高、母线、底面半径恰好构成直角三角形,根据勾股定理可得,高为122-62=63(cm).易错点 考虑不全面导致漏解12.(黄冈中考)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为π或4π.02 中档题13.(杭州中考)如图,Rt △ABC 中,∠B=90°,AB=2,BC=1,把△ABC 分别绕直线AB 和BC 旋转一周,所得几何体的底面圆的周长分别记作l 1,l 2,侧面积分别记作S 1,S 2,则(A)A .l 1∶l 2=1∶2,S 1∶S 2=1∶2B .l 1∶l 2=1∶4,S 1∶S 2=1∶2C .l 1∶l 2=1∶2,S 1∶S 2=1∶4D .l 1∶l 2=1∶4,S 1∶S 2=1∶414.(绵阳中考)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm ,圆柱体部分的高BC=6 cm ,圆锥体部分的高CD=3 cm ,则这个陀螺的表面积是(C)A .68π cm 2B .74π cm 2C .84π cm 2D .100π cm 215.(十堰中考)如图,从一张腰长为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为(D)A .10 cmB .15 cmC .10 3 cmD .20 2 cm16.(恩施中考)一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为15πcm 2.17.(苏州中考)如图,AB 是⊙O 的直径,AC 是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC 围成一个圆锥的侧面,则这个圆锥底面圆的半径是12.18.如图,Rt △ABC 中,∠ACB=90°,AC=BC=22,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为82π(结果保留π).19.如图,有一直径是1米的圆形铁皮,圆心为O ,要从中剪出一个圆心角是120°的扇形ABC ,求:(1)被剪掉阴影部分的面积;(2)若用所留的扇形ABC 铁皮围成一个圆锥,该圆锥底面圆的半径是多少?解:(1)连接OA ,OB.由∠BAC=120°,可知AB=12米,点O 在扇形ABC 的BC ︵上. ∴扇形ABC 的面积为120360π×(12)2=π12(平方米). ∴被剪掉阴影部分的面积为π×(12)2-π12=π6(平方米). (2)由2πr=120180π×12,得r=16. 即圆锥底面圆的半径是16米. 03 综合题20.如图1,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的邻边(即腰AB 或AC)与对边(即底边BC)的比值也就确定了,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BC AC,当∠A=60°时,如T(60°)=1. (1)理解巩固:T(90°)=2,T(120°)=3,T(A)的取值范围是0<T(A)<2;(2)学以致用:如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T(140°)≈0.53,T(70°)≈0.87,T(35°)≈1.66)解:∵圆锥的底面直径PQ=14,∴圆锥的底面周长为14π,即侧面展开图扇形的弧长为14π.设扇形的圆心角为n°,则n×π×18180=14π,解得n=140.∵T(70°)≈0.87,∴蚂蚁爬行的最短路径长为0.87×18≈15.7.。
人教版数学九年级上册 第24章 24.4弧长和扇形面积同步测试试题(一)

弧长和扇形面积同步测试试题(一)一.选择题1.圆锥的母线长为9,底面圆的直径为8,则圆锥的侧面积为()A.18πB.36πC.54πD.72π2.钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过长度()cm A.πB.πC.πD.π3.一个圆锥的侧面积是6π,母线长为3,则此圆锥的底面半径为()A.πB.2C.3D.44.已知扇形的圆心角为120°,半径为5cm,则此扇形的弧长为()A.πcm B.πcm C.πcm D.πcm5.一个扇形的圆心角为120°,半径为,则这个扇形的面积是()A.B.4πC.2πD.π6.如图所示,分别以n边形的顶点为圆心,以2cm为半径画圆,则图中阴影部分的面积之和为()A.πcm2B.2πcm2C.4πcm2D.nπcm27.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD,若AC=10,∠BAC=30°,则图中阴影部分的面积为()A.5πB.7.5πC.D.π8.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长2为半径画弧,形成树叶形(阴影)图案,则树叶形图案的面积为()A.B.π﹣2C.2π﹣2D.2π﹣49.如图,在△ABC中,∠C=90°,AB=,分别以A、B为圆心,AC,BC为半径在△ABC的外侧构造扇形CAE,扇形CBD,且点E,C,D在同一条直线上,若BC=2AC,且的长度恰好是的倍,则图中阴影部分的面积为()A.πB.πC.πD.π10.如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x 轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=1,则阴影部分面积为()A.πB.π﹣1C.+1D.二.填空题11.圆锥的底面半径为5,母线长为7,则圆锥的侧面积为.12.圆锥的高为3cm,底面半径为2cm,则圆锥的侧面积是cm2.13.如图,圆锥的母线长l为10cm,侧面积为50πcm2,则圆锥的底面圆半径r=cm.14.如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为.15.如图,在扇形OAB中,点C在上,∠AOB=90°,∠ABC=30°,AD⊥BC于点D,连接AC,若OA=2,则图中阴影部分的面积为.三.解答题16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB、AC于M、N两点,求图中阴影部分的面积.(保留π)17.已知:如图,C为半圆O上一点,AC=CE,过点C作直径AB的垂线CP,弦AE分别交PC、CB于点D、F.(1)求证:AD=CD;(2)若DF=,∠CAE=30°,求阴影部分的面积.18.如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2.(1)求⊙O1的半径;(2)求图中阴影部分的面积.19.如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.(1)请在图1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).参考答案与试题解析一.选择题1.【解答】解:∵底面圆的直径为8,∴底面圆的半径为4,∴圆锥的侧面积=×4×2π×9=36π.故选:B.2.【解答】解:分针40分钟转过的度数为:360°×=240°,分针针端转过长度==cm,故选:B.3.【解答】解:设圆锥的底面半径为r,根据题意得2πr3=6π,解得r=2,即圆锥的底面半径为2.故选:B.4.【解答】解:l==π(cm).故选:B.5.【解答】解:由扇形面积公式得:,故选:A.6.【解答】解:∵n边形的外角和为360°,半径为2cm,==4πcm2,∴S阴影故选:C.7.【解答】解:∵AC是直径,∴∠ABC=90°,∵∠BAC=30°,AC=10,∴BC=AC=5,AB=BC=5,∠ACB=60°,∵OC=OB,∴△OBC 是等边三角形,∴∠BOC =∠AOD =60°,∵S △AOD =S △DOC =S △BOC =S △AOB ,∴S 阴=2S 扇形OAD=2×= 故选:C .8.【解答】解:观察图形可知:S 树叶形图案=2S 扇形﹣S 正方形=2×﹣22=2π﹣4故选:D .9.【解答】解:如图,连接ED ,作AM ⊥EC 于M ,BN ⊥CD 于N .∵BC =2AC ,∴设AC =x ,BC =2x ,∵∠C =90°,∴x 2+(2x )2=5,∴x =1,2x =2,AC =1,BC =2,∵∠AMC =∠BNC =∠ACB =90°,∴∠ACM +∠CAM =90°,∠ACM +∠BCN =90°,∴∠BCN =∠CAM ,∵∠CBN +∠BCN =90°,∴∠CAM +∠CBN =90°,∵AE =AC ,AM ⊥EC ,BC =BD ,BN ⊥CD ,∴∠CAE =2∠CAM ,∠CBD =2∠CBN ,∴∠CAE +∠CBD =180°, ∵的长度恰好是的倍,设∠CBD =m ,∠CAE =n ,∴=×,∴4m =5n ,∵m +n =180°,∴m =100°,n =80°,∴S 阴=+=,故选:B .10.【解答】解:∵∠ACB =90°,OA =OB =1,∴AC =BC =, ∴△ABC 是等腰直角三角形,∴AB =2OA =2,∵△ABC 绕点B 顺时针旋转点A 在A ′处,∴BA ′=AB =2,∴BA ′=2OB ,∴∠OA ′B =30°,∴∠A ′BA =60°,即旋转角为60°,S 阴影=S 扇形BAA ′+S △A ′BC ′﹣S △ABC ﹣S 扇形BCC ′,=S 扇形ABA ′﹣S 扇形CBC ′, =﹣, =﹣=.故选:D .二.填空题(共5小题)11.【解答】解:根据题意得,圆锥的侧面积=×2π×5×7=35π. 故答案为35π.12.【解答】解:∵圆锥的底面半径为2cm ,高为3cm , ∴圆锥的母线长为cm ,∴圆锥的侧面积为π×2×=2π(cm ).故答案为:2π.13.【解答】解:∵圆锥的母线长是10cm,侧面积是50πcm2,∴圆锥的侧面展开扇形的弧长为:l===10π(cm),∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===5(cm),故答案为:5.14.【解答】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE=36°,由矩形CDOE易得到△DOE≌△CEO,∴∠COB=∠DEO=36°∴图中阴影部分的面积=扇形OBC的面积,∵S==10π扇形OBC∴图中阴影部分的面积=10π,故答案为10π.15.【解答】解:连接OC,作CM⊥OB于M,∵∠AOB=90°,OA=OB=2,∴∠ABO=∠OAB=45°,AB=2,∵∠ABC=30°,AD⊥BC于点D,∴AD==,BD=AB=,∵∠ABO=45°,∠ABC=30°,∴∠OBC=75°,∵OB =OC ,∴∠OCB =∠OBC =75°,∴∠BOC =30°,∴∠AOC =60°,CM =OC ==1,∴S 阴影=S △ABD +S △AOB ﹣S 扇形OAB +(S 扇形OBC ﹣S △BOC )=S △ABD +S △AOB ﹣S 扇形OAC ﹣S △BOC =+×﹣﹣ =1+﹣π.故答案为1+﹣π.三.解答题(共4小题)16.【解答】解:连接AD ,在△ABC 中,AB =AC ,∠A =120°,BC =2,⊙A 与BC 相切于点D ,则AD ⊥BC ,,,∴∠B =30°,,∴S △ABC ﹣S 扇形AMN =.17.【解答】(1)证明:∵AC=CE,∴弧AC=弧CE,∴∠CAE=∠B.∵CP⊥AB,∴∠CPB=90°∴∠B+∠BCP=90°.∵AB是直径,∴∠ACB=90°.∴∠ACP+∠BCP=90°.∴∠B=∠ACP.∴∠CAE=∠ACP.(2)解:连接OC,∵∠CAE=30°,∴∠ACD=30°,∠COA=60°.∴∠CDF=60°.∵AB是直径,∴∠ACB=90°.∴∠BCP=60°.∴∠BCP=∠DCF=∠CFD=60°.∴AD=CD=DF=.∴DP=AD sin30°=.∴CP=CD+DP=2.(5分)∴S阴影=S扇形﹣S△AOC=﹣=.(6分)18.【解答】解:(1)在正方形ABCD中,AB=AD=4,∠A=90°,∴BD==4∴BO1=BD=∴⊙O1的半径=.(2)设线段AB与圆O1的另一个交点是E,连接O1E ∵BD为正方形ABCD的对角线∴∠ABO=45°∵O1E=O1B∴∠BEO1=∠EBO1=45°∴∠BO1E=90°∴S1=S扇形O1BE ﹣S△O1BE==﹣1根据图形的对称性得:S1=S2=S3=S4∴S阴影=4S1=2π﹣4.19.【解答】解:(1)如图;(2)∵,∴点P经过的路径总长为6π.。
人教版九年级上数学册24.4弧长和扇形面积同步练习含答案

人教版数学九年级上册24.4弧长和扇形面积同步练习一.选择题(共5小题)1.如图,一段公路的转弯处是一段圆弧(),则的展直长度为()A.3πB.6πC.9πD.12π2.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.B.C.D.3.如图,AB为半圆O的直径,C为AO的中点,CD⊥AB交半圆于点D,以C为圆心,CD为半径画弧交AB于E点,若AB=4,则图中阴影部分的面积是()A.B.C.D.4.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是()A.360πcm2 B.720πcm2C.1800πcm2D.3600πcm25.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是()A.10cm2B.10πcm2C.20cm2D.20πcm2二.填空题(共4小题)7.如图,⊙O半径是1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是.8.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)9.用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.10.如图,两圆半径均为1,且图中两块阴影部分的面积相等,那OO1的长度是.三.解答题(共4小题)11.如图所示,将直角△ABC向下旋转90°,已知BC=5厘米,AB=4厘米,AC=3厘米,求△ABC扫过的面积.12.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB;(2)以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.13.如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆柱,中间是一个圆柱(如图,单位:mm).电镀时,如果每平方米用锌0.11kg,要电镀1000个这样的锚标浮筒需要用多少锌?(精确到1kg)14.已知如图,在直角坐标系xOy中,点A,点B坐标分别为(﹣1,0),(0,),连结AB,OD由△AOB绕O点顺时针旋转60°而得.(1)求点C的坐标;(2)△AOB绕点O顺时针旋转60°所扫过的面积;(3)线段AB绕点O顺时针旋转60°所扫过的面积.参考答案一.选择题 1.B . 2.C . 3.A . 4.D . 5.D . 二.填空题7.=π.8.12π. 9.50.10..三.解答题 11.解:∵将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置, ∴∠BAB′=90°,∴直角△ABC 扫过的面积是:S 扇形BAB′+S △ACB′=+×3×4=+6.12.(1)证明:∵四边形ABCD 是矩形, ∴∠B=∠C=90°,AB=DC ,BC=AD ,AD ∥BC , ∴∠EAD=∠AFB , ∵DE ⊥AF , ∴∠AED=90°,在△ADE 和△FAB 中,,∴△ADE ≌△FAB (AAS ),∴DE=AB;(2)连接DF,如图所示:在△DCF和△ABF中,,∴△DCF≌△ABF(SAS),∴DF=AF,∵AF=AD,∴DF=AF=AD,∴△ADF是等边三角形,∴∠DAE=60°,∵DE⊥AF,∴∠AED=90°,∴∠ADE=30°,∵△ADE≌△FAB,∴AE=BF=1,∴DE=AE=,∴的长=.13.解:由图形可知圆锥的底面圆的半径为0.4m,圆锥的高为0.3m,则圆锥的母线长为:=0.5m.∴圆锥的侧面积S1=π×0.4×0.5=0.2π(m2),∵圆柱的高为0.8m.圆柱的侧面积S2=2π×0.4×0.8=0.64π(m2),∴浮筒的表面积=2S1+S2=1.04π(m2),∵每平方米用锌0.11kg,∴一个浮筒需用锌:1.04π×0.11kg,∴1000个这样的锚标浮筒需用锌:1000×1.04π×0.11=11.44π≈359(kg).答:1000个这样的锚标浮筒需用锌359kg.14.解:(1)如图1,过C作CE⊥OA于E,∵点A,点B坐标分别为(﹣1,0),(0,),∴OA=1,OB=,∵△AOB绕点O顺时针旋转60°得到△COD,∴∠AOC=∠BOD=60°,AO=OC=1,∴OE=OC=,CE=OC=,∴C(﹣,);(2)△AOB绕点O顺时针旋转60°所扫过的面积=++×=π+;(3)如图2,线段AB绕点O顺时针旋转60°所扫过的面积═(﹣1×)+(﹣)+(﹣)=π﹣.。
人教版九年级数学上册 第24章 24.4 弧长和扇形面积 教材同步培优、能力提升练习卷(含答案)

人教版九年级数学上册 第24章 24.4 弧长和扇形面积 教材同步培优、能力提升练习卷24.4.1 弧长和扇形面积教材同步学习目标:掌握弧长和扇形面积的计算公式,能计算由简单平面图形组合的图形的面积.课堂学习检测一、基础知识填空1.在半径为R 的圆中,n °的圆心角所对的弧长l =_______.2.____________和______所围成的图形叫做扇形.在半径为R 的圆中,圆心角为n °的扇形面积S 扇形=__________;若l 为扇形的弧长,则S 扇形=__________. 3.如图,在半径为R 的⊙O 中,弦AB 与所围成的图形叫做弓形.当为劣弧时,S 弓形=S 扇形-______; 当为优弧时,S 弓形=______+S △OAB .3题图4.半径为8cm 的圆中,72°的圆心角所对的弧长为______;弧长为8cm 的圆心角约为______(精确到1′).5.半径为5cm 的圆中,若扇形面积为2cm 3π25,则它的圆心角为______.若扇形面积为15cm 2,则它的圆心角为______.6.若半径为6cm 的圆中,扇形面积为9cm 2,则它的弧长为______.二、选择题7.如图,Rt △ABC 中,∠C =90°,AC =8,BC =6,两等圆⊙A ,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( ).7题图A .π425B .π825 C .π1625D .π32258.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( ).8题图A .2πcm 100B .2πcm 3400C .2πcm 800D .2πcm 38009.如图,△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,且∠EPF =40°,则圆中阴影部分的面积是( ).A .9π4-B .9π84-C .94π8-D .98π8-综合、运用、诊断1长为半径作10.已知:如图,在边长为a的正△ABC中,分别以A,B,C点为圆心,a2,,,求阴影部分的面积.11.已知:如图,Rt△ABC中,∠C=90°,∠B=30°,,3BC以A点为圆心,AC长为半径作,4求∠B与围成的阴影部分的面积.拓广、探究、思考12.已知:如图,以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C交半圆O2于D点.试比较与的长.13.已知:如图,扇形OAB 和扇形OA ′B ′的圆心角相同,设AA ′=BB ′=d .=l 1,=l 2.求证:图中阴影部分的面积.)(2121d l l S +=24.2圆锥的侧面积和全面积教材同步学习目标:掌握圆锥的侧面积和全面积的计算公式.课堂学习检测一、基础知识填空1.以直角三角形的一条______所在直线为旋转轴,其余各边旋转形成的曲面所围成的几何体叫做______.连结圆锥______和____________的线段叫做圆锥的母线,圆锥的顶点和底面圆心的距离是圆锥的______.2.沿一条母线将圆锥侧面剪开并展平,得到圆锥的侧面展开图是一个______.若设圆锥的母线长为l ,底面圆的半径为r ,那么这个扇形的半径为______,扇形的弧长为______,因此圆锥的侧面积为______,圆锥的全面积为______.3.Rt △ABC 中,∠C =90°,AB =5cm ,BC =3cm ,以直线BC 为轴旋转一周所得圆锥的底面圆的周长是______,这个圆锥的侧面积是______,圆锥的侧面展开图的圆心角是______.4.若把一个半径为12cm ,圆心角为120°的扇形做成圆锥的侧面,则这个圆锥的底面圆的周长是______,半径是______,圆锥的高是______,侧面积是______.二、选择题5.若圆锥的底面半径为2cm,母线长为3cm,则它的侧面积为( ).A.2cm 2B.3cm2C.6cm2D.12cm26.若圆锥的底面积为16cm 2,母线长为12cm,则它的侧面展开图的圆心角为( ).A.240°B.120°C.180°D.90°7.底面直径为6cm的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高为( ).A.5cm B.3cm C.8cm D.4cm8.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角为( ).A.120°B.1 80°C.240°D. 300°综合、运用、诊断一、选择题9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则R与r之间的关系是( ).A.R=2r B.rR3C.R=3r D.R=4r10.如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( ).A .21 B .22C .2D .22二、解答题11.如图,矩形ABCD 中,AB =18cm ,AD =12cm ,以AB 上一点O 为圆心,OB 长为半径画恰与DC 边相切,交AD 于F 点,连结OF .若将这个扇形OBF 围成一个圆锥,求这个圆锥的底面积S .拓广、探究、思考12.如图,圆锥的轴截面是边长为6cm 的正三角形ABC ,P 是母线AC 的中点.求在圆锥的侧面上从B 点到P 点的最短路线的长.参考答案:24.4.1 弧长和扇形面积1.;180πRn 2.由组成圆心角的两条半径,圆心角所对的弧,.21,360π2lR R n 3.S △OAB ,S 扇形. 4..9157,π516o ' 5.120°,216°. 6.3πcm . 7.A . 8.D . 9.B . 10..)8π43(2a - 11..π3838- 12.的长等于的长.提示:连结O 2D .13.提示:设A O '=R ,∠AOB =n °,由,180π,180)(π21Rn l d R n l =+=可得R (l 1-l 2)=l 2d .而.)(21212121)(2121)(21211212121d l l d l d l d l l l R R l d R l S +=+=+-=-+=24.2圆锥的侧面积和全面积1.直角边,圆锥,顶点,底面圆周上任意一点,高. 2.扇形,l ,2πr ,πrl ,πrl +πr 2. 3.8πcm ,20πcm 2,288°. 4.8πcm ,4cm ,,cm 2848πc m 2. 5.C . 6.B . 7.D . 8.B . 9.D . 10.B . 11.16πcm 2.12..cm 53 提示:先求得圆锥的侧面展开图的圆心角等于180°,所以在侧面展开图上,.5363,902222o =+=+==∠AB PA PB PAB第8 页共8 页。
人教版九年级数学上册24.4弧长和扇形面积同步测试及答案【优】

弧长和扇形面积第1课时 弧长和扇形面积 [见B 本P48]1.若扇形的半径为6,圆心角为120°,则此扇形的弧长是( B )A .3πB .4πC .5πD .6π2.按图24-4-1(1)的方法把圆锥的侧面展开,得到图24-4-1(2)所示的扇形,其半径OA =3,120°,则AB ︵的长为( B )(1) 图24-4-1A .πB .2πC .3πD .4π3.如果一个扇形的半径是1,弧长是π3,那么此扇形的圆心角的大小为( C ) A .30° B .45° C .60° D .90°4.[2012·兰州]如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为( C )A .πB .1C .2 D.23π 【解析】 设扇形的半径为r ,弧长为l ,根据扇形的面积公式得S =12lr =12r 2=2. 5.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( A ) A.12π B.14π C.18π D .π 【解析】 从9点到9点30分分针扫过的扇形的圆心角是180°,则分针在钟面上扫过的面积是:180π×12360=12π. 6.如图24-4-2,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC ,若∠ABC =120°,OC =3,则BC ︵的长为( B )3π D .5π第6【解析】 如图,连接OB ,∵AB 与⊙O 相切于点B ,∴∠ABO =90°.∵∠ABC =120°,∴∠OBC =30°.∵OB =OC ,∴∠OCB =30°,∴∠BOC =120°,∴BC ︵的长为n πr 180=120π×3180=2π. 7.如图24-4-3,水平地面上有一面积为30π cm 2的扇形OAB ,半径OA =6 cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( C )图24-4-3A .20 cmB .24 cmC .10π cmD .30π cm 【解析】 点O 移动的距离就是扇形的弧长,设扇形弧长为l ,根据题意可得12l ×6=30π,解得l =10π cm.8.在半径为6 cm 的圆中,60°的圆心角所对的弧长等于__2π__cm(结果保留π).【解析】 弧长为60π×6180=2π(cm). 9.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为__3π__(结果保留π).【解析】 由题意得n =120°,R =3,故S 扇形=n πR 2360=120π×32360=3π.图24-4-4 10.如图24-4-4,AB 切⊙O 于点B ,OA =2,∠OAB =30°,弦BC ∥OA ,劣弧BC ︵的弧长为__π3__.(结果保留π)11.如图24-4-5,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O ,B ,C 是格点,则扇形OBC 的面积等于__54π__(结果保留π).12. 如图24-4-6,在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°.(1)画出旋转后的△AB ′C ′;(2)求线段AC 在旋转过程中所扫过的扇形的面积.图24-4-6解:(1)如图;(2)线段AC 在旋转过程中所扫过的扇形的面积=S 扇形ACC ′=90π·22360=π. 13.如图24-4-7,一根5 m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊),那么小羊A 在草地上的最大活动区域面积是( D )图24-4-7A.1712π m 2B.176π m 2 C.254π m 2 D.7712π m 2 14.如图24-4-8,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD ,弧DE ,弧EF 的圆心依次是A ,B ,C ,如果AB =1,那么曲线CDEF 的长是__4π__.图24-4-815.如图24-4-9,在矩形ABCD 中,AB =2DA ,以点A 为圆心,AB 为半径的圆弧交DC 于点E ,交AD 的延长线于点F ,设DA =2.(1)求线段EC 的长;(2)求图中阴影部分的面积.图24-4-9解:(1)∵在矩形ABCD 中,AB =2DA ,∴AE =2AD ,且∠ADE =90°.又DA =2,∴AE =AB =4,∴DE =AE 2-AD 2=16-4=23,∴EC =DC -DE =4-2 3.(2)S 阴影=S 扇形AEF -S △ADE =60°×π×42360°-12×2×23=83π-2 3. 16.如图24-4-10,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠AOC =60°,OC =2.(1)求OE 和CD 的长;【解析】 ∵∠CAD ,∠DBE ,∠ECF 是等边三角形的外角,∴∠CAD =∠DBE =∠ECF =120°,又∵AC =1,∴BD =2,CE =3,∴弧CD 的长=13×2π×1, 弧DE 的长=13×2π×2,弧EF 的长=13×2π×3, ∴曲线CDEF 的长=13×2π×1+13×2π×2+13×2π×3=4π. 解:(1)在△OCE 中,∵∠CEO =90°,∠EOC =60°,∴∠OCE =30°.∵OC =2,∴OE =12OC =1, ∴CE =OC 2-OE 2= 3.∵OA ⊥CD ,∴CE =DE ,∴CD =2CE =2 3.(2)∵S △ABC =12AB ·CE =12×4×3=23, ∴S 阴影=S 半圆-S △ABC =12π×22-23=2π-2 3. 17.如图24-4-11,AB 是⊙O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交⊙O 于E ,连接CE .(1)判断CD 与⊙O 的位置关系,并证明你的结论;(2)若E 是AC ︵的中点,⊙O 的半径为1,求图中阴影部分的面积.图24-4-11解:(1)CD 与圆O 相切,理由为:∵AC 为∠DAB 的平分线,∴∠DAC =∠BAC ,∵OA =OC ,∴∠OAC =∠OCA ,∴∠DAC =∠OCA ,∴OC ∥AD ,∵AD ⊥CD ,∴OC ⊥CD ,∴CD 与圆O 相切;(2)连接EB ,由AB 为直径,得到∠AEB =90°,∴EB ∥CD ,F 为EB 的中点,∴OF 为△ABE 的中位线,∴OF =12AE =12,即CF =DE =12, 在Rt △OBF 中,根据勾股定理得:EF =FB =DC =32, 则S 阴影=S △DEC =12×12×32=38.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弧长和扇形面积同步测试试题(一)一.选择题1.如图,从一块半径为20cm的圆形铁皮上剪出一个圆心角是60°的扇形ABC,则此扇形围成的圆锥的侧面积为()A.200πcm2B.100πcm2C.100πcm2D.50πcm22.有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是()A.30πB.48πC.60πD.80π3.如图,△OAC按顺时针方向旋转,点O在坐标原点上,OA边在x轴上,OA=8,AC=4,把△OAC绕点A按顺时针方向转到△O′AC′,使得点O′的坐标是(4,4)则在这次旋转过程中线段OC扫过部分(阴影部分)的面积为()A.8πB.πC.2πD.48π4.佳佳制作了一个圆锥形的紫绸帽子,经测量,圆锥的母线长为40cm,所用紫绸面积为360πcm2(不计接头损耗),则圆锥的底面直径为()A.6cm B.9cm C.18cm D.36cm5.如图,扇形OAB中,OB=3,∠AOB=100°,点C在OB上,连接AC,点O关于AC 的对称点D刚好落在上,则的长是()A.B.C.D.6.将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为120o的扇形,则()A.圆锥形冰淇淋纸套的底面半径为8cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为D.圆锥形冰淇淋纸套的高为7.如图,在菱形ABCD中,点E是BC的中点,以C为圆心,CE长为半径作弧EF,交CD于点F,连接AE,AF.若AB=6,∠B=60°,则阴影部分的面积是()A.6+2πB.6+3πC.9﹣3πD.9﹣2π8.如图,已知扇形的圆心角为60°,直径为6,则图中弓形(阴影部分)的面积为()A.6π﹣9B.6π﹣3C.D.9.如图,边长为4的正方形ABCD外切于圆O,则阴影部分面积为()A.2π﹣4B.2π+4C.15D.1410.如图,AB为半圆O的直径,C为半圆上的一点,OD⊥AC,垂足为D,延长OD与半圆O交于点E.若AB=8,∠CAB=30°,则图中阴影部分的面积为()A.π﹣B.π﹣2C.π﹣D.π﹣2二.填空题11.已知一个扇形的圆心角是60°,面积是6π,那么这个扇形的弧长是.12.如图,⊙O是ΔABC的外接圆,∠ABC=30°,AC=8,则优弧ABC的长为.13.如图,扇形AOB的圆心角是90°,半径为4cm,分别以OA、OB为直径画圆,则图中阴影部分的面积为.14.如图,在⊙O中,半径OA⊥OB,过OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点,阴影部分的面积为.15.如图,⊙O的直径EF为20cm,弦AB,CD位于直径EF的异侧,长度分别为12cm,16cm,AB∥EF∥CD,点G在线段EF上,则图中阴影部分面积之和为cm2.三.解答题16.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=6,∠CBD=30°,求图中阴影部分的面积.17.如图,已知Rt△ABC中,∠A=90°,将斜边BC绕点B顺时针方向旋转至BD,使BD ∥AC,过点D作DE⊥BC于点E.(1)求证:△ABC≌△EDB;(2)若CD=BD,AC=3,求在上述旋转过程中,线段BC扫过的面积.18.如图,AB是⊙O的弦,直线BC与⊙O相切于点B,AD⊥BC,垂足为D,连接OA,OB.(1)求证:AB平分∠OAD;(2)当∠AOB=100°,⊙O的半径为6cm时.①直接写出扇形AOB的面积约为cm2(结果精确到1cm2);②点E是⊙O上一动点(点E不与点A、点B重合),连接AE,BE,请直接写出∠AEB=°.19.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B 在点O右下方,且∠AOB=30°,在优弧上任取一点P,过点P作直线OB的垂线,交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP的度数及x的值;(2)求x的最小值,并指出此时直线PQ与所在圆的位置关系.参考答案与试题解析一.选择题1.【解答】解:作OD⊥AB于D,如图,则AD=BD,∵∠OAD=∠BAC=30°,∴OD=OA=10,AD=OD=10,∴AB=2AD=20,∴扇形围成的圆锥的侧面积==200π(cm2).故选:A.2.【解答】解:圆锥的母线==10(cm),圆锥的底面周长2πr=12π(cm),圆锥的侧面积=lR=×12π×10=60π(cm2).故选:C.3.【解答】解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(4,4),∴O′M=4,OM=4,∵AO=8,∴AM=8﹣4=4,∴tan∠O′AM==,∴∠O′AM=60°,即旋转角为60°,∴∠CAC′=∠OAO′=60°,∵把△OAC 绕点A 按顺时针方向旋转到△O ′AC ′,∴S △OAC =S △O ′AC ′,∴阴影部分的面积S =S扇形OAO ′+S △O ′AC ′﹣S △OAC ﹣S 扇形CAC ′=S 扇形OAO ′﹣S 扇形CAC ′=﹣=8π,故选:A .4.【解答】解:设圆锥的底面半径为rcm ,根据题意得×2πr ×40=360,解得r =9,所以圆锥的底面直径为18cm .故选:C .5.【解答】解:连接OD ,∵点D 是点O 关于AC 的对称点,∴AD =OA ,∵OA =OD ,∴OA =OD =AD ,∴△OAD 为等边三角形,∴∠AOD =60°,∴∠BOD =100°﹣60°=40°,∴的长==π,故选:B .6.【解答】解:半径为12cm,圆心角为120°的扇形弧长是:(cm)设圆锥的底面半径是r(cm)则:2πr=8π,解得:r=4即个圆淋的底面半径是4cm;圆锥形冰淇淋纸套的高为=8(cm).故选:C.7.【解答】解:连接AC,∵四边形ABCD是菱形,∴AB=BC=6,∵∠B=60°,E为BC的中点,∴CE=BE=3=CF,△ABC是等边三角形,AB∥CD,∵∠B=60°,∴∠BCD=180°﹣∠B=120°,由勾股定理得:AE==3,∴S△AEB =S△AEC=×6×3×==S△AFC,∴阴影部分的面积S=S△AEC +S△AFC﹣S扇形CEF=+﹣=9﹣3π,故选:C.8.【解答】解:S弓形=﹣×32=,故选:C.9.【解答】解:如图,连接HO,延长HO交BC于点P,∵正方形ABCD 外切于⊙O ,∴∠A =∠B =∠AHP =90°,∴四边形AHPB 为矩形,∴∠OPB =90°,又∠OFB =90°,∴点P 与点F 重合则HF 为⊙O 的直径,同理EG 为⊙O 的直径,由∠D =∠OGD =∠OHD =90°且OH =OG 知,四边形BGOH 为正方形, 同理四边形OGCF 、四边形OFBE 、四边形OEAH 均为正方形,∴DH =DG =GC =CF =2,∠HGO =∠FGO =45°,∴∠HGF =90°,GH =GF ===2,则阴影部分面积=S ⊙O +S △HGF=π22+×2×2 =2π+4,故选:B .10.【解答】解:∵OD ⊥AC ,∴∠ADO =90°,=,AD =CD , ∵∠CAB =30°,OA =4,∴OD =OA =2,AD =OA =2,∴图中阴影部分的面积=S 扇形AOE ﹣S △ADO =﹣×2=﹣2, 故选:D .二.填空题11.【解答】解:设扇形的半径为r,由题意,=6π,∴r=6,∴扇形的弧长==2π,故答案为2π.12.【解答】解:如图,连接OA,OC.∵∠AOC=2∠ABC,∠ABC=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=OC=AC=8,∴优弧ABC的长==,故答案为.13.【解答】解:如图,连接AB,OC,过点C作CD⊥OB,CE⊥OA,∵OB=OA,∠AOB=90°,∴△AOB是等腰直角三角形,∵OA是直径,∴∠ACO=90°,∴△AOC是等腰直角三角形,∵CE ⊥OA ,∴OE =AE ,OC =AC ,∴Rt △OCE ≌Rt △ACE (HL ),∵S 扇形OEC =S 扇形AEC ,∴与弦OC 围成的弓形的面积等于与弦AC 所围成的弓形面积,同理可得,与弦OC 围成的弓形的面积等于与弦BC 所围成的弓形面积, ∴S 阴影=S △AOB =×4×4=8(cm 2).故答案为8cm 2.14.【解答】解:由题意可得,OD =2OC ,∠OCD =90°, ∵CD =,∴OC =1,OD =2,∴∠ODC =30°,∴∠COD =60°,∴∠DOB =30°,∴阴影部分的面积是: +﹣=, 故答案为:.15.【解答】解:AO ,BO ,延长BO 交⊙O 于H ,连接AH ,则∠HAB =90°,∵AB =12,BG =EF =20,∴AH ==16,∴=,连接OC ,OD ,则S 扇形AOH =S 扇形COD , ∵CD ∥EF ,∴S △OCD =S △CDG ,∴S 阴影DCG =S 扇形COD ,∴S 阴影DGC =S 扇形AOH ,同理,S △AOE =S △BOE ,∴图中阴影部分的面积=S 圆O =×102=50π. 故答案为:50π.三.解答题16.【解答】(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°,∵OC ∥BD ,∴∠AEO =∠ADB =90°,即OC ⊥AD , 又∵OC 为半径,∴AE =ED ,(2)解:连接CD ,OD ,∵OC ∥BD ,∴∠OCB =∠CBD =30°,∵OC =OB ,∴∠OCB =∠OBC =30°,∴∠AOC =∠OCB +∠OBC =60°,∵∠COD =2∠CBD =60°,∴∠AOD =120°,∴BD=3,AD=3,∵OA=OB,AE=ED,∴,∴S阴影=S扇形AOD﹣S△AOD=﹣=3π﹣.17.【解答】解:(1)∵DE⊥BC,∴∠DEB=90°,∵AC∥BD,∴∠A=∠ABD=∠DEB=90°,∵∠ABC+∠CBD=90°,∴∠CBD+∠BDE=90°,∴∠ABC=∠BDE,∵BC=BD,∴△ABC≌△EDB(AAS).(2)∵CD=BD=BC,∴△BCD为等边三角形,∴∠CBD=60°,∠ABC=90°﹣∠CBD=30°,∵AC=3,∴BC=2AC=6,∴线段BC扫过的面积=6π.18.【解答】(1)证明:∵OA=OB,∴∠OBA=∠OAB,∵OB⊥CB,AD⊥BC,∴OB∥AD,∴∠OBA=∠DAB,∴∠OAB=∠DAB,∴AB平分∠OAD;(2)①∵∠AOB=100°,⊙O的半径为6cm,∴扇形AOB的面积为:≈31(cm2),故答案为:31;②当点E在优弧AB上时,∵∠AOB=100°,∴∠AEB=50°,当点E在劣弧AB上时,∠AEB=180°﹣50°=130°,故答案为:50或130.19.【解答】解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∴∠AOP=180°﹣∠POQ=90°,∵PQ⊥OB,∴∠PQO=60°,∴tan∠PQO==。